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1. Introduction by our 
President

The Institute and Faculty of Actuaries (IFoA) is the chartered 
professional body for actuaries in the United Kingdom. It is 
dedicated to raising the profile of actuaries and the value of  
their skills in both established and new areas of business.  
The IFoA continues to embrace the value of collaboration with  
other professional bodies and universities to rise to the challenges 
and opportunities facing society.

In the past few years, big data and the potential uses of this 
information have been receiving a significant amount of attention. 
Actuaries were the original data scientists in the field of mortality 
and longevity. There is a growing expectation that new insights 
into longevity will be deeper and richer than ever. This presents a 
fascinating opportunity for the insurance sector and the actuarial 
profession. This edition of the Longevity Bulletin considers a 
range of examples arising from the use of big data including the 
development of personalised medicine, the use of wearables and 
novel statistical and actuarial methods for modelling mortality.  
You can also read about the foundations of data science and 
challenges arising from new forms of data.

I have great pleasure in introducing the ninth issue of the Longevity 
Bulletin. I would like to thank all the contributors and authors for 
their thought-provoking and informative articles on the topic of big 
data and its applications.

We hope that this issue will be read with interest by all those with 
technical, professional and personal interest in health, morbidity and 
longevity matters.

Colin Wilson 
President, Institute and Faculty of Actuaries

Subscribe to the Longevity Bulletin

If you would like to subscribe to receive future editions of the Longevity Bulletin, please visit: bit.ly/longevitybulletin

We welcome feedback

Please email the Research and Knowledge team at research@actuaries.org.uk to make a suggestion or a comment on how  
we can make this publication better. 
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2. Foreword by Michael Tripp

Chair of the IFoA’s General Insurance Board and Chair of the IFoA’s Modelling, 
Analytics and Insights from Data (MAID) Working Party
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Big data is no longer the buzz word it was a few years ago,  
but now a fact of life with everyone involved in making sense  
of data on computers aware of burgeoning techniques.  
In its purest sense, big data means the use of data from many 
and varied sources – the combination of what previously 
might have been separate and unconnected. It also means 
incorporation of emerging new data sources – the obvious 
one being wearables, but also possible social media and other 
real-time measurements or interactions. One consequence 
is that traditional actuarial methods are being thrown up in 
the air and need a complete reassessment – for example in 
general insurance claims reserving, use of the information at 
full claimant level rather than the well-known grouped data 
triangles. Longevity investigations and research may be no 
different – what can today’s actuary do that yesterday’s could 
only dream about?

Looking to the future, one of the considerations is how to 
classify problems and thus work out what new approaches are 
likely to be most suitable. Peter Drucker (2016) refers to four 
types – the truly generic, the generic but unique to a given 
institution, the truly exceptional and the early manifestation 
of a new generic problem. Another more matter of fact 
– clustering/pattern recognition, predictive/causality and 
correlation, decision taking and optimisation leading to  
robotics and artificial intelligence. I’m sure readers will add  
their own insights.

So for longevity what are the challenges and how will tools 
and techniques help? The old question of ‘how long will people 
live’ perhaps morphs into how granular can we make the 
predictions, and reduce the uncertainty. Another one of  
‘what treatments produce the better (or best) results’, may 
become how do we help improve individual diagnoses and 
develop optimal treatment plans for any given individual’s 
quality of life. The list can go on – and I’ve not even started  
to discuss ethics.

In this context the research work described in this bulletin  
is vital.

References

Drucker F.P. (2016). The Peter F. Drucker Reader: Selected 
Articles from the Father of Modern Management Thinking. 
Harvard Business Review



3. Theoretical foundations of 
data science

Professor Sofia Olhede and Russell Rodrigues, Big Data Institute and Centre for 
Data Science, University College London
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Glossary
1   Inference: a reasoned conclusion 

drawn from data. 

2  Statistical significance: the likelihood 
of making a given observation, 
assuming that the process by which 
the data were generated is valid. 
If the likelihood is very small, the 
observation is considered ‘significant’, 
and unlikely to have occurred by 
random chance. 

3  Experimental design: a plan, 
formulated in advance of data 
collection, for the optimal collection 
and analysis of data, to ensure it will 
be possible for the analyst to infer 
and investigate questions of interest.  

4  Heterogeneous data: data containing 
several dissimilar elements, which 
cannot be collectively described in a 
simple manner, using a single model.  

As the volume, variety and velocity of 
data generation continues to increase, 
new possibilities for analysis are 
emerging in the field of data science.  
In this article, we discuss the theoretical 
concepts underpinning big data; 
specifically the new forms it takes, 
the new complex models required to 
describe, explain and draw inferences1 
from it, and recent advances in testing 
the significance2 of apparent patterns 
in observations. We describe some 
computational and privacy constraints, 
and conclude by highlighting some 
future trends for data science. 

Introduction

In 1959, the American statistician 
John Tukey said, ‘few of us expect to 
ever see a man who has analysed, or 
even handled, a sequence of a million 
numerical values…’ (Tukey, 1959).  
Back then, the ‘era of big data’ in 
which we now find ourselves (Manyika 
et al., 2011) could scarcely have been 
imagined. Modern data analysts contend 
not only with larger datasets, but with 
complications stemming from the 
variety of data sources and formats 
available, variability in data quality 
and completeness, and issues related 
to the increasing speeds at which 
data are generated. Furthermore, as 
increasing amounts of data are human-
generated, e.g. in social media and 
healthcare settings, privacy and security 
considerations become paramount 
(Wu et al., 2014). As in Tukey’s time, 
the purpose of data analysis is to 
obtain meaningful insight, but arriving 
at such insight requires increasingly 
sophisticated approaches, which are 

the focus of current research in the 
field of data science. Herein we discuss 
the theory underpinning the new data 
analysis challenges, and highlight some 
key approaches being adopted to 
address them.  

New forms of data:  
the challenges

Large and heterogeneous: As 
researchers, businesses and governments 
seek greater insight from their data, 
recent decades have seen significant 
increases in the overall data quantities or 
volumes subjected to analysis. Studying 
very large datasets can unveil rare or 
unusual occurrences, e.g. uncommon 
genetic diseases or fraudulent financial 
transactions. However, large volumes 
alone do not guarantee useful insight: 
data may still suffer from contamination 
(alterations affecting integrity), from 
biased samples (non-representative 
of the wider population), or from 
missing values (due to incomplete 
collection or retention). Moreover, much 
data is collected prior to considering 
specific questions for investigation: 
in the absence of experimental 
design3, the collected data may be too 
heterogeneous4 – lacking the structure 
and consistency to shed light on specific 
problems. Such data are referred to 
as ‘found’ datasets, because they are 
often taken and fed into analyses for 
which they were not explicitly collected. 
Heterogeneous datasets, even large 
ones, may not equip the analyst to 
make confident logical inferences and 
conclusions, and traditional analysis 
methods that do not correct for the 
limitations in these data can produce 



inaccurate and potentially misleading 
deductions, underestimating the true 
variability of behaviour.

High-dimensional: As sensor technology 
becomes cheaper and more widely 
available, vast quantities of multi-modal5 
data are now routinely collectable. 
This can be of benefit, for instance in 
monitoring and predicting maintenance 
requirements for industrial appliances 
and building infrastructure, but as more 
quantities are tracked simultaneously 
over time, collected data become more 
highly-dimensional6, and traditional 
statistical analyses are often ill-suited to 
identify trends in such data.

Varying modes and high velocity: 
Furthermore, data increasingly come 
in new, varying formats, including 
images, sound and video, which do 
not fit conventional tabular databases. 
Classical analyses generally study single 
input types, but rich opportunities exist 
to train computers to identify features 
of these media and make connections 
between them, for instance, predicting 
images based on sounds. Moreover, data 
are increasingly collected in real-time 
streams, posing challenges for storage, 
processing and analysis: conventionally 
such data would be divided into discrete 
batches for analysis, but new capabilities 
are arising for rapid online analysis. 

Privacy and security: Finally, significant 
insight can be obtained by piecing 
together multiple datasets, and 
developments in data linkage enable 
mapping of units or individuals 
across different sets (Pell et al., 2014). 
This confers technical challenges, in 
maintaining accuracy, but also ethical7 
ones. Added value may exist precisely 
in combining sources, but the potential 
for de-anonymisation of personal 
data remains a pressing concern. 
Moreover, access to much data held 
by governments, industries and other 
agencies is restricted, even though it 
might be leveraged for public benefit. 
Recent years have seen significant US 
and UK efforts through the creation 
of national Open Data8 initiatives to 
encourage data sharing where feasible, 
and in the future, new protocols for 
partial or time-restricted access to such 
data are likely to emerge. 
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5  Multi-modal data: data of different 
forms and types, for instance analogue 
signals, digitised signals, images, 
audio, video, and data collected in 
various medical and environmental 
monitoring settings.  

6  High-dimensional data: data having 
a large number of parameters 
associated with each individual or 
subject, requiring intensive computer 
resources to store and process. 
These data may also be incomplete 
or missing information in places, 
which can hinder inference and 
interpretation.

7  (Data) ethics: principles governing the 
collection and use of data, considering 
the rights of individuals, organisations 
and societies. Key ethical issues in 
data science include personal privacy, 
individual consent, data ownership 
and transparency (Royal Statistical 
Society, 2016). 

8  Open data: data that is readily 
available to anyone who wishes to 
access, use or share it. The UK Open 
Data Institute (www.theodi.org) and 
the US data.gov initiative, amongst 
others, increasingly call for public data 
to be made widely available for social 
good.

9  Machine learning: a subfield of 
computer science that develops 
algorithms, which enable computers 
to learn from data to make improved 
decisions or actions.

10 Sparsity: the principle that most 
possible relationships between 
different variables will be of negligible 
size or importance. 

11  Multivariate data: data for which more 
than one variable is being observed 
simultaneously.

12  Occam’s razor: a principle devised 
by the 14th century friar William of 
Ockham, stating that of all possible 
solutions to a conundrum, the simplest 
should apply.

New types of model

To mathematically describe relationships 
between variables and particular 
observations, scientists develop models; 
data science is no exception. In physics, 
Newton’s theory of gravity describes the 
relationships between force, acceleration 
and mass: one can determine how 
variations in any of these influence the 
others. This model also has predictive 
power: the future location of bodies can 
be calculated from their current location, 
velocity and acceleration. 

Similarly, data science models provide a 
descriptive framework for understanding 
relationships between observed events, 
and can have predictive value. Given 
the new complexities described above, 
models are increasingly developed with 
contributions from both statistics and 
computer science, particularly the field 
of machine learning9, which implants 
capacity for models to sharpen and 
make more accurate predictions for 
future observations. This is achieved by 
developing sets of complex computerised 
instructions, or algorithms, specially 
designed and adapted to process data in 
particular ways, and to learn from it. We 
shall now discuss the statistical concept 
of sparsity10, and outline some recent 
work combining it with machine learning, 
for model development. 

To deal with heterogeneous, high-
dimensional data, the notion of sparsity 
has recently emerged. With very large, 
multivariate11 datasets, one will more 
likely identify apparent relationships 
between particular variables where none 
actually exists. 

To avoid this, sparsity embeds models 
with the expectation that most potential 
relationships will not actually be 
present (Friedman et al., 2002) (Efron 
et al., 2004). The most popular sparse 
models employ the ‘lasso’ approach, 
which penalises each included variable 
(Friedman et al., 2001), thus aiming 
to eliminate all but the simplest 
explanations for phenomena. As such, 
sparse models are a mathematical 
application of Occam’s razor12.

http://www.theodi.org


Sparse methods, and other advanced 
statistical techniques can be combined 
with machine learning models. Learning 
methods are normally assessed in terms 
of predictive performance (Breiman, 
2001) (Tennenbaum et al., 2011), training 
algorithms on one set of the data, 
and testing their prognostic ability on 
another set. However, such methods 
may not capture the underlying factors 
influencing the values predicted, which 
are typically instructive for human 
understanding, interpretation and 
decision making. Flexible predictive 
models include regression trees13, random 
forests14, and deep learning15, which are 
all techniques for predicting complex 
behaviour (Friedman et al., 2001). 
Deep learning was adopted recently by 
Deepmind to train computers to outclass 
humans at the board game Go (Silver  
et al., 2016).

Yet, most descriptive and predictive 
models, whilst highlighting trends 
or correlations, cannot define causal 
relationships, which are the direct 
dependence of particular variables 
upon others (Peters et al., 2015). The 
distinction between correlation and 
causation was highlighted by Lazer at al. 
(2014), in their discussion of Google Flu 
Trends, which aimed to predict outbreaks 
on the basis of related web searches,  
but significantly overestimated incidence. 
Attempts have been made recently 
to extend machine learning methods 
to recognise causality16 (Shimizu et 
al., 2006) (Buhlmann & Hauser, 2012) 
(Janzing et al., 2014) (Lopez-Paz et 
al., 2015). One approach to studying 
causality is to manually force changes 
in one set of variables and monitor 
resulting changes in others. True causal 
relationships should withstand such 
intervention; otherwise the models 
would be pushed beyond their domain of 
applicability and may be expected to fail. 

With in-built contributions from statistics, 
machine learning algorithms have great 
power for description, prediction and 
causal inference (Jordan & Mitchell, 
2015) (LeCunn et al., 2015). As such, 
machine learning has been identified as 
a ‘disruptive innovation’, and is currently 
the focus of a Royal Society committee17.
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13  Regression tree: a method of 
prediction based on the probabilities 
of binary decisions.

14 Random forest: the use of many 
regression trees rather than a single 
tree for prediction.

15  Deep learning: an advanced method 
for representing and learning from 
complex data, which extensively 
models relationships between 
variables in a manner akin to neurones 
in the nervous system.

16 Causality / causal models: classical 
models indicate associations or 
correlations between variables. 
Causality moves beyond association to 
indicate interdependency (i.e. where 
alterations in one variable induce 
changes in another). Causal models 
typically embed a range of advanced 
statistical techniques (Pearl, 2010). 

17  See https://royalsociety.org/topics-
policy/projects/machine-learning/

18  Significance test: using statistical 
methods to determine whether an 
apparent difference between sets 
of observations can be considered 
genuine (‘significant’), and thus 
whether it likely corresponds to a 
real effect, or is otherwise due to 
random chance or another factor. 
Classical significance tests posit 
a null hypothesis (that there is 
no difference), and an alternative 
hypothesis (that there is) and seek to 
determine whether the null hypothesis 
can confidently be rejected, thus 
pointing to the presence, or absence, 
of a true effect.  

19 Multiple test: the implementation of 
more than one statistical significance 
test. Each individual test confers 
a small probability that the null 
hypothesis will be incorrectly rejected; 
performing multiple tests therefore 
compounds the likelihood that a 
non-existent effect will be detected. 
Multiple tests are needed to detect 
effects in large, complex datasets, but 
can result in erroneous deductions if 
not corrected for.

20 False positive/ false negative:  
where statistical tests incorrectly 
identify non-existent effects (false 
positive), or fail to detect true effects 
(false negative). Statistical tests are 
designed to fix the probability of a 
false positive detection as small and 
then minimize false negative detection. 

Multiple testing

Even having identified correlations and 
causations, to usefully leverage data one 
must still consider the significance of any 
observed effects. Traditional significance 
tests18 are a mainstay of scientific 
enquiry, but with large, complex datasets, 
one must apply such tests repeatedly, 
which increases the propensity that 
non-existent effects will be detected due 
to random chance. This is a recognised 
concern in domains such as neuroscience 
(Eklund et al., 2016), and it can mean 
that many studies are not reproducible 
(Baker, 2016).

To remedy this, innovative techniques are 
being adapted, such as the method of 
Benjamini & Hochberg (1996), to correct 
for multiple tests19 and strike a balance 
between avoidance of false positives20, 
and oversight of true effects. An 
emerging area, likely to grow in coming 
years, is selective inference (Taylor & 
Tibshirani, 2015). Selective inference 
recognises that often, multiple tests 
are run on the same data to investigate 
different effects, and corrects for  
this fact.

New forms of analysis: 
advances in algorithms

Above, we described machine learning 
algorithms which use sparsity to 
identify the simplest explanations for 
phenomena. However, running such 
algorithms on large and complex data 
requires computationally-intensive 
storage and processing power. To 
overcome these bottlenecks, algorithms 
are increasingly optimised for efficient 
(Zou and Hastie, 2005) (Cevher et 
al., 2014), and stable (Meinshausen 
& Bühlmann, 2010) deployment, 
and increasingly run on distributed 
computing systems, which spread the 
computational burden across multiple 
machines. However, compartmentalising 
data and algorithms in this way can 
complicate analysis, so distributed 
algorithms require careful optimisation, 
a fascinating and growing research 
area (Boyd et al., 2011), (Arjevani 
& Shamir, 2015). The ‘Bag of Little 
Bootstraps’ paradigm, introduced by 
Kleiner et al. (2014), effectively balances 

https://royalsociety.org/topics-policy/projects/machine-learning/
https://royalsociety.org/topics-policy/projects/machine-learning/


computational demands with robustness 
and efficiency, and is an intriguing 
methodological approach. 

The modern data analyst increasingly 
handles data of varying format and large 
dimensions. The emerging discipline 
of data science develops methods and 
techniques to extract useful information 
and insight from these data. This is 
presented in the following figures.

Figure 1 shows three diffusion-weighted 
magnetic resonance images of the brain. 
Each image is divided into smaller three-
dimensional units called voxels, which 
are differentially coloured in proportion 
to the ability of water molecules to 
diffuse through each voxel. Irregularities 
in diffusion patterns can be indicative 
of disease, such as stroke and brain 
tumours. Medical images such as these 
therefore serve as important diagnostic 
and prognostic tools. 

Figure 2 shows three time series plots, 
which chart the status of specific 
variables at successive points over time. 

The theoretical foundations of data 
science are evolving to encompass these 
and newer, emerging data forms. 

New challenges are also arising for 
the ethical handling of data, in using 
algorithms that preserve privacy, and in 
determining causality between variables 
in observed data. This article outlines the 
current state-of-the-art in data science 
and some upcoming challenges for  
the field. 

Further developments are also expected 
in algorithms that preserve privacy. 
As alluded to above, many public 
and private sector organisations hold 
personal data but cannot share it. Recent 
work in privacy-sustaining algorithms 
allows summaries to be compiled and 
inferences drawn from such data, at 
best without compromising personal 
information (Graepel et al., 2012), (Aslett 
et al., 2015), (Bos et al., 2014), (Kusner et 
al., 2015). As much of this data can yield 
important societal insight, such work will 
be of increasing relevance in the future. 
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This allows the behaviour of systems to 
be followed temporally, which enables 
the detection of variance and aberrant 
activity. Common examples of time series 
analysis are electroencephalography 
and electrocardiography, which describe 
electrical activity within the brain and 
heart respectively. 

Figure 3 presents network data, 
depicting the structure of linkages, or 
relationships between entities within a 
system. This permits the identification of 
clusters of interconnection and activity, 
and can help the analyst determine 
more specifically the units or sub-groups 
within the system that are of greatest 
interest. Commercially, network analysis 
can be used for customer stratification 
and segmentation, to facilitate the 
targeted delivery of services.

Figure 4 depicts data mapped out as  
a shape in three-dimensional space.  
One example of such observations would 
be the tracking of an object’s position 
over time.

Figure 1: Magnetic resonance images of the brain Figure 3: Network data

Figure 2: Time series plots

Figure 4: Data mapped out as a shape in three-dimensional space
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Discussion

When faced with a big data challenge, 
today’s analyst can draw upon much 
theory developed over the past few 
decades, particularly in the areas of high-
dimensional data analysis and machine 
learning (Donoho, 2015) (Fan et al., 
2014). Yet, several challenges raised in 
this article require additional theory be 
developed for resolution. 

At the outset, large raw datasets typically 
require pre-processing, cleaning and 
formatting, a suite of activities termed 
‘wrangling’. Though laborious, wrangling 
is essential to render analysis meaningful. 
However, the theoretical frameworks to 
maximise the consistency and efficiency 
of wrangling protocols remain poorly 
defined. New theory must also better 
correct for missing data and biased 
samples, which will enable ‘found’ data 
to be processed more consistently, and 
maximise rare event and subpopulation 
detection (Alyass et al., 2015) (Madigan 
et al., 2013) (Bühlmann & Meinshausen, 
2016).

New theoretical developments are also 
required at the interface of predictive 
machine learning and statistical causal 
inference, to enable robust statistical 
principles to be scaled up via emerging 
computer platforms and algorithms, 
for application to large datasets. This 
is especially necessary for data in new 
formats and in streams. 

Once data have been analysed, 
however, outputs must be presented 
in an accessible form for interpretation 
(Wolfe, 2013). New approaches for 
the visualisation of complex, high-
dimensional data need to be developed, 
in order to clearly isolate groupings of 
interest, and facilitate decision-making. 

Finally, the area of data ethics remains 
understudied. Transparent frameworks 
promoting public understanding of 
value and risks associated with sharing 
personal data need to be developed. 
Privacy, a related area, will see new 
theoretical approaches to enable analysis 
of confidential data with maintenance 
of anonymity. Further information on 
data ethics is given by Professor Luciano 
Floridi in section 9 of this Longevity 
Bulletin. 

Data analysis has progressed markedly 
from the time of Tukey, but extracting 
useful and actionable insight still lies at 
its heart. New theoretical innovations 
will play a major role in tackling the 
challenges posed by big data, and 
realising the opportunities it offers.
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4. Opinion: Is big data just 
big hype?
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With the rise of big data, there is a growing expectation that 
new insights into longevity will be deeper and richer than 
ever.  Some have even concluded that we no longer have to 
understand biological processes at all, given the astonishing 
amount of genome data along with the rise of other “omes” 
– proteomes, microbiomes and transcriptomes. We can 
simply use machine learning to mine this trove of data for 
understanding lifespan. If only it were that simple.

Machine learning relies on a type of artificial intelligence, 
supposedly modelled on the brain, known as a neural network 
of processing units. These have been a subject of study since 
the 1940s but recently have become fashionable again with 
the rise of ‘deep’ networks containing large numbers of hidden 
layers of units. 

But, as we have argued recently in a paper (Coveney et al., 
2016) with a colleague, the more extravagant claims made for 
the power of big data alone rest on shaky foundations: big data 
demand big theory too.

No matter how deep or sophisticated they are, neural nets 
merely fit curves to existing data. In effect, they say “based 
on all the people we have examined before, we can predict 
your risk of disease and life expectancy.” Although we know 
they have grown in power in the past thirty years, there is no 
rigorous theory to explain how well they work.

They typically fail in circumstances beyond the range of the 
data used to train them. As the overestimate of peak influenza 
levels by Google Flu Trends showed, past success in describing 
epidemics is no guarantee of future performance.

Paradoxically, the bigger the data, the more likely we are to 
swamp the details of how an individual person will respond. 
Because we are all different, the only way to use genetic 
information to predict how long a person may live is if we have 
a profound understanding of how the body works, so we can 
model the way that a particular person will age.

Because we lack the understanding to do this, the next best 
thing is to look at how genetically similar people react and then 
assume that a given person will respond in a similar way – that 
is why people talk about ‘precision medicine’ (even though it is 
less precise than personalised medicine!) 

But there are many other issues with blindly applying big data: 
without understanding to guide the collection and curation of 
data, there are many potential pitfalls because, in biology, big 
data is actually tiny relative to the complexity of a cell, organ 
or body. Few give much thought to how the body is a dynamic 
system, subject to cycles, circadian rhythms and constant 
renewal.  

One needs theory to help understand which data are important 
for a particular objective. When it came to the discovery of 
the Higgs particle at the Large Hadron Collider in Geneva, for 
example, the gathering of petabytes of data was guided by 
theory developed decades ago. Nor do we predict tomorrow’s 
weather by averaging historic records of that particular day’s 
weather – mathematical models do a much better job with the 
help of daily data from satellites. Similarly, trying to forecast 
a patient’s lifespan based on thousands of others is like trying 
to forecast the weather on a given date by averaging historic 
records of that day’s weather.

We have to be sceptical about the data that we gather. The fact 
that “most published research findings are false”, as famously 
reported by John Ioannidis from Stanford University, underlines 
that one critical dataset – the conclusions of peer reviewed 
studies – is unreliable without good experimental design and 
rigorous statistical analysis. Quality is more important than 
quantity.

We have to be sceptical about the range of data we gather. 
Most assume that “Big” means “lots and lots of data points”; 
Xiao-Li Meng at Harvard University has demonstrated that one 
can only make reliable predictions from big data if they truly 
represent a big fraction of the actual population of interest. 



We have to be sceptical about correlations. As the old saying 
goes, correlation is not causation and spurious correlations  
(the ‘clever Hans effect’, for example) are a familiar headache 
for anyone who has tried to use machine learning to predict  
the biological activity of molecules.

The bottom line is that even bigger data are not enough.  
To effectively use the explosion in big data, we need to improve 
the modelling of biological processes. We need models to 
understand the sensitivity of complex biological systems to  
tiny errors in data. In high dimensional spaces, where we 
are very unlikely to be able to harvest enough data to make 
rigorous inferences using machine learning, we need underlying 
theory and understanding in order to reduce of amount of data 
required in the first place.

We can only move from simplistic look-up tables of cause 
and effect to true science when we have understanding that 
can provide reliable insights in novel circumstances. We need 
models that are truly predictive. They have to be actionable, 
not only in the weak sense that they can be used post hoc,  
for instance to help hone a drug action or process, but in a 
strong sense that they can be used to predict the future so  
that action can be taken before it becomes a reality, as is 
already the case when forecasting severe weather.

In medicine, the most vivid example of an actionable prediction 
is one that can extend the life of a patient. That could, for 
example, mean a prediction that enables a doctor to pick one 
antimicrobial drug in preference to another when confronted 
with a severe infection. One author of this article (Peter V. 
Coveney) is already reporting results that show how it will soon 
be possible to take a person’s genetic makeup and – with the 
help of sophisticated modelling, heavyweight computing and 
clever statistics – select the right customised drug in a matter 
of hours.

This is why the European Commission is investing five million 
Euros in the CompBioMed (www.compbiomed.eu) initiative led 
by Peter Coveney’s team at University College London (UCL). 
True understanding of the factors affecting human longevity 
will arise from this kind of approach, not from blindly groping 
around for correlations in vast datasets harvested from complex 
biological systems. One day it should be possible use big data 
with modelling to create virtual humans, so a person’s digital 
Doppelganger can provide a glimpse of what is in store, from 
the effect of treatments to the impact of diet on lifespan.
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22 Two-Week Wait is a rapid referral route whereby patients being urgently referred for suspected cancer by their GP can expect to be seen by a specialist within  
 two weeks.

First published in 2010, Routes to Diagnosis used a novel 
methodology to harness and exploit large cancer datasets, 
identifying the route a patient took through the healthcare 
system before receiving a cancer diagnosis. Unexpected 
differences in how patients were diagnosed were uncovered, 
including large variation in short-term survival and many 
inequalities across different patient groups and cancers. It has 
been a major driver behind a national and international focus 
on early diagnosis for people with cancer. Understanding 
diagnostic pathways and our ability to influence them are 
now an important part of tackling cancer, with a reduction in 
emergency presentations being an important aspect of this.
Updates have been used to chart the impact of early diagnosis 
campaigns, improved treatments and the evolution of national 
screening programmes. This ground-breaking project filled a 
large knowledge gap to the benefit of cancer patients. Results 
are used to monitor the changes in the distribution of cancers, 
and to understand better where we can best focus our efforts 
to improve outcomes.

Introduction

An important pillar of recent national cancer strategies is the 
promotion of early diagnosis of cancer, thereby improving 
survival rates and reducing cancer mortality. In order to do this 
we needed to understand how patients are diagnosed with 
cancer. We knew that survival rates for cancer in England and 
the UK were poor compared to our European counterparts and 
suspected it might be due to later diagnosis. 

In 2009 we knew that less than 10% of cancers were diagnosed 
through screening, and understood something about the 
percentage of people being referred as a Two-Week Wait22 
(TWW), but we had no idea how many came via other GP 
referrals, or through Accident & Emergency (A&E), or were 
picked up in secondary care, say when a patient is being 
treated for an unrelated condition. The suspicion was that a 
significant amount of late cancer diagnoses arise in these cases 

where patients have not gone through a ‘managed’ route.  
There was speculation that we may find out that as many 
people are diagnosed through going to A&E as are diagnosed 
through all our current screening programmes put together - 
quite a sobering thought.

The challenge was to use routine datasets and consider 
how we could mesh together a variety of data sources to 
understand patients’ routes to diagnosis. The intention was to 
identify a route for all cancer patients, not just those of ‘the 
big four’. Then the results could be scrutinised by route, age, 
sex, ethnicity, deprivation and geographical area. Crucially, the 
patient outcomes, namely survival time after diagnosis, could 
be examined and compared.

Approach

The approach taken was to undertake large-scale linking of 
national datasets with cancer registration data. This enabled 
comprehensive coverage though was subject to information 
governance issues and dataset availability. 

Datasets were linked at tumour level using NHS number. The 
algorithm first used Hospital Episodes Statistics (HES) data to 
categorise the route for each tumour individually. The project 
team identified 135 different pathways to diagnosis; these 
were grouped into eight Route categories. National Screening 
Programme and Cancer Waiting Times (CWT) data linked by 
NHS number to the cancer registration record were examined 
with the assignment of route potentially changing to either 
a ‘Screening’ or TWW route. For cases with no HES activity 
the route was classified as Unknown or Death Certificate Only 
(DCO).

Detailed flow diagrams were drawn up illustrating the 
categorisation of patients into routes. Figure 5 shows the steps 
taken to seek a start point to the route when the end point was 
an inpatient admission. 
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In-patient (IP): a patient who is admitted to hospital for a procedure or diagnosis
Out-patient (OP): a patient who attends a healthcare appointment without staying overnight

Figure 5: Flow diagram for finding the start point or prior step for an in-patient step in a route

Results

The initial publication revealed for the first time the proportion 
of cancers diagnosed as an emergency presentation – one 
in four cancers, and that the survival for this cohort was the 
lowest out of those analysed. The most recent data covering 
2006-2013 show a reduction in these emergency presentations, 
down to 20% for all cancers and an increase in the TWW 
referral route. The results also cover the introduction and roll-
out of the bowel cancer screening programme, with an initial 
rise in the proportion of screen-detected cancers seen for the 
relevant age ranges, plateauing at around 27% for 60-69 year 
olds. Survival for this route is high, a trend seen for the other 
national screening programmes (breast and cervical). 

Results showed a large variation by cancer site, with 56 
cancers included in the latest publications. This focus on 
the less common cancers can be used to inform site specific 
work and awareness campaigns, as well as to support the 
vital work of the smaller cancer charities and patient groups.  
Variation was also seen between the sexes for some cancers, 
but more striking was the variation by age – with older age 
groups having a high proportion of emergency presentations. 
Inequalities by deprivation were also seen for some sites.

Our motivation lies within the rich detail that the results are 
able to give us, and in the variation and inequalities that our 
data continue to reveal. When we look behind the averages  
we are confronted with stark realities, for example:

•	 50% of pancreatic cancer patients present through an 
emergency route, with only 10% of those people surviving  
a year after diagnosis.

•	 For women diagnosed with ovarian cancer, 20% of those 
under 50 are diagnosed as an emergency, compared to 51% 
of those aged over 85.

•	 For people with colorectal cancers, only 7% in the most 
deprived areas are diagnosed through screening compared to 
11% in the least deprived areas. The proportion of emergency 
presentations has decreased between 2006 and 2013 and the 
proportion via TWW has increased as shown in Graph 1.

Graph 1: Percentage of diagnoses by presentation route,  
Colorectal, by year 
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In big data terms, over 118 million records were used to 
generate the latest set of results; more records are being used 
to produce the next update.

Many high profile publications that have used the Routes to 
Diagnosis results, including reports and articles from cancer 
charities, parliamentary groups, ministers, commissioners and 
clinicians: “One of the most shocking statistics is that a quarter 
of UK cancers are first detected at hospital accident and 
emergency departments” - John Baron MP, House of Commons, 
London, UK (published in The Lancet: Oncology, January 2012).

The results have also received media coverage, as well as being 
referenced and cited extensively in academic publications. 
A number of additional outputs have been produced by the 
team including posters and data briefings. Research currently 
being prepared for publication includes examination of prior GP 
consultations among cancer patients diagnosed as emergency 
presentations, and examination of the change in survival for 
different routes over time. 

Conclusion

The novel approach was subject to in-depth scrutiny by the 
cancer intelligence community following the publication of 
the initial results in 2010. Subsequently the methodology was 
published in British Journal of Cancer in 2012. Each updated 
publication of Routes to Diagnosis results has been the 
result of a review of the approach and the methodology, and 
improvements have been made wherever possible. The data 
underlying the work has also improved, as evidenced by the 
reduction over time of those assigned to the unknown route.

The Routes to Diagnosis study has formed the basis of a 
large number of other academic studies, some of which have 
examined and inspected the methodology in detail. The 2012 
paper has been cited 120 times in the scholarly literature, 
(Google Scholar as at 06 December 2016), along with 
numerous other reports and publications. The data briefings 
and workbooks have also been frequently referenced. 

Thanks to the integration of the work into Public Health 
England’s national Cancer Analysis System (CAS) it has been 
possible to utilise the Routes to Diagnosis results easily in other 
work.  Results are stored at patient and tumour level in a secure 
environment, with access to the data regulated by Section 251 
of the NHS Act [2006]. Routes have been linked to data on 
surgical resections, further linkages with treatment data are 
now possible, including with radiotherapy and chemotherapy 
data. This would enrich our understanding of the issues 
associated with access to potentially curative treatment.

The improved staging information in the CAS allowed the 
possibility of extending the analysis on Routes to Diagnosis 
to include cancer stage; this was then expanded to look at 
variation in Routes by ethnicity. Routes to Diagnosis results 
also provide a key metric being used in the evaluation of past 
and current Be Clear on Cancer campaigns, which aim to help 
patient spot symptoms of cancer earlier. 
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Too many people with cancer are still being diagnosed too late. 
We have a responsibility to utilise the cancer data that we are 
entrusted with to ensure that we are doing all that we can to 
help understand why this is and what can be done to make 
a difference to patients. Routes to Diagnosis is one small but 
significant part of this endeavour, and one that I am immensely 
proud to have been involved in for the last seven years.
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Introduction

Estimating longevity risk and evaluating associated uncertainty 
is one of the main topics of concern to actuarial community. 
It is well known that longevity is increasing considerably both 
in developed and developing countries, including the United 
Kingdom.  We believe that to be able to establish the drivers 
of this change, and to predict how they may change over time 
and how this would affect life expectancy, researchers need 
to harvest Big Health Data (Hemmingway, 2014), i.e. to access 
large health databases, and to use sophisticated tools for 
modelling the mortality experience of participating populations 
using individual level health data. Big Actuarial Data such as 
the Continuous Mortality Investigation (CMI) data are of the 
utmost importance in translating the results to the reference 
population of relevance to the actuarial community.

Contemporary evidence-based underwriting needs to 
account for a large number of important and time-varying 
determinants of health and longevity, such as demographic 
factors (gender, social class), lifestyle factors (smoking, obesity, 
alcohol usage) and medical advances, and their interactions. 
Many public health interventions are aimed at increasing the 
health of populations. These vary from offering flu vaccination 
to encouraging lifestyle changes to management of chronic 
medical conditions. However, actuarial and medical research 
often aim at somewhat differing objectives. While mortality 
is of primary interest to an actuary, exacerbation of medical 
conditions is often the interest of a medical researcher. For 
instance, not death but a cardiac event may be the primary 
endpoint in many medical studies of heart disease or smoking. 
Additionally, clinical trials while of the gold standard when 
studying medical interventions, deal with a selective population 
of patients, and usually are of short duration.

This explains why the existing medical publications and their 
syntheses published in numerous systematic reviews, though 
certainly important, are not sufficient for actuarial purposes, 
and the direct involvement of actuarial researchers in the 
modelling of health-related data is of utmost importance.  
In-depth actuarial longevity research should concentrate on 
statistical modelling of population-based individual level data 
collected over the long term. Some advances in this direction 
are already being made (Ryan et al., 2013; Lu et al., 2014).

The title of this article (Use of big health and actuarial data for 
understanding longevity and morbidity risks) is, in fact, the 
name of a research programme recently funded by Institute 
and Faculty of Actuaries (IFoA). This is a joint project between 
the School of Computing Sciences and Norwich Medical School 
within the UEA, and Aviva Life. This research will use the data 
on 3.4 million patients born before 1960 from The Health 
Improvement Network (THIN) primary care database, and also 
the CMI data. The main objectives are the development of 
novel statistical and actuarial methods for modelling mortality, 
modelling trends in morbidity, assessing basis risk and 
evaluating longevity improvements based on individual level 
big health and actuarial data.

Programme description

The first aim of the programme is the mortality modelling.  
This includes identification and quantification of the key factors 
affecting mortality/longevity such as lifestyle choices, medical 
conditions and/or interventions. A target list will include 
between 3-5 conditions or interventions. Statin prescription, 
an established longevity-improving intervention (Longevity 
Science Panel, 2014) is one of the target scenarios. The choice 
of the medical and social developments to be included in 



research will be based on current models of disease burden 
in England (Newton et al., 2013), and combined with the 
availability of relevant information in the general practice  
data such as THIN. 

The top causes of premature death in England are: heart disease, 
stroke, respiratory disease, cancer and Alzheimer’s disease.  
Important health interventions and social developments include 
widening of statins prescription, possible changes in blood 
pressure targets, rise in obesity and type 2 diabetes, reduction 
in smoking, trends in diet and physical activity according to 
socioeconomic status. Some of the information required for 
tackling these diseases and interventions is not available in 
THIN. This includes the details on cancer severity, and this, 
unfortunately, takes cancer off the list.

After careful consideration of the importance of various 
conditions, interventions and lifestyle factors, and availability 
of the required information, the research team agreed on 
the following list which includes the main cardiovascular 
conditions: myocardial infarction, heart failure, atrial fibrillation, 
and stroke. The lifestyle factors of interest in respect to 
cardiovascular disease are smoking and obesity. Additionally, 
type 2 diabetes would contribute to all of the above conditions. 
Health interventions to study include statin prescriptions and a 
possible change in systolic blood pressure (BP) targets to 120 
mm Hg. This is a very novel possible development, following 
the results from the just published SPRINT trial (2015). In this 
large trial, the lower BP target resulted in considerably lower 
all-cause mortality (hazard ratio, 0.73; 95% CI, 0.60 to 0.90). 
However this may also bring side effects, such as rise in acute 
kidney injury.

The second aim is the modelling of trends in morbidity and the 
uptake of health interventions. Trends in the incidence and/
or prevalence of particular medical conditions and/or lifestyle 
factors will also be obtained from the primary care data, 
establishing patterns due to social or geographic inequalities, 
such as socio-economic status (SES), age or postcode lottery. 
For instance, the patients in the more deprived areas may be 
disadvantaged in regards to the latest interventions. A new 
intervention may be of benefit to only the most privileged 
individuals, at least initially. Similarly, outcomes of a public-
health campaign aimed at healthier lifestyle choices are  
often associated with SES and will, therefore, result in SES 
dependent changes in the incidence of a disease. This will l 
ead to widening the gap in longevity between individuals from 
different backgrounds. Thus to be able to ascertain an effect  
on longevity of a population, the incidence of a condition or  
an uptake of an intervention needs to be modelled over time  
in parallel to modelling mortality.  

As often happens with an existing portfolio of insured lives,  
the precise health details of a life are not available. Instead,  
the interest lies in the mortality trends of the whole book.   
To be able to provide this information, three components  
are required:  
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•	 established in Aim 1 model for survival differentials 
associated with a particular disease or intervention; 

•	 developed in Aim 2 model for the incidence/prevalence of 
this condition or uptake of this intervention over time, 

•	 the sufficient knowledge of the population to which it is 
desired to translate trends in longevity established in general 
population to be able to assess the basis risk (Haberman et 
al.,  2014). The data submitted to the Continuing Mortality 
Investigation will be used for this purpose.

Finally, an open source R package will be developed. It will 
incorporate the models derived from the analyses of THIN 
and CMI data and provide analytical and graphical means to 
forecast longevity of a general UK population, and also of a 
population of a user defined composition under a number of 
scenarios for changes in disease incidence, health behaviors 
and treatments. This will be an open source software available 
from the project website along with an accompanying manual 
for its use. Teaching materials for the actuarial community on 
the modelling techniques used in the project, and the use of the 
developed R package will be available from the project website. 

Our programme is funded by IFoA for four years from October 
2016. However, we expect to obtain the first results and to 
present them to actuarial community within the first year. 

A case study: statins and longevity

This case study focuses on longevity improvement due to the 
widening guidelines on the prescription of statins to healthy 
patients. The results below are based on the preliminary 
research within Aim 1 by the second author, and are published 
in Gitsels et al. (2016).  

Cardiovascular disease (CVD) is one of the main causes of 
death, accounting for 28% of all deaths in the United Kingdom. 
Statins are prescribed for primary and secondary prevention of 
CVD. For primary prevention, the risk of CVD is quantified by 
the so called QRISK2 score as the 10-year risk of a first cardiac 
event. In July 2014, the National Institute for Health and Clinical 
Excellence (NICE) lowered the risk threshold for which statins 
are prescribed at from 20% (2006 recommendation) to 10% 
(NICE, 2014). This translates to an increasing number of people 
being eligible for the drugs; that is an additional 4.5 million UK 
residents. From an actuarial perspective the question becomes 
whether the new NICE policy would materially affect mortality 
in the UK, and if yes then how. 

The objective of our study was to estimate the survival benefits 
of statins for different risk groups at various ages in the general 
population. Data from THIN database were used, comprising 
medical records from 1987 to 2011 of people born between 
1920 and 1940.  Four cohorts aged 60, 65, 70, or 75 years with 
no previous history of CVD were studied, with sample sizes 
118,700, 199,574, 247,149, and 194,085, respectively.



The hazard of mortality associated with statin prescription in 
patients at <10%, 10-19%, or ≥20% CVD risk was calculated by 
a multilevel Cox proportional hazard regression, adjusted for 
covariates including sex, year of birth, Mosaic (lifestyle groups 
defined by postcode), diabetes, blood-pressure regulating 
drugs, high cholesterol, Body Mass Index (BMI), and  
smoking status. 

18

There was low uptake of statin therapy in the eligible 
population as seen in Graph 2. People at <10% CVD risk did not 
have a mortality benefit from  statin prescription at any age, 
whereas people at 10-19% CVD risk had a mortality benefit of 
11-21% by the age of 70. Furthermore people at ≥20% CVD risk 
had a mortality benefit of 14-18% by the age of 65 as shown 
in Figure 6. 

Graph 2: Statins prescriptions rates in the UK based on the THIN data

Figure 6: Hazard ratio of death given statins prescription for patients stratified by QRISK2. 

Hazard ratios adjusted for sex, year of birth, socioeconomic status, diabetes, hypercholesterolaemia, blood pressure regulating drugs, 
body mass index, smoking status, and general practice.

60%

40%

20%

0%

1987 1990 1993 1996 1999 2002 2005 2008 2011

30%

20%

10%

0%

1987 1990 1993 1996 1999 2002 2005 2008 2011

Statins prescription rate: patients ≥20% QRISK2 Statins prescription rate: patients <20% QRISK2

60 65 70 75

<10%

Age 60  1.19 (0.86 - 1.65)

Age 65  0.97 (0.71 - 1.33)

10 - 19%

Age 60  1.12 (0.92 - 1.36)

Age 65  1.00 (0.91 - 1.11)

Age 70  0.89 (0.81 - 0.99)

Age 75  0.79 (0.52 - 1.19)

>=20%

Age 60  1.02 (0.76 - 1.37)

Age 65  0.86 (0.79 - 0.94)

Age 70  0.83 (0.79 - 0.88)

Age 75  0.82 (0.79 - 0.86)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Adjusted hazard ratio

Cardiac risk
at baseline

Adjusted HR 
(95%CI)



The mortality benefits translate to an increase in life expectancy 
of 1.2 to 2 years, respectively. In the course of the project we 
shall extend these results and combine them with a novel 
model for the uptake of statins over time (Aim 2) and we will 
develop an adjustment for the basis risk based on the CMI data 
(Aim 3) to provide a plausible scenario of temporal changes 
in longevity due to statins. Our model can also be used for the 
future cost-benefit analysis of the new NICE guidelines which 
would account for the additional drug costs and additional 
healthcare resource use.
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7. Personalised risk prediction: 
genomics and beyond
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The ability to predict more accurately the risk of diseases in 
individuals and within populations should form an important 
element in the practice of truly personalised medicine, 
providing opportunities to prevent or limit disease. Genomic 
and other forms of biological data can feed into risk prediction 
models to refine and improve individual risk assessments. 
Whilst the enormous and as yet poorly understood complexity 
of human biology and genomics significantly limits this 
capacity at present, there are already some opportunities 
for better prediction and prevention of ill-health. Combining 
real-time data from both biological and environmental sources, 
facilitated by emerging health technologies and capacity for 
big data analysis, may ultimately offer the most personalised 
solutions.

The future of personalised medicine will certainly include more 
precise risk prediction, informed by genomics, environmental 
and behavioural factors, physiological and other biological 
measurements. Eventually, we may progress to a state where 
risk prediction forms just one part of a continuous lifelong 
process of monitoring and maintaining health – but there is  
still a long way to go before we get there.

Introduction

No two individuals are exactly alike (not even identical twins), 
and there is increasing recognition that a move away from 
‘one size fits all’ healthcare to a more tailored approach offers 
benefits. An important component of personalised healthcare 
is the capacity to identify those in whom the risk of disease 
is substantially increased, whether at the individual level or 
as a population sub-group. This enhances the potential for 
preventive interventions, as well as for increased screening, 
earlier diagnosis and prompt treatment that can cure or at least 
reduce the severity of disease – though it may also increase the 
risks of  ‘over-diagnosis’ and unnecessary treatment.

Broadly speaking, health and disease arise from highly complex 
interactions of innate (genetic) and external (environmental 
and behavioural) factors. In rare inherited diseases, genetic 
influences dominate, but in most cases the picture is more 
complicated. Genetics can influence our behaviour and 
modulate environmental interactions; conversely, external 

agents can influence the regulation of our genes. Whilst  
the effects of ‘lifestyle’ factors such as diet and exercise  
on the risk of conditions like heart disease or cancer are  
well known, making sense of the interactions between  
genetic and environmental factors in disease risk and  
causation is much harder.

Nevertheless, genomics (underpinned by rapid developments 
in DNA sequencing and analysis) offers new opportunities for 
risk prediction. At the same time, parallel developments in a 
host of other scientific fields and technologies are enabling 
improvements in health monitoring, including via the use of 
‘wearables’ and biological sensors. So as we approach what is 
being widely hailed as the ‘era of personalised medicine’, how 
far can our capacity to assess risk and predict disease improve? 

Identifying high-risk groups from within 
populations using genomics

It is increasingly feasible to identify rare disease-associated 
genetic mutations in individuals and their families. Thousands 
of rare inherited conditions (such as muscular dystrophy, 
cystic fibrosis or Marfan Syndrome) are now known, and 
added to these are ‘new’ (de novo) genetic changes such as 
the chromosomal abnormalities that cause Down Syndrome 
or Fragile X Syndrome. Collectively, one in 17 people in the UK 
have a rare disease; genetic testing can pinpoint the precise 
cause of such conditions and inform clinical management. 
It can also help prevent disease and even death in family 
members who share the same genetic mutation.

For example, identifying familial hypercholesterolaemia  
by DNA testing in someone who has had a heart attack 
 in early adulthood means that their children can also be  
tested. Affected children may show no signs of disease,  
but should nevertheless receive special care to keep their own 
cholesterol levels low and prevent potentially fatal premature 
cardiovascular disease. Similarly, families affected by hereditary 
breast-ovarian cancer syndrome caused by BRCA gene 
mutations can be tested; women without a mutation have 
only population-level cancer risk. Those with it have greatly 
increased risk – but this knowledge at least allows them to opt 
for earlier and more frequent screening, or even for full surgical 
removal of the breasts and ovaries.



Adults with siblings or children affected by genetic diseases 
can learn the risks of future children having the same disease, 
and the options available to avoid this, such as pre-implantation 
genetic diagnosis (PGD), whereby IVF embryos are screened to 
select those without the disease mutation.

Common diseases and risk stratification

Genetic diseases are unusual in being primarily (if not 
exclusively) caused by genetic changes – though even then,  
the probability of clinical disease and its severity when it occurs 
may vary. Conversely, common complex diseases arise from 
a combination of multiple contributory environmental and 
genetic factors. Genetic variants that can contribute to overall 
risk of a given disease in an individual are typically relatively 
common in the population, and individually most confer very 
modest changes in risk. However, their cumulative effect may 
be greater, creating a spectrum of genetic risk across different 
individuals within a population. 

There is evidence that incorporating genetic data on the 
presence or absence of multiple mutations into risk prediction 
algorithms (along with usual data on age and sex) could 
refine and improve risk assessment. This might, for example, 
identify some women at relatively high risk of breast cancer 
who should be offered screening, but would be excluded from 
current programmes because they are too young. Improved, 
stratified risk prediction is feasible in the not-too-distant future 
for at least some common conditions, and could be relevant for 
insurance as well as public health.

Wider opportunities to identify risk and 
prevent or limit ill-health

Specific gene-environment interactions can play a significant 
role in disease. For example, tobacco smoking is strongly 
associated with an increased risk of lung cancer, but not all 
smokers are affected to the same degree. Studies in different 
populations have identified a host of genetic variants that 
appear to influence physiological interactions with tobacco 
smoke to affect lung cancer susceptibility. The field of ‘toxico-
genomics’ seeks to identify those at greatest risk of ill-effects 
from specific environmental exposures to toxins and other 
external agents on the basis of their genomic composition  
and activity. 

Perhaps more significant at this stage is pharmacogenomics, 
common genetic variations that affect the components of drug 
metabolic pathways in individuals and govern drug responses. 
This can limit or prevent the efficacy of standard doses of some 
drugs in ‘fast metabolisers’, but it can be even more important 
to identify ‘slow metabolisers’, in whom a standard dose could 
have serious adverse effects, via pharmacogenetic testing. For 
example, over 10% of the UK population has genetic variants in 
the thiopurine methyltransferase (TPMT) gene that reduce their 
ability to metabolise immunosuppressant thiopurine drugs, 
putting them at risk of dangerous toxicity – unless revealed  
by testing.
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Genetic testing can also be of value with respect to infectious 
disease risks, to identify individuals with genetic variants 
that make them particularly susceptible to specific infectious 
disease agents, or to severe forms of disease related to specific 
infections. If patients are known to be at risk, they can be 
prioritised for prompt and aggressive treatment in the event  
of a possible infection.

In the future, genomic data may also be relevant to health-
related behavioural modification. Genetics certainly influences 
individual propensity to obesity, and responses to dietary 
intake. Nutrigenomics, the study of genetic contributions to 
individual variation in nutritional requirements and responses, 
could eventually help identify those at increased risk of 
developing conditions such as metabolic syndrome or diabetes, 
as well as tailor nutritional recommendations to minimise 
disease risk or progression. 

A bigger challenge lies in making sense of genetic influences 
on mental health and behaviour, including propensity towards 
harmful forms of addiction. Large-scale genomic research into 
psychiatric disorders is revealing shared origins that could have 
a major effect on how different disorders are classified and 
treated. Eventually such data could also have some predictive 
utility, although use for this purpose could be controversial.

The future of individualised risk prediction

Genomic data undoubtedly have an important role to play in 
disease risk prediction and personalised medicine in the coming 
years. The better we understand genomics and the underlying 
biological processes that cause disease, the more opportunity 
there is to predict, prevent and treat it most effectively,  
as well to develop new and more tailored treatments.  
However, for most diseases genomic data remains just one 
piece in the puzzle. 

The scope for truly individualised prediction and prevention 
of common disease is likely to be some way off, and will 
probably need to combine not only basic genetic and lifestyle 
information, but also data from a much wider range of sources, 
whether fitness trackers or other forms of medical wearables, 
in risk prediction algorithms. Just as new technologies and 
applications are being advanced as an opportunity for more 
personalised health promotion via behavioural modification and 
psychological support, others such as implantable or portable 
biosensors and scanners (perhaps via smartphones) could 
contribute a multiplicity of health-related data that, properly 
streamed and analysed via predictive algorithms, could help 
provide refined risk estimates – whether static (at a  given point 
in time) or potentially even continuous. Indeed, in examining 
data from biomarkers that may be used to measure multiple 
bodily processes, from gene expression to metabolism or even 
the presence or absence of specific microorganisms in different 
parts of the body infections, it may be not so much absolute 
levels as patterns of change in an individual that are most 
predictive of changes in risk, or that can identify pre-disease 
states.



Eventually, we may progress to a state where risk prediction 
forms just one part of a continuous lifelong process of personal 
monitoring and health maintenance – but there is still a long 
way to go before we get there.
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8. Big data in action: 
wearables
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The commonly accepted characteristics of what constitutes  
‘Big Data’ – rather than just a big dataset – are the four Vs’: 
volume, velocity, variety and the somewhat forced fourth 
alliterative attribute, veracity. Volume refers to the quantity of 
data – for instance, Facebook is thought to deal with of the 
order of 3 billion ‘likes’ or comments every day. Velocity refers 
to the frequency of updating – for instance, daily feeds rather 
than monthly or yearly updates – and hence the required 
velocity of analysis if data use is to be optimised. Variety relates 
to the nature of the data: structured, unstructured; numbers, 
text, pictures, etc. Veracity is a question not just of data validity 
per se, but the extent to which there is a real ‘signal’ underlying 
an undoubtedly large amount of noise.

It is clear from these criteria that the mass of data being 
gathered from wearables qualifies as big data. This is true even 
if we consider just wrist-worn activity-tracking devices such 
as Fitbits and smart watches, but the definition could also 
extend to smartphones with activity-tracking apps, adding 
vastly more devices to the data-generating pool. The volumes 
are enormous, with of the order of hundreds of millions of the 
leading wearables in circulation; velocity is provided by daily  
(if not more frequent) uploading of the wearer’s activity; 
variety comes from the range of fields, typically relating to 
steps walked/run, sleeping patterns and circulatory information; 
on the other hand, veracity remains something of a challenge 
for wearables, given issues around accuracy (although wearable 
accuracy continues to improve) and the problem, in the context 
of possible insurance uses, of ensuring the wearer is indeed the 
‘named’ wearer. 

Wearables present a fascinating opportunity for insurers,  
and related sectors such as the private health sector.  
In the first instance, wearables could be regarded as the life 
insurance equivalent of the vehicle telematics and usage-
based insurance that has become relatively common in motor 
insurance, providing enormous amounts of information about 
the insured’s driving habits – and also providing an immediate 
form of segmentation (a policyholder who accepts a telematics 
device in their car will likely be a materially different risk type 
from the refusenik). The nature of the insured event, however, 
makes the two applications very different – information on 

a driver’s top speed compared with speed limits may be 
predictive in motor accident analyses, but how fast a ‘wearable 
wearer’ sometimes sprints is unlikely to be similarly predictive 
in a morbidity or mortality analysis.  

At the moment, there are several areas where wearables 
present opportunities for insurers, and several insurers in the 
UK and the US are moving in some of these. The primary areas 
are risk assessment and in-force management. 

The information provided by wearables can clearly be of 
use in fine-tuning morbidity/mortality models, and hence 
personalising rates in a relatively non-invasive way – providing 
wearable data is more ‘consumer friendly’ than providing fluid 
samples. There are, equally clearly, practical issues around 
tying data to the right individual, and ensuring that low-priced 
policies are, if possible, tied to continuation of a healthy 
lifestyle.  

The second area of in-force management has a similar aim, 
of seeking to provide policyholders with a health discount 
to their premiums, but avoids some of the practical issues 
associated with the above risk assessment aspect. It can also 
assist with long-standing policyholders – improving the health 
of an insurer’s portfolio or an employer’s workforce (from the 
perspective of group life and disability insurance costs, quite 
apart from productivity). These are good things both from the 
corporate perspective, be it the insurer or the employer, but 
also that of the individuals in question. 

Examples of firms known to be operating along these lines 
include AXA, where two of  its US units (AXA Equitable Life 
Insurance Co. and MONY Life Insurance Co. of America) 
boast a Wellness Incentive Benefit Endorsement. Under this, 
policyholders can receive payments on completing specified 
health activities, such as regular exercise while wearing an 
approved fitness-tracking device. The US insurer John Hancock 
has a similar benefit, termed the Healthy Engagement Benefit: 
policyholders can reduce their premiums from scoring sufficient 
points, for instance via exercise as monitored according to an 
approved wearable, or achieving and maintaining a healthy 
body mass index. 



In the UK, the relatively new insurer Vitality is regarded as the 
leader in this area, with its ‘Vitality Optimiser’ which offers 
a range of benefits to policyholders who choose this route.  
Interestingly, Vitality has been the first UK insurer to partner 
with Apple Watch.

So far, much of the premium consideration relating to initial 
discounts on wearable use is thought to be fairly broad brush, 
being designed more as an incentivising mechanism to attract 
the desired type of policyholder. Marketing is itself a perfectly 
reasonable justification for ‘using’ wearable device data,  
and it can help develop, along with other wellness initiatives, 
important affinity relationships to position the insurer as a 
preventer of risk.

Where premium discounts are considered more scientifically, 
the calculation of appropriate reductions relating to (for 
instance) daily steps walked requires a decent understanding of 
the relationship between those metrics and the claim outcome 
of interest, whether mortality or health-related claims. Given 
the novelty of electronic wearables and the fact that they tend 
to be used by fitter, younger lives, even a large insurer would 
need to wait many years before achieving the critical mass 
of mortality data that would enable interesting multi-factor 
analyses. However, substantial research has been done on the 
health effects of exercise, in particular steps, using the ‘old 
fashioned’ routes of either pedometers or self-declared exercise 
levels. This is further illustrated in Figure 7.   
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By way of examples (although these relate primarily to the 
health benefits for the currently sedentary, rather than the 
many current users of wearables who are already fairly fit):

•	 Each 2,000 step per day increment is associated with a 10% 
reduction in probability of a cardiovascular event. (Yates, 
Haffner et al., 2014)

•	 Increasing baseline daily steps from sedentary to 10,000 / 
day associated with 46% reduction in mortality  (Objectively 
measured daily steps and subsequent long-term all-cause 
mortality, (Dwyer, Pezic et al. 2015)

•	 The relative risk of death (all-cause mortality) for a 65-year 
old U.S male with a vigorous (4 miles per hour) walking 
speed compared with a slow (2-2.5 miles per hour) pace was 
0.9 (Olshansky, 2016)

The most recent news in the field of predictive health analytics 
based on wearables comes not from insurers but from the 
North American health sector.  

For instance, the firm ‘LifeQ’, based in Georgia, has developed a 
new type of optical sensor that can be integrated into wearable 
devices to monitor various physiological measures. The data 
captured by this sensor is then used as inputs into already-
designed models to provide ‘real time’ information on the 
body’s health and performance. 

Figure 7: Stepping to health

Source: Catrine Tudor-Locke, Walking Behaviour Laboratory. NHS – Walking for Health 

(With thanks to Vitality Life for reproduction permission)
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The Canadian firm Vivametrica, based in Calgary, was 
established to analyse data from wearable sensor devices in 
order to improve health and wellness. The Public Health Agency 
of Canada has found that physically active employees take  
on average 27 per cent fewer sick days and 14 to 25 per cent 
fewer disability-due-to-injury days than inactive employees:  
the potential for corporate and individual benefits from 
wearable usage and analysis seems clear. 

Given their ability to accurately assess chronic disease risk 
and mortality, Vivametrica has recently shifted their focus to 
application of their proprietary health analytics for underwriting 
and engagement of insurance customers. 

The firm has constructed a device-agnostic data system 
to acquire, standardise and analyse data from wearable 
technology. Their algorithms provide the users with insights 
into their health, doing so with emphasis also on data security 
and privacy (commercial usage of their data is done only in 
an anonymous and aggregated fashion with the individual’s 
consent). Vivametrica uses various ‘big data’ analytic 
techniques including traditional epidemiological methods, 
combined with machine learning. Their proprietary population-
based database includes hundreds of thousands of individuals, 
and billions of behavioural and clinical data points. 

The infancy of electronic wearables means that there is little 
published research available. It is clearly an emerging ‘Big Data’ 
field of great interest to insurers and healthcare providers, as 
well as to medical researchers – and of course to desk-bound 
office workers looking to improve their health.  
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biomedical data
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In biomedical research, the analysis of large datasets (big data) 
has become a major driver of innovation and success. However, 
the use of biomedical big data (BBD) also raises serious ethical 
problems, which may threaten the huge opportunities it offers. 
The risk is that of a double bottleneck: ethical mistakes or 
misunderstandings may lead to distorted legislation, which 
may cripple the usability of BBD in medical research, health 
care, and industry, as evidenced by a recent statement issued 
by the Wellcome Trust on “The impact of the draft European 
Data Protection Regulation and proposed amendments from 
the rapporteur of the LIBE committee on scientific research”. 
As a consequence, there is a widely acknowledged need 
for a European framework for the ethical use of big data in 
biomedical research. Three main research objectives should  
be pursued: 

1. to formulate a blueprint of the ethical aspects, requirements 
and desiderata underpinning the project for a European 
framework for the ethical use of big data in biomedical 
research;

2. to strengthen and coordinate multidisciplinary research  
in the area of ethical and relevant socio-legal aspects  
of BBD; and

3. to consolidate world-leading expertise in the ethics of 
BBD that will enable and support research on large health-
related datasets (e.g. at the Li Ka Shing Centre for Health 
Information and Discovery) and will contribute to the goals 
of the Strategy for the UK Life Sciences, which aims to 
improve research outcomes and the attractiveness of the  
UK as a centre for global research excellence. 

On November 28-29 2012, the University of Oxford hosted 
the Oxford-Stanford Conference on Big Data: Challenges and 
Opportunities for Human Health. Supported by the Li Ka Shing 
Foundation. The Conference concluded that: 

“we are poised for a revolution in how we understand disease 
and treat patients in the 21st century.” (University of Oxford and 
Stanford University, 2012) 

Philip Pizzo (The Carl and Elizabeth Naumann Professsor of 
Pediatrics and Microbiology & Immunology and Dean of the 
Stanford University School of Medicine) and John Bell (Regius 
Professor of Medicine) remarked that: 

“In many areas of science, government and business, analysing 
large amounts of information – Big Data – has become a major 
driver of innovation and success. In biomedical research new 
technologies and collaborative approaches mean we are facing 
our own data revolution with the potential reward of major 
improvements to human health and healthcare.” (University of 
Oxford and Stanford University, 2012, p. 26.)

According to Alastair Buchan (Professor of Stroke Medicine  
and Head of the Medical Sciences Division), the goal of the 
meeting was: 

“making a step change for medicine in the 21st century, in 
our ability to interpret eloquent signals from these very large 
datasets.” (University of Oxford and Stanford University,  
2012, p. 27.)

Epidemiology (Salathé et al., 2012), infectious diseases (Hay et 
al., 2013), and genomics and genetics (Watson et al., 2010), are 
already deeply affected by Biomedical Big Data (BBD) (Floridi, 
2012). Unfortunately, as John Bell acknowledged: 

“[BBD in these three areas represents a] huge opportunity for 
major historical advances but it will only come if you can analyse 
the data in some sensible way.” (Bell, 2012). 

The Conference identified ethics as one of the most significant 
challenges for such a “sensible way”.

The use of BBD raises several ethical problems (Safran et al., 
2007), both sensitive and complicated. They may be clustered 
under six headings.

1)  Deficit. 

 There is an acknowledged lack of public awareness of 
the benefits, risks, and challenges associated with BBD; 
of transparency of use of BBD for purposes other than 
direct patient care and public health; of a clear and shared 
taxonomy for secondary uses (including non-clinical ones) 



of personal health information and electronic health records 
in order to clarify ethical issues; and of policies, practices,  
as well as safeguards that adequately address secondary  
uses of BBD.

2)  Consent. 

 It is unclear which kind of informed consent (broad, specific, 
dynamic, blanket…) may be preferable when it comes to 
how BBD may be used for specific purposes or re-purposed, 
in compliance with legislation; and more work is required 
about patient choice options involving explicit authorisation 
for use of their health data (opting in/opting out) to mitigate 
privacy issues.

3)  Privacy. 

 Apart from well-known concerns, BBD give rise to two new 
problems. There is a risk of re-identification of patients 
and providers through data-mining, data-linking, data-
merging and re-using of large datasets. And there is a risk 
about “group privacy”, when the identification of types of 
individuals, independently of the de-identification of each 
of them, may lead to serious ethical issues, from group 
discrimination (e.g. ageism, ethnicism, sexism) to group-
targeted forms of violence, especially in areas of the world 
politically unstable or undemocratic.

4)  Coverage. 

 Data uses may not be covered by ethical regulations 
(especially when data are obtained via coerced or compelled 
consent) causing the erosion of public trust and confidence.

5)  Balance. 

 In light of serious public health threats (e.g. avian flu) and 
bio-risks (cf. anti-terrorist biosurveillance), how the duty 
to protect and enhance the public good may be reconciled 
with the rights of individuals (public health versus individual 
privacy); then there is a medical version of the notorious 
digital divide about the right to participate in and benefit 
from BBD-based research.

6) Management. 

 Who has the right to access, use, audit, control (e.g. 
constrain the use and repurposing of), release (e.g. in the 
public domain), and own (including Intellectual Property 
Rights of derivate products) what health data, for what 
purposes, and at what stage in the data life cycles, including 
metadata, and further data that are generated by primary 
data?

A further difficulty is that the previous ethical problems are 
multidimensional, as they need to be mapped across two axes 
(Davis & Patterson, 2012; Groves et al., 2013). 

•	 One axis is represented by the interactions between 
medical research, health care practice and delivery, and the 
commercialisation of health data and use of health data 
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for business and proprietary purposes. For example, when 
is it ethically right or even obligatory to make some large 
datasets available across a scientific laboratory, a hospital, 
and a pharmaceutical company? 

•	 The other axis is represented by pre-existing normative 
guidelines in medical, business, and research ethics, 
professional codes of conduct, and accepted best practices 
within the corresponding communities of users. For example, 
when is it ethically right or even obligatory to inform patients 
about some BBD results that may affect the health conditions 
of their progeny?

Given such a complex scenario, the use of BBD is threatened 
by a double bottleneck: ethical mistakes or misunderstandings 
may lead to distorted legislation, which may cripple the 
usability of BBD in medical research, health care, and industry. 
This “nested dolls problem”, in which ethics is the outer layer 
that constrains legislation, which in turn is the outer layer that 
constrains medical research, means that ethical issues become 
“The metaphorical ‘Thermopylae’ of many biomedical research 
projects. […] limited experience and understanding of many of 
the relevant issues […] leads to serious misunderstandings and 
delays, particularly when norms are applied that are simply not 
suited to the real nature of biobanks.” (Khoury, 2010, p. 89).  

A recent Statement issued by the Wellcome Trust on  
“The impact of the draft European Data Protection Regulation 
and proposed amendments from the rapporteur of the LIBE 
committee on scientific research” (Wellcome Trust, 2013) 
is indicative of the risks involved and of the damaging 
consequences that such misunderstandings may have. 

The Oxford-Stanford Conference Report concluded that, 

“to seize the opportunities offered by Big Data in medical 
research and health care [institutions need to] work with legal, 
ethical and political interests to ensure that Big Data projects 
are incorporated into research and health care in a manner that 
benefits society.” (University of Oxford and Stanford University, 
2012, , p.10.).

The formulation of the ethical requirements and the need 
to promote the beneficial uses of BBD in medical research, 
health care, and industry must strike the right balance 
between the moral obligation to pursue therapeutic ends 
and the uncertainty about the consequences of the technical 
means, and hence between the researchers’ duty to exercise 
benevolence and the patients’ right to see caution applied in 
the proper use of BBD. As indicated by the Nuffield Council 
of Bioethics in the context of the ethical framework for 
neurotechnologies (Nuffield Council of Bioethics, 2013)  
in articulating the implications of the principles of beneficence 
and caution, particular attention needs to be paid to five 
interests: potential safety risks, unintended impacts on privacy, 
the promotion of autonomy, public interest in equity, and public 
understanding of trust. 



Clearly, the development of the framework for the ethical use 
of big data in biomedical research is a difficult task. It may be 
an even more complex when considering the challenges that 
non-medical organisations face in accessing big data. But it is 
one that needs to be undertaken as soon as possible (for some 
initial steps see Mittelstadt and Floridi, 2016a and 2016b).

References

University of Oxford; Stanford University (2012). Report:  
The Oxford-Stanford Conference on Big Data: Challenges  
and Opportunities for Human Health. 2012.

Salathé, M., et al. (2012). Digital Epidemiology. PLoS 
computational biology, 2012. 8(7)

Hay, S. I., George, D. B., Moyes, C. L. and Brownstein, J. S. 
(2013). Big Data opportunities for global infectious disease 
surveillance. PLoS medicine, 10(4).

Watson, R. W. G., Kay, E. W. and Smith, D. (2010). Integrating 
Biobanks: addressing the practical and ethical issues to deliver a 
valuable tool for cancer research. Nature Reviews Cancer 10(9): 
646-651.

Mathaiyan, J., Chandrasekaran, A. and Davis, S. (2013). Ethics of 
genomic research. Perspectives in Clinical Research 4(1): 100.

Floridi, L. (2012). Big Data and their epistemological challenge. 
Philosophy & Technology 25(4): 435-437.

Bell, J. (2012). Big Data - challenges & opportunities for human 
health. YouTube interview, 2012. 

Howe, D., et al. (2008). Big Data: the future of biocuration. 
Nature  455(7209): 47-50.

Safran, C., et al. (2007). Toward a national framework for the 
secondary use of health data: an American Medical Informatics 
Association White Paper. Journal of the American Medical 
Informatics Association 14(1): 1-9.

Davis, K. and Patterson, D. (2012). Ethics of Big Data. Farnham: 
O’Reilly.

Groves, P., Kayyali, B., Knott, D. and Van Kuiken, S. (2013).  
The ‘Big Data’ revolution in healthcare. McKinsey Quarterly.

Khoury, M. J. (2010). Human genome epidemiology: building the 
evidence for using genetic information to improve health and 
prevent disease. 2nd ed. New York: Oxford University Press.

Wellcome Trust (2013). The impact of the Draft European Data 
Protection Regulation and Proposed Amendments from the 
Rapporteur of the Libe Committee on Scientific Research”. 
Available online.

Nuffield Council on Bioethics (2013). Novel neurotechnologies: 
intervening in the brain. June 2013. Available online.

28

Mittelstadt, B. D. and Floridi, L. (2016a). The ethics of Big Data: 
current and foreseeable issues in biomedical contexts. Science 
and Engineering Ethics22(2): 303-341.

Mittelstadt, B. D. and Floridi, L. (eds) (2016b). The ethics of 
Biomedical Big Data. New York: Springer, 2016.

Biography

Professor Luciano Floridi is Director of Research and Professor 
of Philosophy and Ethics of Information at Oxford Internet 
Institute (OII). His long-term project is a tetralogy on the 
foundations of the philosophy of information. Before joining 
the OII, he was Chairman of the European Commission’s expert 
group “Concepts Engineering”, on the impact of information 
and communication technologies on the digital transformations 
occurring in the European society.



10. Recent developments 
and events

News from the IFoA 
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Working parties update: 

The Institute and Faculty of Actuaries is active in supporting 
volunteer-led groups (also known as working parties) to 
conduct research on timely topics of wide interest to the 
practice area and profession. Working parties currently 
conducting research in the field of big data are listed below.  

Impact of Wearables and the Internet of Things 
Working Party

Earlier this year a working party was set up to look at the 
emergence of wearable technology and the internet of things, 
and the current and potential use within the health and  
care area. 

This is a rapidly developing area of technology, with new 
devices and advances coming on to the market regularly. 

We have decided to focus on three areas for this research;

1) Understanding the stakeholders

 By considering the interests of the various stakeholders 
(consumers, employers, distributors, (re)insurers, and 
manufacturers), we will investigate the areas of conflict and 
commonality between them, with an aim to understand 
the potential challenges and opportunities in linking this 
technology with health insurance.

2) Current & future state of technology

 We will research the various technologies that are currently 
available which have a potential to impact health and 
wellbeing, and also what the next generation of these may 
look like. 

 This will include looking at;

•	 What can be measured 

•	 What data is captured and how

•	 How accurate and reliable the data is

•	 How end users engage with this technology

•	 Behavioural impact in the short and long term. 

3) Practical applications in health

 Finally we will look at the practical use and impact of 
this technology in the life and health insurance market. 
What areas of the insurance cycle could this technology 
and the data it provides be used in: underwriting, pricing, 
proposition development, rehabilitation and claims 
management or capital/risk management? And what 
challenges companies may face using this data in a  
practical way?

 The first two phases of research will run concurrently with 
an aim to produce an article for The Actuary. It is envisioned 
that the working party will present the full research at the 
Protection Health and Care Conference in 2018.

If you are interested in joining this working party or your feel 
you can contribute to this research please contact us. Details 
can be found on the IFoA webiste: http://bit.ly/2gSZZOm

Modelling, Analytics and Insights from Data 
(MAID) Working Party

Big data often means the whole plethora of new techniques 
for investigating what this data can tell its users. The recently 
formed MAID cross practice working party focuses on the latest 
and emerging thinking associated with modern mathematical 
tools and techniques and explores how the actuary may utilise 
these techniques to remain practical and add value to the 
businesses it serves.

This working party now has some 65 volunteers organised into 
four work streams. Our terminology is that the data science 
universe is the best wording to describe the coming together 
of computer science, mathematics and operational research. 
Indeed these previously separate academic disciplines are 
starting to offer combined programmes – such as machine 
learning, or data visualisation. It would be brave to predict  
what will emerge from this – but it will revolutionise the work  
of actuaries.

The four work streams cover:

•	 Work stream 1 (Research) has survey members of the IFoA 
and is analysing findings around how communication of data 

http://bit.ly/2gSZZOm


science issues can be improved, CPD enhanced and generally 
whether the profession sees an opportunity or a threat.  
Its next task is a literature review.

•	 Work stream 2 (New approaches to existing actuarial 
problems) is looking into four potential case studies and 
aims to publish a summary early in 2017. 

  These case studies are:

 –  Marine Hull - Learning how machine learning can better 
enhance the accuracy of Pricing models and which 
features impact claims from different ships

 –  Exposure Management - seeing how predicting missing 
fields ’Year Built’ and ‘Building Stories’ has an impact on 
calculating Estimated Loss in Catastrophe models

 –  Life and Mortality - linking external data sources such as 
Dow Jones, Consumer Confidence and Mood indices with 
US death records

 –  Strategic/Tactical Asset Allocation and Asset & Liability 
Management / Hedging 

•	 Work stream 3 (New opportunities for actuaries) is 
looking at opportunities beyond current work areas such as 
new aspects of life or general insurance, banking or even 
something as generic as customer database analysis in a 
wide sense. It is also looking into computer and technology 
developments.

•	 Work stream 4 (Implications for our profession) has 
presented an update to the IFoA’s Management Board 
in August and is developing a discussion paper on what 
strategy the IFoA might adopt to the opportunity. This 
would cover exams, CPD, life long learning and accreditation, 
PR, approach to consultations, internal regulation 
and professional standards, recruitment and member 
engagement. It is also mapping organisations we as a 
profession should work with and connect to.

To find our more about the MAID working party please visit the 
IFoA website here: http://bit.ly/2h6BhKT

E-cigarettes Working Party

A working party was set up in July 2016 to investigate the 
impact of e-cigarettes along with other related reduced risk 
tobacco products.

E-cigarette usage has dramatically increased in recent years 
from 0.7 million in 2012 to 2.8 million UK (source: ASH estimate, 
2016). The overall impact on health implications is uncertain:

•	 the relative impact of these products compared to traditional 
cigarettes seems to be at around 90% to 95% less in terms of 
disease, however;

•	 there is an unknown impact around behavioural changes 
made by smokers;

•	 and public perception is confused!
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There is an ongoing debate on the health impact for individuals 
which could potentially lead to a major contribution towards 
preventing premature death, disease and social inequalities in 
health that smoking currently causes in the UK.

The working party plan is to present at forthcoming industry 
events including the Health and Care conference in May 2017. 

Further details can be found on the IFoA website here:  
http://bit.ly/2gjOG0U 

Who, when and why? Mortality datasets 
provide a wealth of information for actuaries

The use of mortality data lies at the core of much of the 
research carried out by the actuarial profession. In the area 
of health, longevity and mortality many readers will be aware 
of commonly used datasets such as those from the Office 
of National Statistics (ONS) or WHO. There is, however, a 
wealth of mortality data available, much of it free to access 
and available online. The Institute and Faculty of Actuaries 
has compiled a directory of datasets which cover the UK and 
Ireland as well as those that give an overview of European 
and world data. The directory not only lists the datasets and 
provides links to each but also provides some detail on data 
points of interest to actuaries and the timeframe over which the 
data was collected. 

It is hoped that greater access to and awareness of these 
datasets will enable more accurate modelling, allowing 
actuaries to make informed decisions regarding longevity and 
mortality in relation to life assurance, pensions and long term 
care products. 

To access this free resource please visit: http://bit.ly/2gle7h4

Upcoming events

Save the date: 2017 IFoA Spring Lecture on 
antimicrobial resistance

Dame Sally Davies, Chief Medical Officer for England

27 April 2017, 17:30 – 20:00, London

Antimicrobial resistance (AMR) has increased alarmingly, 
accelerated by the overuse of antibiotics in many countries 
for medical and also agricultural purposes. In the IFoA 2017 
Spring Lecture, Dame Sally Davies will explore why AMR has 
developed to such an extent that it is now a threat to modern 
medicine. 

Further information will be published on the IFoA website in 
due course: http://bit.ly/gpdpa

http://bit.ly/2gjOG0U
http://bit.ly/2gle7h4
http://bit.ly/gpdpa
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Call for speakers: Protection, Health and Care 
2017 Conference

The Protection, Health and Care Conference is an annual 
conference aimed at all insurance professionals with a passion 
for harnessing insurance risk in their organisations.

Following a successful Protection, Health and Care 2016, we 
are now working on the programme for next year and we are 
looking for a wide variety of topical workshop sessions.

If you would like to speak at next year’s conference please 
submit your proposal on the IFoA website here: bit.ly/2grv4VG

Closing date: 12 January 2017.

Mortality and Longevity Seminar 
22 June 2017, London

Following on from a successful and well-attended workshop 
in 2016, this year’s seminar will appeal to Pensions, Life and 
Health and Care actuaries eager to learn about the latest 
developments and current ‘hot topics’ in mortality and 
longevity. 

If you’re interested in presenting, please submit your proposal 
on the IFoA website here: bit.ly/2grv4VG

Closing date: 11 January 2017.

http://bit.ly/2grv4VG
http://bit.ly/2grv4VG
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