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II: PRINCIPLES
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abstract

We reprise some common statistical models for actuarial mortality analysis using grouped
counts. We then discuss the benefits of building mortality models from the most elemental
items. This has two facets. First, models are better based on the mortality of individuals,
rather than groups. Second, models are better defined in continuous time, rather than over
fixed intervals like a year. We show how survival probabilities at the ‘macro’ level arise at
the ‘micro’ level from a series of Bernoulli trials over infinitesimally small time periods. Using
a multiplicative representation of the mortality hazard rate, we show how counting processes
naturally represent left-truncated and right-censored actuarial data, individual or age-grouped.
Together these explain the ‘pseudo-Poisson’ behaviour of survival model likelihoods.
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If I dared, I would say we must have a theory — the word ‘theory’ is so much disliked
by so many Englishmen, and is considered by them so ‘unpractical’, that I avoid it
all I can; though I cannot see, myself, that it is very ‘practical’ to do things without
knowing the theory of how to do them.

Wintringham & Blashford-Snell (1973)

1. Introduction

1.1 In Search of a Continuous-time Model of Mortality
Richards & Macdonald (2024) set out some practical benefits of using ‘continuous-

time’ models of mortality. This expository paper asks what we mean by a ‘continuous-
time’ model of mortality. As we seek an answer, in the theoretical basis of actuarial
mortality modelling, we provide the language and notation to keep actuaries abreast of
some fairly recent developments. The purpose of the paper is not to provide novel results,
but to demonstrate how an actuary can see familiar objects in novel ways.

In fact, the idea of a ‘continuous-time’ model of mortality is not clear-cut or self-
contained, and it leads us to consider two contrasts, which we may think of as modelling
phenomena on a ‘micro’ scale versus phenomena on a ‘macro’ scale. These are:
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(a) very informally, the choice of infinitesimal time unit dx versus a discrete time unit,
which we take to be a year; and

(b) models based on individual lives versus models based on collectives of lives, including,
inter alia, the collection of data based on individual lives versus collection of age-
grouped data.

1.2 Inspiration from the Life Table
The life table is an obvious source of inspiration. Indeed, in the past some have viewed

the whole subject as being the construction of life tables, see for example Batten (1978).
A life table is a model of a cohort of identical and independent individuals, followed from
some initial selection event at integer age x0 ≥ 0 (such as birth, with x0 = 0) until
mortality has extinguished the whole cohort, typically represented by the function lx,
interpreted as the expected number left alive at integer ages x ≥ x0. The two key features
are:
(a) the focus on the collective rather than the individual; and
(b) the time unit of a year;

which are both ‘macro’ properties. If we model the number of deaths between integer ages
x and x+ 1 as a random variable Dx, then this formulation of the life table immediately
suggests the binomial distribution as a model for Dx, see Section 2.3.

A slightly different view of the life table inspires a different model. Allow lx to range
over all real x ≥ x0, not just integer ages, and interpret the ratio lx+n/lx as the probability
that an individual alive at age x survives to age x + n (x ≥ x0, n ≥ 0). This leads to
further ideas, namely:
(a) a model in which death is possible at any moment of time; and
(b) the force of mortality or hazard rate (our preferred term) µx at age x as a measure

of the instantaneous risk of death;

which are both ‘micro’ properties. However, observation is still ‘macro’, of the collective
rather than of the individual. This setup suggests a Poisson model for Dx, see Section
2.4.

1.3 Models Based on Individuals: The Pseudo-Poisson Model
More recent introductions to the subject begin with the definition of the future lifetime

of a person age x as a non-negative random variable, denoted by Tx. For brevity and
completeness, we compress the definitions of related quantities into Table 1, see Dickson
et al. (2020) or Macdonald et al. (2018) for details. Of course, the actuarial symbols

tqx, tpx and µx would be defined, based on the life table, in the process of obtaining the
binomial and Poisson models in Section 1.2, but the point is that they are now defined
by their rôles in the distribution of Tx.

If we define T i
0 to be the random lifetime of the ith individual under observation, this

model focusses attention on:
(a) the individual rather than the collective; and
(b) events happening instantaneously, meaning during a short time period h as we let

h → 0+;
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Table 1: Definitions of quantities based on Tx, the random future lifetime at age x. The
consistency condition assumes that x0 = 0, and ensures that calculations based on the
distribution of Tx will never contradict calculations based on the distribution of Ty (y ̸= x).

Quantity Definition

Distribution function: P[Tx ≤ t] = tqx
Survival function: P[Tx > t] = tpx

Hazard rate : lim
h→0+

hqx
h

= µx

Density function:
d

dx
tqx = tpx µx+t

Consistency condition: P[Tx ≤ t] = P[T0 ≤ x+ t | T0 > x]

which are both ‘micro’ properties. The most important idea is expressed in the heuristic:

P[Dead by age x+ h | Alive at age x] = hqx ≈ hµx (for small h). (1)

Knowing the density function of each T i
x (Table 1), we can write down the probability

of any observations, hence a likelihood, and that leads to the following explanation of why
the Poisson model of Section 2.4 works so well. Suppose we assume a constant hazard
rate at each age, we observe M individuals and there are D deaths. Then:
(a) the model based on individual random lifetimes gives us, in principle, an exact prob-

ability of observing D deaths; while
(b) the Poisson model of Section 2.4 gives us only an approximate probability of observing

D deaths (it must do since D ≤ M but P[D > M ] > 0 under a Poisson model);
however

(c) both models give us exactly the same likelihood of observingD deaths (up to irrelevant
factors).

It follows that inference based on the likelihood will be identical under both models.
This leads us to call the model based on individual lifetimes (and a constant hazard) the
pseudo-Poisson model (Section 3.7). We continue to seek the proper foundations of a
mortality model at the ‘micro’ level in the model of individual lifetimes.

1.4 Dynamic Life History Models I: Truncation and Censoring
The individual life-history model lets us write down exact probabilities of observed

events, if we know the hazard rates. It also lets us deal with incomplete observation, in
particular:
(a) left-truncation: an individual enters observation having already survived to some age

xa > 0; and
(b) right-censoring: the individual leaves observation while still alive, so we observe only

that Txa > xb for some age xb > xa.

A neat device allows us to avoid the complication of keeping track of ages xa and xb

when writing expressions such as likelihoods. Define a process:
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Y i(x) = I{ith individual alive and under observation at age x−} (2)

(age x− means ‘just before age x’ and is a technicality). The ‘under observation’ condition
takes care of left-truncation and right-censoring. Then, for example, the integrated hazard
rate over the time spent under observation by the ith individual (an important quantity
in many calculations), can be written:∫ xb

xa

µx dx =

∫ ∞

0

Y i(x)µx dx. (3)

We see that the process Y i(x)µx acts as a dynamic or stochastic hazard rate tailored to
the ith individual, and greatly simplifies expressions involving integrals, since all integrals
can now be now taken over (0,∞] (Section 4.6).

1.5 Dynamic Life History Models II: Back to Bernoulli
In a utilitarian sense the job was finished with Section 1.3, but the heuristic (1)

suggests more to come. For, if hqx ≈ hµx then hpx ≈ 1 − hµx, and if we let δx be an
indicator, equal to 1 if death occurs at age x, and 0 otherwise, then what is observed
‘during’ time h is the outcome of a Bernoulli trial with parameter hµx and probability:

(1− hµx)
1−δx (hµx)

δx . (4)

We would like to take all such consecutive ‘instantaneous’ Bernoulli trials while the
individual is alive and under observation, and multiply their probabilities (4) together. In
all of probability theory, there is nothing simpler than a Bernoulli trial, so we really would
have reduced a probability in a mortality model to its constituent ‘atoms’; the ultimate
‘micro’ level. That is what we describe in Section 4. To do so we introduce two ideas,
which give us the notation needed to write down a product of Bernoulli probabilities like
(4) in a rigorous way.
(a) Counting processes: A counting process N i(x) starts at N i(0) = 0 and jumps to

1 at time T i
0 if the ith individual is then under observation. Then its increment

dN i(x) indicates an observed death, and is a rigorous version of the informal δx in
(4). Between them, N i(x) and Y i(x) let us write the Bernoulli trial probability (4)
formally as:

(1− Y i(x)µx dx)
1−dN i(x) (Y i(x)µx dx)

dN i(x) (5)

and this allows for left-truncation and right-censoring.
(b) Product-integral: The product-integral is the device that lets us multiply all the

infinitesimal Bernoulli trial probabilities. We defer further description to Section 4.2
and Appendix 2 and just give the final form of the likelihood contributed by the ith
individual, denoted by Li:

Li =
∏

x∈(0,∞]

(1− Y i(x)µx dx)
1−dN i(x) (Y i(x)µx dx)

dN i(x). (6)

The product-integral is identified by a product over all values of an interval (x ∈ (0,∞]
here) and the presence of the variable of integration (dx here) in the integrand.
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Therefore, we have a mortality model with the following properties:
(a) It is irreducible, in the sense that it is composed of consecutive (infinitesimal) Bernoulli

trials.
(b) It is based on behaviour at the ‘micro’ time scale.
(c) It is based on individual lives.
(d) Aggregated, over time and over individuals, it explains the Poisson-like nature of

likelihoods, therefore estimation based on the collective at the ‘macro’ time scale.
(e) It allows for left-truncation and right-censoring.
(f) It is easily extended to multiple-decrement and multiple-state models.

We started out by trying to pin down what we meant by the vague term ‘continuous-time
mortality model’. Now we have an answer, although our endpoint is just the starting
point for the modern statistical study of survival models (Section 4.10), see Andersen
et al. (1993).

1.6 Plan of this Paper
We start in Section 2 with Forfar et al. (1988), a definitive account of graduation

using binomial and Poisson models, which we call mortality models at the ‘macro’ scale.
Then in Section 3 we turn to models at the ‘micro’ scale based on individual lifetimes,
and find the origins of Poisson-like behaviour at the ‘macro’ scale. In Section 4 we bring
together models of individual lifetimes and models based on behaviour over small intervals
h as h → 0+, and find that all probabilities in a mortality model arise as a product of
consecutive (infinitesimal) Bernoulli trials. Section 5 concludes.

2. Binomial and Poisson Models

2.1 Forfar et al. (1988)
In a landmark paper, Forfar et al. (1988) gave comprehensive accounts of two models

for survival data, namely the binomial and Poisson models. These defined: (a) the random
variable Dx, to be the number of deaths observed at age x; and (b) a suitable measure
of exposure to risk at age x, assumed to be non-random, that we will call Vx. Then the
occurrence-exposure rate Dx/Vx was shown to be an estimate of the model parameter, a
mortality rate q̂ in the binomial model, and a hazard rate µ̂ in the Poisson model1.

Forfar et al. (1988) helpfully located the old subject of parametric graduation in
a modern statistical setting, including model specification, likelihood, score function and
information, covariance matrix, model selection and parametric bootstrapping. The treat-
ment was heavily influenced by the authors’ work for the Continuous Mortality Investi-
gation Bureau (the CMIB, now CMI) particularly in respect of data collection. The
advance it represented may be gauged by comparison with contemporary texts such as
Batten (1978) and Benjamin & Pollard (1980).

1A third model was offered, identical to the Poisson model except that the occurrence-exposure rate
was taken to be an estimate m̂ of the life table quantity mx, the central rate of mortality (see Neill (1977)
for example). Since mx does not arise naturally as the parameter in any well-defined statistical model
we will not pursue this further.
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Both binomial and Poisson models are rooted in simple thought-experiments, require
no statistics beyond a first course in data analysis, and can, with qualifications, be imple-
mented in standard statistical packages such as R (R Core Team 2021). This gives them
considerable staying power.

2.2 The Rate Interval and ∆k Notation
The rate interval is an interval of age (or calendar time) on which an individual is

assigned a given age label. It is the means of assigning an age label to an individual
exposed to the risk of death and at the time of death. Note that rate intervals are only
needed with age-grouped data, not models based on individual lives. They are treated
in detail in texts such as Benjamin & Pollard (1980). We assume that the rate interval,
when we need one, is the year of age (x, x+1] defined by ‘age last birthday’. The CMI, for
another example, use the year of age (x− 1/2, x+ 1/2] defined by ‘age nearest birthday’.

We assume that the data are covered by K rate intervals and that in the abstract
these may be denoted by ∆k (k = 1, 2, . . . , K); and that a sum over all rate intervals may
be denoted by

∑
k, and a product likewise by

∏
k.

2.3 Binomial Models
The binomial model is based on the following thought-experiment: take Ex lives at

the start of a year, all alive at age x and assumed to be ‘statistically independent’ in
respect of their mortality risk. Then Ex is the measure of exposure referred to as Vx in
Section 2.1, usually here called the initial exposed-to-risk. Define Dx to be the number
who are dead at the end of the year, and qx to be the probability that a life alive at age
x dies not later than age x+ 1. Then the following are easily shown.
(a) Dx has a binomial(Ex, qx) distribution, with first two moments E[Dx] = Ex qx and

Var[Dx] = Ex qx (1− qx).
(b) As a function of parameter qx, the data (Dx, Ex) has likelihood function:

L(qx) =

(
Ex

Dx

)
qDx
x (1− qx)

Ex−Dx

∝ qDx
x (1− qx)

Ex−Dx , (7)

leading to the maximum likelihood estimate (MLE) q̂x = Dx/Ex which is asymptoti-
cally unbiased (E[q̂x] = qx) with variance Var[q̂x] = qx (1− qx)/Ex.

(c) The estimate q̂x is an estimate of qx, that is, the function value at start of the rate
interval (x, x+ 1].

Dx can be viewed as the number of successes out of Ex independent Bernoulli trials,
each with probability of success (death) equal to qx. The idea of the Bernoulli trial as the
fundamental ‘atom’ of mortality risk appears again in Section 4.5.

2.4 Poisson Models
The Poisson model depends on a different thought-experiment. An unspecified num-

ber of individuals is observed, alive during the relevant rate interval of age (x, x+1], such
that the total time alive and under observation is a non-random quantity Ec

x. Now Ec
x is
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the measure of exposure referred to as Vx in Section 2.1, usually here called the central
exposed-to-risk. A constant force of mortality µ is assumed at all ages in the rate interval
(x, x + 1]. Define Dx to be the number of observed deaths. Then the following can be
shown.
(a) Dx has a Poisson(µEc

x) distribution with first two moments E[Dx] = Var[Dx] = µEc
x.

(b) As a function of parameter µ, the data (Dx, E
c
x) has likelihood function:

L(µ) = (µEc
x)

Dx exp(−µEc
x)/Dx!

∝ exp(−µEc
x)µ

Dx , (8)

leading to the MLE µ̂ = Dx/E
c
x which is asymptotically unbiased (E[µ̂] = µx) with

variance Var[µ̂] = µ/Ec
x.

(c) Assuming a relatively even distribution of exposure over the rate interval (x, x + 1],
the MLE µ̂ estimates µx+1/2.

2.5 Terminology
Binomial and Poisson models may be described in different ways. The binomial

model admits of no conceivable time other than its own time unit; it is unambiguously a
discrete-time model. It may also be called a q-type model in honour of its conventional
parameter. The Poisson model is a candidate for a continuous-time model, although it
turns out to be an extreme representative of a whole class, see Sections 3 et seq.. It may
also be called a µ-type model in honour of its conventional parameter. See Richards &
Macdonald (2024) for both terminologies.

2.6 Assessment of the Binomial and Poisson Models

2.6.1 Feasibility of the Thought-Experiment: Binomial Model
To carry out the binomial thought-experiment we would need a homogeneous sample

of Ex individuals age x, observed to be alive or dead at age x + 1. This contrasts with
observation of (say) members of a pension scheme or life office policyholders. Real data
often includes exits for reasons other than death and not under the modeller’s control, see
(Richards & Macdonald 2024, Section 3 and Appendix) for examples. The requirements of
the binomial experiment will not be met by: (a) individuals entering observation between
ages x and x + 1; and (b) individuals leaving observation between ages x and x + 1, for
reasons other than death.

Thus we are led to ask, what is the probability of surviving over any fraction of the
rate interval? For example, an individual joining at age x − 1/2 and surviving to age x
requires the calculation of 1/2px−1/2. The binomial model gives no satisfactory answer.
Strictly, the question lies outside the bounds of the model. Even if we could implement
the thought-experiment, the model posits only the number of lives observed at the start
and end of the rate interval.

Nevertheless, an answer may be demanded, because individuals can and do join or
leave an investigation in the middle of the rate interval, see (Richards & Macdonald
2024, Section 3) for numerous examples in practice. The analyst is obliged to make some
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assumption about mortality between ages x and x+1, for which the binomial model gives
no guidance. Three popular assumptions have been:
(a) a uniform distribution of deaths;
(b) the Balducci hypothesis;
(c) a constant hazard rate.

See Macdonald (1996) or Richards & Macdonald (2024) for a discussion of these. Here
we just remark that (c), a constant hazard rate, is mathematically the simplest, fully
consistent with the Poisson model, and also consistent with modelling individual lifetimes
as in Section 3.

2.6.2 Feasibility of the Thought-Experiment: Poisson Model
The Poisson thought-experiment is not troubled by fractions of the rate interval.

Since the hazard rate is assumed to be a constant µ during the rate interval (x, x + 1],
the probability of dying during the sub-interval (x+ a, x+ b] (given alive at age x+ a, for
0 ≤ a < b ≤ 1) is 1− exp(−µ (b− a)).

The Poisson thought-experiment is not met in practice, however, for different reasons.
The distribution ofDx is Poisson only if the exposed-to-risk Ec

x is non-random, for example
pre-determined. This is not the case if: (a) the population being sampled is finite, with
known maximum size M individuals, say, because then Dx ≤ M , but P[Dx > M ] > 0
under any Poisson distribution; or (b) the exposure times of the individuals in the sampled
population are not known in advance, because then Ec

x is random. Moreover, Dx is
usually a component of the bivariate random variable (Dx, E

c
x). In such cases we call Dx

pseudo-Poisson, see Section 3. For estimation purposes, however, it behaves as a true
Poisson random variable would, see Section 3.7.

2.6.3 Occurrence-exposure Rates, Age-grouped Data and Graduation
The estimates q̂x = Dx/Ex and µ̂x = Dx/E

c
x are examples of occurrence-exposure

rates. Both they and their sample variances (Sections 2.3 and 2.4) require only the
age-grouped totals Dx and Ex or Ec

x to be reported to the analyst, rather than data on
each individual. Such totals may easily be extracted from ordinary data files used in the
business; they greatly reduce the volume of data required (which used to matter a lot);
and they reduce the risk of accidentally breaching data-protection rules (which matters
now). On the other hand they do not allow the level of checking and cleaning of the data
that is possible with individual data (Macdonald et al. 2018, Chapter 2).

If age-grouped data are prepared by someone other than the analyst, the modelling
is wholly dependent on the thoroughness and diligence of the source provider. This is
a material concern for risk-transfer transactions, such as reinsurance, bulk annuities and
portfolio transfers. If a model is to be used to price a risk transfer, the analyst should
always insist on individual records, regardless of whether the intent is to use models based
on individuals or age-grouped counts.

Occurrence-exposure rates q̂x or µ̂x are normally smoothed or graduated for practical
use. For this purpose a likelihood may be calculated as the product of the likelihoods for
each rate interval, using age-grouped data. Other, non-likelihood methods may also be
used (Forfar et al. 1988).
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2.7 Generalized Linear Models (GLMs)
To the list of properties in Sections 2.3 and 2.4 we could have added “(d) Leads to a

simple Generalized Linear Model (GLM) for graduating age-grouped mortality data.”
GLMs were introduced by Nelder & Wedderburn (1972), and contain three elements:

(a) a random component, Yx; (b) a systematic component, ηx; and (c) a link function, g.
A GLM connects the expectation of Yx to ηx via g as follows:

ηx = g(E[Yx]). (9)

The component ηx is the linear predictor; in mortality work it is a linear function
of age, x, and a corresponding covariate vector, zx. Let θ be the vector of parameters
to estimate, and let X be the corresponding model matrix. Each observation Yx has a
corresponding row in X. For a binomial GLM we have:

Yx =
Dx

Ex

, ηx = Xθ[x, ]. (10)

For a Poisson GLM with the link function g(x) = log(x) we have:

Yx = Dx, ηx = Xθ[x, ] + log(Ec
x). (11)

where [x, ] selects the row for the observation corresponding to age x.
The link function, g, is chosen by the analyst. The canonical link for the binomial

GLM is the logit, but other link functions can be used, such as the probit link. The canon-
ical link for the Poisson GLM is the logarithm, but other link functions have been used for
mortality work, such as the logit link; see (Currie 2016, Appendix 1) for implementation
details of the logit link for Poisson GLMs.

GLMs have a link with ‘classical’ actuarial modelling since one of the simplest choices
of fitted η̂x is a Gompertz function, but this does not extend to other members of the
Gompertz-Makeham family (see Forfar et al. (1988)).

GLM’s are popular because they are flexible, have nice statistical properties and are
linear in the covariates. The binomial and Poisson error structures arise naturally for
‘count’ data, and age-grouped deaths are examples of ‘counts’ so these GLMs are, in a
sense, natural candidates as mortality models. However, linear dependence on covariates,
and the canonical link functions associated with the exponential family, are restrictive,
and for large experiences we will often find better-fitting models that are not GLMs (see,
for example, the range of models included in Cairns et al. (2009)). In addition GLMs
bring us no closer to any foundational concept of a ‘mechanism’ generating mortality
data, so we do not consider them further.

3. Modelling Individual Lifetimes: The Pseudo-Poisson Model

3.1 Observation of an Individual
Suppose the ith individual is observed from age xi until age yi for total time vi =

yi − xi. Denote the interval (xi, yi] by ∆i. Observation ends because of either death or
right-censoring at age yi. Define the indicator:
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di =

{
1 if ith individual died at age yi
0 otherwise.

(12)

Then the random variable observed is the bivariate (di, vi), and the total contribution to
the likelihood of these observations, denoted by Li, is:

Li = vipxi
µdi
xi+vi

= exp

(
−
∫ vi

0

µxi+s ds

)
µdi
xi+vi

= exp

(
−
∫
∆i

µs ds

)
µdi
yi

(13)

see Table 1, or (Macdonald et al. 2018, Chapter 5).

3.2 Age Intervals and ∆i Notation
The definition of the interval ∆i depends on the observational plan and the method

of investigation. The important point is that it is time under observation of a single
individual, the ith of M individuals. Some examples are the following.
(a) The interval may be the entire period for which the ith individual was observed,

potentially spanning many years.
(b) The interval may be that part of a rate interval (for example, year of age) for which

the ith individual was under observation.
(c) The interval may be an interval of age on which the hazard rate is assumed to be

constant.

Therefore the likelihood (13) based on ∆i may constitute the whole of the ith individual’s
contribution to the total likelihood, or only part of it. We will call a contribution to a
likelihood of the form (13) a survival model likelihood, whether it forms all or part of
the ith individual’s contribution, and whether or not hazard rates are assumed to be
piecewise-constant.

3.3 Multiplication and Factorization of Survival Model Likelihoods
Survival model likelihoods in respect of the same individual over contiguous intervals,

multiplied together, give another survival model likelihood. In reverse, a survival model
likelihood may be factorized into as many factors of like kind as we please. To see the
multiplicative property, suppose the ith individual is observed on the contiguous intervals
∆1

i = (xi, zi] and ∆2
i = (zi, yi], and that indicators of death d

(1)
i at time zi and d

(2)
i at time

yi are defined analagously to di above. Then if ∆i = (xi, yi] as before:

exp

(
−
∫
∆i

µs ds

)
µdi
yi

= exp

(
−
∫
∆1

i∪∆2
i

µs ds

)
µdi
yi

= exp

(
−
∫
∆1

i

µs ds

)
µ
d
(1)
i

zi exp

(
−
∫
∆2

i

µs ds

)
µ
d
(2)
i

yi (14)
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since necessarily d
(1)
i = 0 and d

(2)
i = di if events on ∆2 are not trivially null. Whether

we regard this as factorizing a likelihood on ∆i, or multiplying two likelihoods on ∆1
i and

∆2
i , does not matter for our purposes.

3.4 Rate Intervals, Piecewise-constant Hazards and Age-grouped Data
Recall from Section 2.2 that a rate interval is denoted by ∆k. Here let ∆k be the rate

interval from integer age k to age k + 1, that is, ∆k = (k, k + 1]. Age-grouped data may
then be denoted by total deaths dk and total person-years exposure Ec

k falling within rate
interval ∆k.

It is instructive to group data on individual lives to reproduce age-grouped data,
and to compare the resulting likelihoods. This is aided by Table 2, which shows the
contributions to likelihoods of individual data for two individuals, treated three ways. The
ith individual is observed from age 47 until right-censored at age 50. The jth individual
is observed from age 47.6 until dying at age 49.3. We list contributions to the likelihood
under three combinations of observational plan and model:
(a) Rate intervals ∆k, and a constant hazard rate on each rate interval, denoted by µ∗

k.
(b) Rate intervals ∆k, and a smooth hazard rate parametrized by θ, denoted by µθ

x (for
example, a Gompertz-Makeham function).

(c) Observation of complete lifetimes on age interval ∆i, and a smooth hazard rate
parametrized by θ, also denoted by µθ

x.

The contributions are shown in Table 2. In obvious notation, we may denote the
contributions to the likelihoods under (a), (b) and (c) above by L∗

i,k, L
θ
i,k and Lθ

i =
∏

k L
θ
i,k

respectively. Likewise, collecting all contributions to rate interval ∆k in columns (a) and
(b), we may define the total likelihood contributed by ∆k by L

∗
k =

∏
i L

∗
i,k and Lk =

∏
i Li,k

respectively. This leads to the following observations.
(a) It is obvious from columns (b) and (c) that for any individual, the likelihood over the

complete lifetime is the product of the likelihoods over each rate interval, see Section
3.3. In fact we have incorporated this in the notation, Lθ

i =
∏

k L
θ
i,k. It makes no

difference if we split the the individual lives data and present them by rate interval.
But this does not lead to any simplification, and age-grouped totals dk and Ec

k play
no part, because of the smooth hazard rate in the integrands.

(b) Each entry in column (a) can be regarded as approximating its partner in column (b).
For example in the third and sixth lines, we approximate µθ

49+s by µ∗
49 for 0 ≤ s < 1;

we show the sixth line below:

exp

(
−
∫ 0.3

0.0

µθ
49+s ds

)
µθ
49.3 ≈ exp

(
−
∫ 0.3

0.0

µ∗
49 ds

)
µ∗
49 = exp (−0.3µ∗

49)µ
∗
49. (15)

Collecting together all such terms in µ∗
49 we get the total likelihood:

L∗
49(µ

∗
49) = exp (−µ∗

49E
c
49) (µ

∗
49)

d49 (16)
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in which the age-grouped totals do appear. Comparing equations (16) and (8), we see
that the former is functionally identical to the likelihood from the Poisson model, and
yet no assumption about Poisson random variables or distributions has been made in
this section. In other words, the Poisson-like nature of the likelihood arises from the
fundamental nature of modelling individual lifetimes.

3.5 Individual versus Age-Grouped Data for Multiple Lives
Table 2 illustrates how the individual lifetime model is related to age-grouped data,

based on rate intervals, exactly without using any approximations. Indeed, columns
(b) and (c) show that labelling the data by individual i or by rate interval k is merely
a rearrangement. Specifically, the ith individual contributes Lθ

i,k, possibly null, to the
likelihood in rate interval k (fourth column). The outer form of the total likelihood,
denoted by Lθ, then depends simply on the order in which we take products, as the
following identities show:

Lθ =
∏
i

Lθ
i =

∏
i

∏
k

Lθ
i,k =

∏
k

∏
i

Lθ
i,k =

∏
k

Lθ
k = Lθ. (17)

This informal statement based on Table 2 (‘proof-by-example’) of course needs to be
demonstrated properly. Doing so with the notation to hand is surprisingly detailed,
though elementary, and is delegated to Appendix 1. A much simpler proof will be shown
when the notation of Section 4 is available (Section 4.7).

3.6 The Rôle of Occurrence-exposure Rates
Wemay arrive at the likelihood based on the age-grouped data (dk, E

c
k) in two different

ways.
(a) We could use the Poisson model with parameter µ∗

k E
c
k (Section 2.4) for rate interval

∆k.
(b) Within the individual lives model, we could assume that the hazard rate is piecewise-

constant with value µ∗
k on rate interval ∆k. This means assuming that the parameter

θ is the vector of hazard rates µ∗
k.

In either case, on rate interval ∆k, we have a single parameter, which we denote by
µ∗
k, and a likelihood that we denote by L∗

k(µ
∗
k) = exp(−µ∗

k E
c
k) (µ

∗
k)

dk . In total we have a
K-parameter model with likelihood

∏
k L

∗
k(µ

∗
k), from which the parameters are estimated

independently by the occurrence-exposure rates dk/E
c
k, which we denote by µ̂∗

k. That is
as far as the probabilistic model takes us.

In traditional actuarial terminology, the µ̂∗
k are ‘crude’ rates which require to be

smoothed or graduated, using no more than the available age-grouped data (Benjamin
& Pollard 1980). A convenient way of doing so is to use: (a) the likelihood function∏

k L
∗
k(µ

∗
k); (b) a parametric function µθ

x for the hazard rate, of much lower dimension
than K; and (c) to connect the two with an assumption that µ̂∗

k estimates µθ
xk
, for some

xk ∈ ∆k, for example µ̂∗
k estimates µθ

k+1/2. Note that this smoothing procedure is not part

of the probabilistic model, despite its use of the likelihood function. Forfar et al. (1988)
show that it is approximately equivalent to the much older minimum-χ2 method.
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In either case, again, the age-grouped quantities approximate exact quantities as
follows:

(µ∗
k)

dk ≈
∏

di,k=1

µθ
yi

and µ∗
k E

c
k ≈

∑
i

∫
∆i,k

µθ
s ds (18)

where di,k is the number of deaths (0 or 1) befalling the ith individual in rate interval ∆k,
and ∆i,k = ∆i ∩ ∆k (possibly ∅). Therefore, inference based upon age-grouped data is
close, but not identical, to inference based upon the individual lives data.

The crude hazard rates µ̂∗
k, or more accurately the expected deaths based upon them,

µ̂∗
k E

c
k, may be used in forming statistics such as deviances, used in testing the fit of a

graduation (Forfar et al. 1988, Benjamin & Pollard 1980, Macdonald et al. 2018).

3.7 Pseudo-Poisson Models
The various likelihoods that appear in this section, see Table 2, are all Poisson-like,

and if a piecewise-constant hazard rate is assumed, indistinguishable from a true Poisson
likelihood, an observation that goes back to the earliest work on inference in Markov
models, see for example Sverdrup (1965), Waters (1984). However, there are no Poisson
random variables. In the likelihood (13): (a) di is either 0 or 1, and does not range over
the non-negative integers; (b) vi is random, not deterministic; and (c) di and vi are not
independent, the random variable is the bivariate (di, vi).

Many authors suppose, as we did in Section 2.4, that the number of deaths in some
model has a Poisson distribution, but without ensuring, as we did, that the exposure
times would be non-random; more often the observation of random death times ensures
the opposite. This conceptual error is almost always immaterial for inference, precisely
because the Poisson likelihood is of the correct form for a survival model, although the
survival model is not Poisson. Where it matters is in misdirecting us when we come to
extend the survival model, including allowing for: (a) truncation and censoring; (b) more
complicated life histories, including multiple decrements; (c) calculating residuals when
the expected number of deaths is small; and (d) statistics for multiple lives, see Section
3.5 and Appendix 1.

We suggest it would be clearer and less confusing if the term pseudo-Poisson was
adopted, to describe the great majority of models for death counts that appear in the
literature.

3.8 Covariates
Covariates may be introduced by defining a vector zi of covariates for the ith individ-

ual and letting the hazard rate be a function µ(x, zi) of age and covariates. A common way
to introduce such a dependency is to define a vector β of regression coefficients such that
the hazard rate is a function µ(x,βTzi) of age and a linear combination of the covariates.
Further simplification is achieved if the hazard rate factorizes as µ(x, zi) = µx × g(zi),
the product of an age dependent hazard rate µx (called the baseline hazard) and some
function g of the covariates; then the hazard rates of any two individuals of the same
age are always in the same proportion, called proportional hazards. Finally, the most
common choice of g is an exponential function of a linear combination of the covariates,
µ(x, zi) = µx × exp(βTzi), which has proportional and non-negative hazards as well as a
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Table 3: Three stages in adding structure to a hazard rate that is a function µ(x, zi)
of age x and a vector zi of covariates for the ith individual. Each stage is increasingly
restrictive, from the most flexible model in Stage 0 to the most restrictive in Stage 3.

Stage Form of µ(x, zi) Description

0 µ(x, zi) General function of x and zi

1 µ(x,βTzi) Function of age and linear combination of covariates
2 µx × g(zi) Proportional hazards
3 µx × exp(βTzi) Basis of the Cox model (Cox 1972)

log-linear dependence on covariates. These steps in adding structure to the hazard rate
are summarized in Table 3.

The last hazard structure in Table 3 is popular in medical statistics, where it is known
as the Cox model, because the baseline hazard can be ignored and only the regression
coefficients need to be estimated, by the procedure known as partial likelihood (see Ander-
sen et al. (1993)). However, actuaries usually wish to estimate the whole model, baseline
hazard included, whatever the form of the hazard rate. Then the full likelihood (40) from
Appendix 1 becomes:

L =
M∏
i=1

Li =
M∏
i=1

K∏
k=1

∏
∆j⊆∆k

[
exp

(
−
∫
∆j

µ(s, zi) ds

)]ei,j
µ(wj, z

i)di,j . (19)

Clearly any of the hazard rates in Table 3 may be substituted into the likelihood (19).
However inspection of the innermost elements of (19), integrals over intervals ∆j ⊆ ∆k,
shows that, even if the hazard rate factorizes as in Stages 2 and 3 of Table 3, these factors
cannot be collected together to form likelihoods Lk over rate intervals. See also the written
comments by A. D. Wilkie in the discussion of Richards (2008).

4. Dynamic Life History Models

4.1 The Anatomy of a Survival Probability
We begin with a closer examination of the multiplicative property of survival proba-

bilities, usually expressed as:

s+tpx = tpx spx+t = spx tpx+s. (20)

We can apply this repeatedly to factorize tpx, with n a positive integer, as follows:

tpx =
n−1∏
k=0

t
n
px+ kt

n
. (21)

This motivates the first of two questions: what happens as n → ∞? The second (related)
question is: how can we express or represent events in the life history as a function of
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passing time? We have a compact notation (tpx, tqx and so on) for the probabilities of
events in the life history, but no such notation for the events themselves; generally we
must express events somewhat clumsily in words. We consider these questions in turn in
the next two sections.

4.2 The Product-integral Representation of a Survival Probability
From the heuristic hpx ≈ 1− µx h ≈ exp(−µx h), for small h, we have the important

product-integral representation as n → ∞ and 1/n → 0+:

exp

(
−
∫ t

0

µx+s ds

)
= tpx (22)

= lim
n→∞

n−1∏
k=0

t
n
px+ kt

n
(23)

≡
∏

s∈(0,t]

(1− µx+s ds), (24)

see Appendix 2 or, for example, Andersen et al. (1993). The product-integral has the
same Π symbol as an ordinary product over a finite or countable number of terms, but is
distinguished (here) by the presence of ds in the integrand and by the variable s ranging
over an interval of the real line, s ∈ (0, t]. Then by differentiation of tpx, the density
function of the random future lifetime Tx, denoted by fx(t), is:

fx(t) = tpx µx+t (25)

= exp

(
−
∫ t

0

µx+s ds

)
µx+t (26)

=
∏

s∈(0,t]

(1− µx+s ds)µx+t. (27)

Identities (271) and (27) are important in parametric mortality models, because they
allow the likelihood to be specified entirely in terms of the hazard rate.

4.3 The Counting Process Representation of the Data
Suppose the ith individual has future lifetime T i

0, a non-negative random variable.
Define the process N i(x) = I{T i

0≤x}. This has value 0 as long as the ith individual is alive,

and value 1 if they are dead (including at exact age T i
0). Thus N

i(x) ‘counts’ the number
of deaths up to and including age x.

Associated with N i(x) is the indicator of survival, denoted by Y i(x) and defined as:

Y i(x) = I{ith individual alive at age x−} = I{T i
0≥x}. (28)

Thus Y i(x) is almost, but not quite, equal to 1 − N i(x). Both have value 1 at exact
age x = T i

0, the age at death (see Table 4). N i(x) is right-continuous, while Y i(x) is
left-continuous. This is for technical reasons when forming integrals.
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Figure 1: Sample counting-process representations of lifetimes. The first row is a life that
enters observation at age 0 and is observed until dying at age 81. The second row is a life
that enters observation at age 35 (left-truncation) and leaves at age 45 (right-censoring),
enters observation again at age 55 (left-truncation) and is then observed until death at
age 72.
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Note that N i(x) represents exactly the same information as T i
0, but in the form of

a stochastic process instead of a random variable. It is purely descriptive, no proba-
bilities or hazard rates appear in its definition, hence we refer to the counting process
‘representation’, not the counting process ‘model’.

Mention the word ‘process’ to an actuary under the age of about fifty, and it will
trigger thoughts of Brownian motion, Itô calculus, stochastic integrals and option pricing.
While important and necessary in its place, a counting processes carries none of that
baggage2. It really is nothing but a parsimonious way to represent an event happening
at a random time, by means of zeros and ones. It must have been re-invented hundreds
of times by computer programmers needing to represent events in binary.

Nevertheless, with N i(x) and Y i(x) representing the data, and µx as a model of the
underlying ‘mechanism’ generating the data, we have the key to many problems of survival
models.

4.4 The Multiplicative Model
Just above, we called µx the “. . . model of the underlying ‘mechanism’ generating

the data . . .”, referring of course to the heuristic, that the probability of death occurring
between ages x and x+h, conditional on not having occurred beforehand, is approximately
µx h (for small h). In fact, we make a small adjustment with a truly profound effect.

Define the stochastic hazard rate at age x to be the product Y i(x)µx, also called the
Aalen multiplicative model (Andersen et al. 1993) (both names derive from the fact that
the hazard rate is multiplied by a stochastic indicator). This represents a hazard rate
tailored to the ith individual, that is automatically switched ‘on’ while they are alive and
‘off’ at any other time. Where before, we have had to qualify almost everything we said
with the mantra “conditional on the life being alive at age x” or the like, this is taken care
of by the stochastic hazard rate. This explains the title ‘Dynamic Life History Models’ of
this section; the hazard rates that govern the evolution of the life history are themselves
stochastic and changed by events.

4.5 The Stochastic Probability Function: Back to Bernoulli
The probability function of the life history up to age x, from equation (27), in its

product-integral form, can be denoted by f i
0(x) and written as:

f i
0(x) =

∏
s∈(0,x]

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (29)

This says, heuristically, that times when the ith individual does not die (dN i(s) = 0)
contribute a survival probability (1 − µs ds) to the product, while the moment of death
(dN i(s) = 1) contributes the death probability µs ds (but by convention the ds is not
displayed, as f i

0(s) is then a density function). (In this case the presence of Y i(s) makes
no difference, because the exponents 1 − dN i(s) and dN i(s) do the job by themselves,
but we shall see why it is present in Section 4.6 below. It does matter, however, that
Y i(x) = dN i(x) = 1 when x is the age at death.) Table 4 (‘Untruncated/Uncensored’)

2At least until the Central Limit Theorem is encountered, in which the limiting process is an Itô
process, see Andersen et al. (1993).
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Table 4: Contributions to the probability function of the infinitesimal Bernoulli trials
(equation (29)) from elements of the observed life history, in the absence of left-truncation
and right-censoring, and in their presence. Technical point: N i(s) has right-continuous
sample paths and Y i(s) has left-continuous sample paths (Section 4.3), so at the time of
an observed death N i(s) = Y i(s) = 1.

Period/Time Observed Y i(s) N i(s) dN i(s) df i
0(x)

Untruncated/Uncensored

Before death Yes 1 0 0 (1− Y i(s)µs ds)
Time of death Yes 1 1 1 Y i(s)µs ds
After death Yes 0 1 0 1

Truncated/Censored

Before death No 0 0 0 1
Before death Yes 1 0 0 (1− Y i(s)µs ds)
Time of death No 0 1 1 1
Time of death Yes 1 1 1 Y i(s)µs ds
After death No 0 1 0 1
After death Yes 0 1 0 1

shows the contributions to the likelihood (29) at different points in the observed life
history.

In other words, at every time s when the ith individual is alive there is an infinites-
imal Bernoulli trial with probability of death Y i(s)µs ds. See Gill (1994) on an infinite
Bernoulli process. Some authors make product-integration the starting point of survival
analysis (Cox & Oakes 1984, Lancaster 1990, Kalbfleisch & Prentice 2002). Actuaries
are so strongly oriented towards binomial and Poisson models, however, that we have
approached product-integration from there.

4.6 Left-truncation and Right-censoring
Left-truncation arises when the first part of a lifetime is unobserved. It is a fun-

damental characteristic of actuarial data, given that the vast majority of insured lives
only become known to the insurer as adults. Right-censoring arises when the lifetime
leaves observation before the event of interest (such as death) has occurred. There are
many causes of right-censoring; Richards & Macdonald (2024) discuss a wide range of
right-censoring events in the context of pensions and annuities.

Left-truncation and right-censoring can, in most cases, be allowed for very simply by
adjusting the definition of the indicator Y i(s), as follows:

Y i(s) = I{ith individual alive and under observation at age s−}. (30)

With this change, everything said in Sections 4.1 to 4.5, including the important repre-
sentation in equation (29), remains valid. Table 4 (‘Truncated/Censored’) shows the
contributions to the likelihood (29) at different points in the observed and unobserved life
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history, where Y i(s) indicates the presence of left-truncation and right-censoring by tak-
ing the value 0. Equation (29) as derived in Section 4.3 describes a purely mathematical
probabilistic model. Substituting the indicator processes in equation (30) turns it into
the basis of a statistical model involving data.

Figure 1 shows values of Y i(x) and N i(x) for two individuals. In the first row, we
see observation of the complete lifetime T i

0 from birth to death, here at age 81. This
illustrates the Y i(x) of equation (28). In the second row, one who enters observation at
age 35 (left-truncation) and leaves without dying at age 45 (right-censoring), then re-
enters observation at age 55 (left-truncation) and dies at age 72. This could happen if, for
example, extracts from two different policy files are found during data cleaning to refer
to the same individual. This illustrates the Y i(x) of equation (30).

The impact of this change in simplifying the mathematics is more than its apparent
innocence would suggest. An example will be seen in Section 4.7.

4.7 Example: Individual versus Age-grouped Data for Multiple Lives Again
In Section 3.5 and Appendix 1 we showed that the likelihoods for individual and

age-grouped data were the same, and pseudo-Poisson in form. The method was to derive
contributions to the likelihood arising from the smallest possible ‘units’ of exposure to
risk, namely the intersection of the ith individual’s lifetime and the kth rate interval. The
total likelihood was then the product of all these ‘unit’ likelihoods over all individuals and
all rate intervals. The proof in Appendix 1 is not technically difficult, but is burdened
with the notation needed to define intervals and their intersections. By way of contrast
we give below an alternative proof using the counting process representation of the data.

The contribution of the ith individual to the likelihood is:

Li =
∏

s∈(0,∞]

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (31)

Therefore the total likelihood is:

L =
∏
i

Li =
∏
i

∏
s∈(0,∞]

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (32)

Split the age range into rate intervals ∆k, noting that there is no contribution outside the
age range [r0, rK ]:

L =
∏
i

K∏
k=1

∏
s∈∆k

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)
. (33)

Now change the order of the two outer products:

L =
K∏
k=1

[∏
i

∏
s∈∆k

(
1− Y i(s)µs ds

)1−dN i(s) (
Y i(s)µs

)dN i(s)

]
=

K∏
k=1

Lk (34)
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noting that the terms in large brackets in (34) are the contributions from each rate inter-
val3, which we denote by Lk.

The simplicity and directness of the proof above arises from the simplicity of the range
of integration of the innermost integral, namely 0 to ∞ instead of an interval defined by
the intersection of two other intervals, see Appendix 1. This reinforces an observation
by Lidstone (1905) to the effect that it may be simpler to investigate what happens
moment-by-moment, than over an extended interval:

“. . . it will be found that the formulae are in reality simplified through the absence
of any distinction between the beginning and end of the momently intervals under
consideration.” (Lidstone 1905)

Of course, the work in actually computing such complicated integrals is unchanged,
but the greater ease of comprehension makes the task of the theorist (and the reader!)
much easier.

4.8 A Classification of Mortality Models for Actuarial Use
Figure 2 illustrates how the models underlying survival analysis and occurrence-

exposure rates used by actuaries all derive from Bernoulli trials over different time in-
tervals.
(a) The upper branch goes through the instantaneous Bernoulli trial with parameter

µx dx, which through product integration over the age interval ∆i and simple ag-
gregation over M > 1 individuals leads to the survival model based on individual
lives.

(b) Similarly, product-integration restricted to the rate interval ∆k, and a constant hazard
rate, leads to the pseudo-Poisson model.

(c) The Poisson model also belongs to the upper branch, but would require a special (and
unlikely) observational plan to ensure that Ec

x is deterministic and M is random. An
example would be to replace each individual who dies with an identical individual
until Ec

x reaches a pre-determined level (Scott 1982).
(d) The lower branch goes through the Bernoulli trial with parameter qx and leads to the

binomial model with M > 1 individuals.

Note that both branches lose information about which individuals died in going from
the individual model (M = 1) to the collective model (M > 1) but this will not matter for
inference since the likelihood will be changed only by a factor not involving the parameter
(for example, in the lower branch, a binomial coefficient). Only in the lower branch,
however, is information also lost about the times of death, and therefore the true total
of person-years lived. This is genuine loss of information which matters for inference,
leading us to prefer any of the models in the upper branch over the binomial model.

3A.D.Wilkie, in written comments in the discussion of Richards (2008), advanced a similar argument
based on “small age steps h” and a quasi-indicator function similar to Y i(x); the argument given above
is the same as in (Macdonald et al. 2018, Section 5.7).
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Individual
M = 1

Collective
M > 1

BERNOULLI
TRIAL

Timescale dx
M deterministic
Bernoulli(µxdx)

Timescale 1 year
M deterministic
Bernoulli(qx)

Timescale ∆i

M unrestricted
Smooth hazard µθ

x

Complete Lifetimes

Timescale 1 year
M unrestricted
Ec

x random
Constant hazard µ∗

x

Pseudo-Poisson(µ∗
xE

c
x)

Timescale 1 year
M random

Ec
x deterministic

Constant hazard µ∗
x

Poisson(µ∗
xE

c
x)

Timescale 1 year
Ex = M

Binomial(Ex, qx)

Figure 2: Family tree of models, showing the derivation of individual models, and collec-
tive models for individual lives and age-grouped data, (in bold) from the basic Bernoulli
trial. M is the number of individuals observed, ‘M unrestricted’ means that M can be
either random or deterministic. The tree has two branches, one at the top leading to
continuous-time models, including pseudo-Poisson and Poisson models, and one at the
bottom leading to the discrete-time binomial model. The dotted arrow indicates that
the Poisson model requires the imposition of an observational plan that ensures Ec

x is
deterministic, which is unlikely to be realized in practice.
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Originating
state (1)

State 2

State 3

...

State K

µ12(x)

µ13(x)

µ1K(x)

Figure 3: Multiple-decrement model. Note that states 2, 3, . . . , K are absorbing states
with no transitions out once entered.

4.9 Extension to Multiple Decrements
Equation (29) is easily extended to multiple-state models, with a set of states labelled

1, 2, . . . , K. Omitting detailed definitions, process Y i
j (x) indicates observed presence in

state j, and process N i
jk(x) (j ̸= k) counts transitions from state j to state k, governed by

stochastic intensity Y i
j (x)µjk(x), and everything proceeds as before. We will not pursue

this in its full generality, referring the reader to Macdonald et al. (2018) (elementary) or
Andersen et al. (1993) (advanced), but the simplicity of this extension is an attractive
feature of the counting process representation.

However we will sketch briefly the extension to multiple decrement models, since this
has been a staple of actuarial textbooks. We have one originating state, labelled 1, in
which all life histories begin, and K−1 decrement states, labelled 2, 3, . . . , K. Transitions
are possible from state 1 to any decrement state, governed by intensity Y i

1 (x)µ1k(x) for
the ith individual4. Figure 3 illustrates this model. Intensities out of a given state are
additive, so exit from state 1 is represented by the counting process N i

1•(x) = N i
12(x) +

. . . + N i
1K(x), governed by the total intensity, denoted by µ1•(x), defined as µ1•(x) =

µ12(x) + . . . ,+µ1K(x). The probability function of the life history can be expressed in
two rules:

Rule 1: The time of exit of the ith individual from state 1 has probability function similar
to equation (29):

f i(x) =
∏

s∈(0,x]

(
1− Y i

1 (s)µ1•(s) ds
)1−dN i

1•(s)
(
Y i
1 (s)µ1•(s)

)dN i
1•(s). (35)

Rule 2: Conditional on the ith individual exiting state 1 at age x, the probability that
the state entered was k is µ1k(x)/µ1•(x), k = 2, . . . , K.

Therefore the model is specified completely by a product of infinitesimal Bernoulli trials
as in Rule 1, and a simple ratio of intensities as in Rule 2.

If, however, the analyst begins by specifying a binomial-type model, for example
based on a time unit of a year, then it is not easy to obtain a convincing representation
of behaviour over shorter time periods, and there is certainly no unique solution. The

4We could rule all other transitions to be impossible by decree, or assume that all intensities µjk(x)
with j ̸= 1 are zero.
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classical actuarial approach (see Neill (1977) or Bowers et al. (1997)) involves specifying
a hypothetical model of each decrement acting alone, leading to a ‘gross’ hazard rate
acting in the presence of the other decrements, and a ‘net’ hazard rate acting in their
absence5. Except in some special cases, further progress is impossible unless ‘gross’ and
‘net’ hazard rates are assumed to be equal, but then since ‘gross’ hazard rates can be
shown to be those of the Markov multiple-state model anyway, the modeller is drawn
ineluctably towards that destination. Going into more detail would require too much
notation, see (Macdonald et al. 2018, Chapter 16).

This illustrates vividly the contrast between the simplicity of the model specified
at the ‘micro’ level, from which, by aggregation, behaviour at the ‘macro’ level can be
deduced; and the perils of specifying the model at the ‘macro’ level, and then trying to
disaggregate it to deduce or intuit behaviour on smaller scales.

4.10 Further Applications
We mentioned in Section 4.9 the extension of the counting process representation to

multiple-state models, see Macdonald et al. (2018). We mention here other advances and
applications based on counting processes, which can be found in the references below.
(a) counting process compensators, martingales, stochastic integrals and central limit

theorems (Andersen et al. 1993, Chapter III);
(b) non-parametric estimates including the Nelson-Aalen and Kaplan-Meier estimates

(Andersen et al. 1993, Chapters IV.1 and IV.3), (Kalbfleisch & Prentice 2002);
(c) non-parametric kernel smoothing methods (Andersen et al. 1993, Chapter IV.2);
(d) semi-parametric regression models including the Cox model and partial likelihoods

(Andersen et al. 1993, Chapter 7), (Kalbfleisch & Prentice 2002);
(e) log-rank comparison tests of survival models (Andersen et al. 1993, Chapter 5),

(Kalbfleisch & Prentice 2002);
(f) stochastic reserving models in life insurance Norberg (1991); and
(g) stochastic models of surplus in life insurance, including Hattendorff’s theorem (Ramlau-

Hansen (1988a,b), Norberg (1991)).

5. Conclusions

In search of sound foundations for mortality models, we began with binomial and
Poisson models for grouped counts (Section 2), the basis of traditional graduations of
mortality data for actuarial use. Both being models for ‘count’ data — the number of
deaths during a time period, typically a year — they naturally invite questions about
mortality at a smaller scale, over a fraction of the time unit. The Poisson model has
an answer; its parameter is a hazard rate µx, assumed to be constant over the time
period, and that defines mortality over short time intervals h as h → 0+. The binomial
model has no such answer; it is up to the modeller to assume how mortality behaves
over shrinking time intervals h as h → 0+. While this is unsatisfactory, the binomial

5Thanks to one of the more confusing legacies of actuarial nomenclature, ‘gross’ and ‘net’ hazard
rates are traditionally called ‘dependent’ and ‘independent’ forces of decrement, which have absolutely
no connection to statistical notions of dependence and independence.
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model does decompose into a sum of Bernoulli trials, each representing the mortality of
an individual over the time period.

Modelling the lifetime of a single individual (Section 3) gives the vital insight that
the associated likelihood, as in equation (13), has the same form as a Poisson likelihood.
Indeed we get the same Poisson-like likelihood if we model individual life histories, or
group the data by age (Section 3.5), but in neither case do Poisson random variables
feature as part of the model. That is, inference proceeds correctly as if the death counts
we observe were Poisson random variables, but they are not. We suggest that all such
mortality models based on age-grouped data — which includes most published models —
should be called pseudo-Poisson models.

Finally, we identify the fundamental element of a mortality model as the infinitesimal
Bernoulli trial; heuristically, an individual alive at age x will die in small time h with
probability hµx, or survive with probability 1 − hµx. To write down probabilities of
events over extended time intervals, we need to know how to aggregate such trials, and
that requires three ideas new to most actuaries:
(a) the product-integral (Section 4.2 and Appendix 2), as the method of aggregating

probabilities of infinitesimal Bernoulli trials over extended intervals;
(b) counting processes (Section 4.3), giving us the natural notation to describe the events

in a life history; and
(c) the stochastic hazard rate Y i(x)µx tailored to the life history of the ith individual

including left-truncation and right-censoring (Section 4.6).

In conclusion, equation (29), with Y i(x) as in equation (30), is the ‘atom’ of a
‘continuous-time’ survival model, with the qualities listed in Section 1.5 and reproduced
below.
(a) It is irreducible, in the sense that it is composed of (infinitesimal) Bernoulli trials.
(b) It is based on behaviour at the ‘micro’ time scale.
(c) It is based on individual lives.
(d) Aggregated, over time and over individuals, it explains the Poisson-like nature of

likelihoods, therefore estimation based on the collective at the ‘macro’ time scale.
(e) It allows for left-truncation and right-censoring.
(f) It is easily extended to multiple-decrement and multiple-state models.
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Appendix 1

The Likelihoods for Individual and Age-Grouped Data

We show that the likelihood obtained by modelling individual lifetimes (see Section
3.5) is the same as that obtained from age-grouped data for each rate interval. To do so
we use the factorization in Section 3.3. Note three points before we begin:
(a) The equality of likelihoods means that inference has the same results using either

approach, although each may have advantages for other reasons.
(b) We show equality assuming an arbitrary form of hazard rate µx, making no parametric

assumptions. This includes as a special case the assumption of piecewise-constant
hazard rates, constant on each rate interval, usually made in conjunction with the
assumption that total deaths Dx in each rate interval are Poisson random variables.

(c) The result here, which resides in the equality of expressions in equations (40) and
(41), is quite detailed, and follows by selecting elements of three different partitions
of the age range in precise ways. This contrasts with Section 4.7, where the same result
follows as an easy consequence of the definitions in the counting process representation
of the data.

Suppose we have M lives, not all identical, the ith individual being observed between
ages xi and xi+vi and the random variable di indicating death or censoring at age xi+vi.
Define yi = xi + vi, and let ∆i be the interval (xi, yi] on which the ith individual is
observed.

We wish to introduce a set of rate intervals and write down contributions to the
likelihood for the ith individual over those rate intervals that intersect ∆i. We need some
detailed definitions, which we introduce in three steps.
Step 1: Intervals: Let the sequence of ages r0 < r1 < . . . < rK , with r0 ≤ mini xi and
rK ≥ maxi yi, define the rate intervals ∆k = (rk−1, rk] (k = 1, . . . , K). Let w0 < w1 <
. . . < wJ be the sequence formed by the (ordered) union of the three sequences x1, . . . , xM ,
y1, . . . , yM and r0, . . . , rK and define ∆j = (wj−1, wj] (j = 1, . . . , J). Hence we have rate
intervals ∆k, and the ith individual exposed to risk on interval ∆i, and the intervals ∆j are
formed from the intersections of all ∆i and ∆k. Figure 4 illustrates these three sequences
of intervals.
Step 2: Indicators: For (j = 1, . . . , J), define the sequences of indicators:

ei,j =

{
1 if ∆j ⊆ ∆i

0 otherwise
(36)

and:

di,j =

{
di if wj = yi
0 otherwise.

(37)

Therefore ei,j indicates that the ith individual was exposed to risk during (wj−1, wj], and
di,j indicates death or censoring of the ith individual at age wj.
Step 3: Likelihoods: We can now replace likelihood (13) with the following:
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r0 r1 r2 r3 r4 Rate intervals ∆k = (rk−1, rk]

w0 w1 w2 w3 w4 w5 w6 w7 w8 Exposure intervals ∆j = (wj−1, wj]

x1 y1 Individual i = 1: ∆i = (x1, y1]

x2 y2 Individual i = 2: ∆i = (x2, y2]

...

Age increases from left to right

Figure 4: Rate intervals, individual observations and exposure intervals. Rate-interval
boundaries, {rk}, are set by the analyst, and here are not necessarily integers, nor evenly
spaced. The data are paired ages of the start and end of individual observations, (xi, yi).
The set of exposure-interval boundaries, {wj}, is defined as the ordered union of {rk},
{xi} and {yi}. One consequence is that each exposure interval ∆j is always completely
contained within a corresponding rate interval ∆k.

Li =
J∏

j=1

[
exp

(
−
∫
∆j

µs ds

)]ei,j
µdi,j
wj

(38)

and collect together all those intervals ∆j that are part of the rate interval ∆k:

Li =
K∏
k=1

∏
∆j⊆∆k

[
exp

(
−
∫
∆j

µs ds

)]ei,j
µdi,j
wj

. (39)

The payoff from all this careful defining of points and intervals comes when we form
the total likelihood over all M individuals, denoted by L:

L =
M∏
i=1

Li =
M∏
i=1

K∏
k=1

∏
∆j⊆∆k

[
exp

(
−
∫
∆j

µs ds

)]ei,j
µdi,j
wj

. (40)

Then by reversing the order of the two outer products, we can collect together contribu-
tions to each rate interval instead of contributions to each lifetime:

L =
K∏
k=1

M∏
i=1

∏
∆j⊆∆k

[
exp

(
−
∫
∆j

µs ds

)]ei,j
µdi,j
wj

=
K∏
k=1

Lk (41)

where we define Lk as:
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Lk =
M∏
i=1

∏
∆j⊆∆k

[
exp

(
−
∫
∆j

µs ds

)]ei,j
µdi,j
wj

, (42)

which we recognize as the total contribution for rate interval ∆k. The desired equality is
shown above, namely

∏
i Li =

∏
k Lk. We note that the intricacy of the definitions and

the argument (including the presence of two sets of indicators di,j and ei,j) stems from the
need to handle both points and intervals of time, in different combinations. This need is
largely abolished, as far as algebra is concerned, by the definition of the process Y i(x) in
Section 4.3.

Appendix 2

The Product-integral

The ordinary integral is familiar to actuaries, the product-integral less so. However,
every time an actuary multiplies survival probabilities of the form tpx, she uses a product-
integral. It is clear that she uses an ordinary integral, and moreover uses its additive
property, since:

t+spx = exp

(
−
∫ t+s

0

µx+r dr

)
= exp

(
−
∫ t

0

µx+r dr −
∫ t+s

t

µx+r dr

)
= exp

(
−
∫ t

0

µx+r dr

)
exp

(
−
∫ s

0

µx+t+r dr

)
= tpx spx+t. (43)

This suggests the exponential function as a link between functions with additive and
multiplicative properties, and indeed it is. Start with the following identity, proved in
most courses on real analysis (see (Hardy 1992, pp. 410–411)):

lim
n→∞

(
1 +

1

n

)n

= e. (44)

More generally, assuming we may exchange logarithms and limits and then taking just
the first-order term of the Taylor expansion log(1+ s) = s− s2/2+ s3/3− . . . (convergent
on −1 < s ≤ 1):

log lim
n→∞

(
1 +

s

n

)n
≈ lim

n→∞
n
s

n
= s (45)

implying (44) and more. This is homogeneous, in the sense that n×s/n =
∑n

1 s/n is a sum
of n equal summands. Suppose we have a well-behaved function f(s) on an interval (a, b].
Partition the interval into n equal sub-intervals denoted by ∆1 = [a, a + h), . . . ,∆n =
(b−h, b] where h = (b−a)/n, and let f(sk) be the function value at an arbitrarily chosen
sk ∈ ∆k (k = 1, 2, . . . , n). Then by the same reasoning:



On Models of Mortality 29

log lim
n→∞

n∏
k=1

(1 + f(sk)h) ≈ lim
n→∞

n∑
k=1

f(sk)h =

∫ b

a

f(s) ds. (46)

It only remains to replace the interval length h with the more general ds in the limit and
exponentiate both sides, giving us the important representation:

∏
s∈(a,b]

(
1 + f(s) ds

)
= exp

(∫ b

a

f(s) ds

)
. (47)

Choose the function f(s) = −µx+s on the interval (0, t] as in a survival probability, and
we have the product-integral representation of the familiar identity:∏

s∈(0,t]

(
1− µx+s ds

)
= exp

(
−
∫ t

0

µx+s ds

)
= tpx (48)

which is equation (24).
The above is intuitive and heuristic; for a rigorous account see Gill & Johansen (1990)

and references therein.
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