Institute and Faculty of Actuaries

CM1 Specimen Questions and Solutions

Q1 Calculate ${ }_{1044} q_{[27]+1}$ using AM92 mortality.
(Note: You should show your working, but intermediate steps can be shown using numerical values - no additional notation is required)

Adapted from CM1 April 2019 Q1

Solution:

The question is asking for the probability that a life currently aged [27]+1 will die between the ages of 38 and 42

$$
\begin{aligned}
& 10 \mid 4 q([27]+1)=10 p([27]+1) \times 4 q 38 \\
&=L 38 /(L([27]+1)) \times(1-L 42 / L 38) \\
&=(L 38-L 42) / L([27]+1) \\
&=(9872.8954-9837.0661) / 9936.3549 \\
&=0.003606
\end{aligned}
$$

Only the last two lines are required for full credit.
Q2 Calculate ${ }_{2.75} q_{84.5}$ using the method of uniform distribution of deaths.
Basis:
Mortality
ELT15(Females)
(Note: You should show your working, but intermediate steps can be shown using numerical values - no additional notation is required)

CM1 April 2019 Q2 (although an extra mark has been allocated to allow for typing)

Solution:

2.75q84.5 = $1-2.75 p 84.5$

$$
\begin{equation*}
=1-(0.5 p 84.5) \times(2 p 85) \times(0.25 p 87) \tag{1/2}
\end{equation*}
$$

$0.5 p 84.5=1-(0.5 \times q 84) /(1-(0.5 \times q 84))$
$=1-(0.5 \times 0.08757) /(1-0.5 \times 0.08757)=0.95421$

$$
\begin{equation*}
2 p 85=L 87 / L 85 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=30651 / 38081=0.80489 \tag{1/2}
\end{equation*}
$$

$0.25 p 87=1-(0.25 \times q 87)$

$$
\begin{equation*}
=1-(0.25 \times 0.11859)=0.97035 \tag{1}
\end{equation*}
$$

$2.75 q 84.5=1-(0.95421 \times 0.80489 \times 0.97035)$

$$
\begin{equation*}
=1-0.74526=0.25474 \tag{1}
\end{equation*}
$$

Full marks should be awarded if no notation is shown, provided the method used is clear.

Q3 The force of interest $\delta(t)$ is a function of time, and at any time t, measured in years is given by the formula:

$$
\delta(t)=\left\{\begin{array}{lc}
0.24-0.02 t & 0<t \leq 6 \\
0.12 & 6<t
\end{array}\right.
$$

(i) Find an expression for $A(t)$, the accumulated amount at time t of a unit investment made at time $t=0$ for $0<t \leq 6$.

For $6<t, A(t)$ can be written in the form:

$$
A(t)=e^{a+b t}
$$

(ii) Derive the values of a and b.
(iii) Calculate the present value of $\$ 100$ due at time $t=7$.

Solution:

(i) $\quad A(t)=\exp [\operatorname{INT}(0, t):(0.24-0.02 t) d t]$[1]
$=\exp [0.24 \times t-0.01 \times(t \wedge 2)]$ [1]
(ii) For $t<6, \quad A(t)=\exp [0.24 \times t-0.01 \times(t \wedge 2)]$ [1]
So $A(6)=\exp (1.080)$ [0.5]
Then for $t>6, A(t)=A(6) \times \exp [0.12 \times(t-6)]$$=\exp (1.080) \times \exp [0.12 \times(t-6)]$$=\exp (0.36+0.12 t)$[1.5]
So $a=0.36, b=0.12$ [1]
(iii) Present value $=100 / A(7)$
$=100 \exp (-[0.36+0.12 \times 7])=100 \exp (-1.2)$ [1]
$=\$ 30.12$ [1]

Q4 A life insurance company issues 25-year decreasing term assurance policies to lives aged 40 exact. The death benefit, payable at the end of the year of death, is $\$ 500,000$ in the first policy year, $\$ 480,000$ in the second policy year thereafter reducing by $\$ 20,000$ each year until the benefit is $\$ 20,000$ in the twenty-fifth and final policy year. Premiums are payable annually in advance for 25 years or until earlier death.

Show that the annual premium per policy is approximately $\$ 643$ using the basis below.

Basis:
Mortality AM92 Ultimate
Rate of Interest 4\% per annum
Expenses Ignore

Adapted from CT5 September 2018 Q13(a) (although extra marks have been allocated for typing)

Solution:

$P=(520000 \times$ TA:40:<25>-20000 x I(TA):40:<25>) / adue:40:<25> [1.5]

Where TA:40:<25> = EA:40:<25>-v^25 x 25p40
$=0.38907-0.37512 \times(8821.2612 / 9856.2863)$
$=0.38907-0.33573=0.05334$
And I(TA):40:<25> = IA:40-v^25 x 25p40 x [$25 \times$ WL: $65+$ IA:65]
$=7.95699-0.33573 \times[25 \times 0.52786+7.89442]=0.87612$
$P=(520000 \times 0.05334-20000 \times 0.87612) / 15.884=\$ 643.06$

