

Institute and Faculty of Actuaries

CM1 Specimen Questions and Solutions

Q1 Calculate $_{10|4}q_{[27]+1}$ using AM92 mortality.

(Note: You should show your working, but intermediate steps can be shown using numerical values - no additional notation is required) Adapted from CM1 April 2019 Q1

Solution:

The question is asking for the probability that a life currently aged [27]+1 *will die between the ages of 38 and 42*

$$10/4q([27]+1) = 10p([27]+1) \times 4q38$$

= L38/(L([27]+1)) \times (1 - L42/L38)
= (L38 - L42) / L([27]+1)
= (9872.8954 - 9837.0661) / 9936.3549 [2]
= 0.003606 [1]

Only the last two lines are required for full credit.

Q2 Calculate $_{2.75}q_{84.5}$ using the method of uniform distribution of deaths.

Basis:		
Mortality	ELT15(Females)	[4]

(*Note: You should show your working, but intermediate steps can be shown using numerical values - no additional notation is required*)

CM1 April 2019 Q2 (although an extra mark has been allocated to allow for typing)

2.75q84.5	= 1 - 2.75p84.5	
	= 1 - (0.5p84.5) x (2p85) x (0.25p87)	[1/2]
0.5p84.5	$= 1 - (0.5 \times q84) / (1 - (0.5 \times q84))$	
	$= 1 - (0.5 \times 0.08757) / (1 - 0.5 \times 0.08757) = 0.95421$	[1]
205 1.07/1.0	5	
2p85 = L87/L8	= 30651/38081 = 0.80489	[1/2]
		L · - J

$$\begin{array}{ll} 0.25p87 &= 1 - (0.25 \ x \ q87) \\ &= 1 - (0.25 \ x \ 0.11859) = 0.97035 \end{array} \tag{[1]}$$

$$2.75q84.5 = 1 - (0.95421 \times 0.80489 \times 0.97035) = 1 - 0.74526 = 0.25474$$
[1]

Full marks should be awarded if no notation is shown, provided the method used is clear.

Q3 The force of interest $\delta(t)$ is a function of time, and at any time *t*, measured in years is given by the formula:

$$\delta(t) = \begin{cases} 0.24 - 0.02t & 0 < t \le 6\\ 0.12 & 6 < t \end{cases}$$

(i) Find an expression for A(t), the accumulated amount at time t of a unit investment made at time t = 0 for $0 < t \le 6$. [2]

For 6 < t, A(t) can be written in the form:

$$A(t) = e^{a+bt}$$

- (ii) Derive the values of a and b. [4]
- (iii) Calculate the present value of \$100 due at time t = 7. [2] [Total 8]

[1]

Solution:

=\$30.12

<i>(i)</i>	A(t) = exp[INT(0,t): (0.24 - 0.02t)dt]	[1]
	$= exp[0.24 x t - 0.01 x (t^2)]$	[1]
(ii)	For $t < 6$, $A(t) = exp[0.24 \ x \ t - 0.01 \ x \ (t^2)]$	[1]
	So A(6) = exp (1.080)	[0.5]
	Then for $t > 6$, $A(t) = A(6) x \exp[0.12 x (t - 6)]$	
	= exp (1.080) x exp[0.12 x (t - 6)]	
	= exp(0.36 + 0.12t)	[1.5]
	So a=0.36, b=0.12	[1]
(iii)	Present value = $100/A(7)$	
	$= 100 \exp(-[0.36 + 0.12 \times 7]) = 100 \exp(-1.2)$	[1]

Q4 A life insurance company issues 25-year decreasing term assurance policies to lives aged 40 exact. The death benefit, payable at the end of the year of death, is \$500,000 in the first policy year, \$480,000 in the second policy year thereafter reducing by \$20,000 each year until the benefit is \$20,000 in the twenty-fifth and final policy year. Premiums are payable annually in advance for 25 years or until earlier death.

Show that the annual premium per policy is approximately \$643 using the basis below.

Basis:	
Mortality	AM92 Ultimate
Rate of Interest	4% per annum
Expenses	Ignore

[6]

Adapted from CT5 September 2018 Q13(a) (although extra marks have been allocated for typing)

Solution: P = (520000 x TA:40:<25> - 20000 x I(TA):40:<25>) / adue:40:<25>[1.5]Where $TA:40:<25> = EA:40:<25> - v^25 \text{ x } 25p40$ = 0.38907 - 0.37512 x (8821.2612/9856.2863) = 0.38907 - 0.33573 = 0.05334 [1.5] And $I(TA):40:<25> = IA:40 - v^25 \text{ x } 25p40 \text{ x } [25 \text{ x } WL:65 + IA:65]$ = 7.95699 - 0.33573 x [25 x 0.52786 + 7.89442] = 0.87612 [2] P = (520000 x 0.05334 - 20000 x 0.87612) / 15.884 = \$643.06 [1]