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Abstract 
 

The Continuous Mortality Investigation (CMI) of the Institute and Faculty of Actuaries has for a 
number of years based its graduated tables of assured life, annuitant and pensioner mortality 
on Gompertz-Makeham formulae. In this thesis, we consider two-dimensional data sets 
consisting of the number of deaths and the exposed to risk at a range of ages in a range of 
calendar years. Having fitted a Gompertz-Makeham model to the data for each calendar year, 
we fit univariate time series models to represent the behaviour over time of the Gompertz-
Makeham parameters. Cohort effects are allowed for by applying a multiplicative factor 
depending on year of birth to the fitted force of mortality. Prediction intervals for the future 
parameters of the model are calculated. Sample values of immediate and deferred annuities 
are presented, based on stochastic mortality simulations and a deterministic interest rate. An 
application to risk-based capital calculations, under the Individual Capital Assessment (ICA) 
regime of the Financial Services Authority (FSA), is presented. 
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1: Introduction 
  
It is necessary to model future mortality in order to assess the level of reserves and capital 
required for a portfolio of immediate or deferred annuities held by a life insurance company or 
by a pension fund, or for a portfolio of assurance contracts held by a life insurance company. 
Such modelling is particularly important for life insurance companies with significant 
guaranteed annuity option liabilities, as improvements in longevity have the potential to bring 
about much larger percentage increases in the value of these options than in the value of the 
underlying annuities. It is also necessary to model future mortality to price annuity and life 
insurance contracts, and to value securities whose payoffs are contingent on future mortality. 
 
Figure 1.2 shows historical plots of the force of mortality as a function of age and calendar 
year. The data sets these plots relate to will be described in the �Data� section below. We can 
see in all cases that the bands of colour in the plots slope upwards, indicating a persistent 
improvement in longevity over the period of the data. This is a key feature of the data that 
needs to be captured in a mortality model, otherwise the reserves and prices calculated by 
the model for annuity contracts cannot be expected to be adequate and those for life 
insurance contracts may be excessive. In order to capture this feature, the model needs to 
consider mortality as a two-dimensional function of calendar year as well as of age. 
 
The rate of improvement in mortality shown in the plots in Figure 1.2 is not uniform but varies 
significantly by age, by calendar year and between the three data sets. Given the high values 
shown in Figure 1.1 for the exposed to risk for each of the data sets, it seems unlikely that 
these variations result solely from random fluctuations. As a result of the wide range of factors 
that have been observed to affect mortality, including standards of health care and lifestyle 
factors such as diet and smoking, it is unlikely that we will be able to obtain a definitive 
explanation for all these variations. It is still less likely that we will be able to make a reliable 
deterministic forecast of how these underlying factors will evolve in the future and hence 
derive a reliable deterministic mortality projection. We shall therefore develop a stochastic 
mortality model, explicitly recognising the uncertainty of future mortality. This is particularly 
important in reserving and capital assessment applications, as an institution with liabilities 
dependent on future mortality needs to consider this uncertainty to ensure that it has sufficient 
capital to meet the liabilities with a high level of confidence. Furthermore, there may be a 
regulatory requirement on the institution to hold sufficient capital to meet its liabilities with a 
defined level of confidence, and we shall consider an example of this in Section 5.6. 
 
A number of stochastic mortality models considering mortality as a two-dimensional function 
of both age and calendar year have been fitted in previously published papers and some of 
the main examples are discussed below. 
 
P-spline model 
 
Currie et al. (2004) propose a non-parametric model, the P-spline model, of the form: 
 

∑∑=
i j

y
j

a
iijxt tBxB )()(log θµ , 

 
where µxt is the force of mortality at age x in calendar year t, the θij are parameters to be 
estimated and the functions a

iB  and y
jB  are cubic basis splines, as defined in, for example, 

de Boor (2001). A penalty is imposed on parameter estimates {θij} which do not vary smoothly 
either with i and j (an age-period penalty) or with i and j � i (an age-cohort penalty). The level 
of this penalty determines the balance between smoothness and goodness of fit. The 
estimation of the θij is then by maximising the log-likelihood less the penalty. 
 
This model is considered by the CMI in CMI (2005), and further in CMI (2006) where it is fitted 
to the CMI�s male assured lives data set and to England and Wales population data for both 
males and females. Being non-parametric, it has the advantage of flexibility, in that it can fit 
any pattern of mortality as a function of age and of calendar year that is in evidence in the 
data. However, the model has been criticised for producing projections of future mortality that 
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are unduly sensitive to the last year in the data set. In addition, as the model does not impose 
any structure on the dependence of mortality on age, there can be no certainty that the 
projected curves of the logarithm of mortality as a function of age (hereafter simply referred to 
simply as mortality curves) in future years will be reasonable. Finally, the procedure for fitting 
the model only produces percentiles of the distribution of mortality rates at each age in each 
future year. For stochastic modelling, we are more likely to be interested in generating a 
number of sample paths containing projected mortality rates at all ages in all future years. 

 
Lee-Carter model 

 
Lee and Carter (1992) propose the following model: 
 

txxxt κβαµ +=log , 
 

where the αx, βx and κt are parameters to be estimated. This model is considered by the CMI 
in CMI (2005), and further in CMI (2007) where it is fitted to the CMI�s male assured lives data 
set and to England and Wales population data for both males and females. A time series 
model is then fitted to the kappa parameters, and projected into the future to calculate future 
mortality rates and corresponding sample annuity values. 
 
A key advantage of this model over the P-spline model is that, as future projections can be 
calculated simply by projecting the time series of kappa parameters, both sample paths and 
percentiles of the distribution of future mortality rates can readily be calculated. Another 
advantage of this model compared with the P-spline model is that the parameters have a 
clear interpretation � the alpha parameters represent the variation of mortality with age, the 
kappa parameters represent the improvement of mortality over time and the beta parameters 
provide for the possibility that mortality may improve more rapidly at some ages than at 
others. However, CMI (2007) concludes that this model does not fit United Kingdom data well 
because it cannot incorporate cohort effects. This refers to the fact that certain generations 
have consistently exhibited either particularly high or particularly low mortality improvements 
compared with the previous generation. For example, Willets et al. (2004) identify the 
generation centred on year of birth 1931 for England and Wales data for both males and 
females, and the generation centred on year of birth 1926 for CMI data, as exhibiting 
particularly high mortality improvements compared with the previous generation. Willets 
(2004) suggests that this phenomenon is mainly caused by a decline in smoking prevalence 
and by changes in diet in early life. 
 
Lee and Carter (1992) estimated the parameters of their model by minimising the following 
sum of squares: 
 

( )∑∑ −−
x t

txxxt
2�log κβαµ , 

 

where 
xt

xt
xt E

D
=µ�  and Dxt and Ext are, respectively, the number of deaths and the central 

exposed to risk in the data at age x in calendar year t. They then adjusted the kappa 
parameters so as to match the actual and expected total numbers of deaths in each calendar 
year. However, Brouhns et al. (2002) criticise this procedure for placing undue weight on 
regions of the data set where there are few deaths and where the standard errors of the force 
of mortality are therefore large. Brouhns et al. instead model the number of deaths at age x in 
calendar year t as a Poisson random variable with parameter equal to Ext multiplied by the 
Lee-Carter force of mortality, i.e. 
 

)exp( txxxtE κβα + . 
 
The alpha, beta and kappa parameters are then estimated by maximum likelihood. 
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Lee and Carter (1992), Brouhns et al. (2002) and CMI (2007) all treat the alpha, beta and 
kappa parameters as fixed quantities estimated from the data. The stochastic variation in 
future projections then comes entirely from the innovation terms in the time series process 
fitted to the kappa parameters. However, this does not allow for the fact that the parameter 
estimates are subject to uncertainty. It also does not allow for the fact that the new data which 
emerge over time will in practice lead us to update our estimates of the alpha and beta 
parameters, and of the parameters of the time series process governing the kappa 
parameters. To address these issues, Czado et al. (2005) develop a Bayesian approach. 
Together with an assumed prior distribution, the data are used to derive a joint posterior 
distribution which is updated as new data emerge and gives interval estimates of the 
parameters. Simulation from this posterior distribution is a non-trivial task and the authors use 
the technique of Markov chain Monte Carlo to construct a Markov chain whose stationary 
distribution is the required posterior distribution. 
 
Extensions to the Lee-Carter model incorporating cohort effects 
 
Renshaw and Haberman (2006) propose an extension to the Lee-Carter model incorporating 
an explicit allowance for cohort effects: 
 

xtxtxxxt −++= γβκβαµ )2()1(log . 
 
The authors fit this model to England and Wales population data, for both males and females. 
This addresses the criticism of the Lee-Carter model as not allowing for cohort effects. 
However, CMI (2007), which includes a limited investigation of this model, reports some 
problems with its convergence and robustness. The iterative procedure used by Renshaw 
and Haberman to estimate the parameters was found to arrive at different solutions according 
to the parameter values that were taken as the starting point for the iterations. For certain 
subsets of CMI male assured lives data and of England and Wales male data, the model 
completely failed to converge. One possible reason for these problems is that convergence is 
extremely slow as a result of the likelihood function being relatively flat in some directions, 
because it is relatively difficult to distinguish between a cohort effect and a combination of age 
and period effects, and much steeper in others. Thus the iterations may simply not have been 
allowed to run for long enough. However, Cairns et al. (2008) provide some evidence to 
suggest that the problems with the model are more fundamental than this, in that the 
likelihood function has multiple maxima. Cairns et al. successively added additional calendar 
years to the data and found that in some cases, adding an additional year�s data caused the 
parameter estimates to jump to a solution with qualitatively different behaviour. Cairns et al. 
also identify issues with the plausibility of future projections produced by the model in that 
there is more uncertainty in the projections at ages around 65 than at the oldest ages in the 
data, which does not seem reasonable given that there is more data at ages around 65. 
 
Cairns et al. (2008) consider simplifying the Renshaw-Haberman model by making the beta 
parameters independent of age, leading to the so-called age-period-cohort model, which the 
authors refer to as model M3 whereas the Renshaw-Haberman model is referred to as model 
M2. The authors find that making the beta parameters independent of age resolves the issues 
with the convergence and robustness of the Renshaw-Haberman model. However, under this 
simplified model, any period effect and any cohort effect must have the same percentage 
impact on the force of mortality at all ages, and this might be considered too limiting. 
 
Cairns-Blake-Dowd (CBD) model 
 
Cairns et al. (2006) propose the following model: 
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Note that this model is fitted to initial mortality rates qxt rather than to forces of mortality µxt. 
The authors fit it to England and Wales male data for ages 60 and above. This model is more 
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flexible than the Lee-Carter model in terms of the ways in which mortality can evolve over 
time, with trends in the κ(0) parameters having proportionately more impact on mortality at the 
younger ages in the data set and trends in the κ(1) parameters having more impact at the 
older ages. The model is considerably less flexible than the Lee-Carter model in terms of the 
ways in which mortality can vary with age. The authors find no evidence that the model does 
not allow a sufficiently wide range of shapes of the mortality curve as a function of age for the 
data set they consider, but this would not necessarily be the case for other data sets, 
particularly those extending to ages below 60. The authors find that the shapes of the κ(0) and 
κ(1) parameter graphs they obtain implicitly reflect cohort effects, and this motivates the 
development of extensions of the CBD model that incorporate an explicit allowance for cohort 
effects. 
 
Extensions to the CBD model incorporating cohort effects 
 
Cairns et al. (2007) propose three different extensions to the CBD model incorporating cohort 
effects explicitly, referring to the CBD model as model M5 and to the extensions as models 
M6, M7 and M8. The extensions are as follows: 
 

M6: 
( )

( )xttt

xttt
xt x

x
q

−

−

+++
++

=
γκκ

γκκ
)1()0(

)1()0(

exp1
exp

, 

 

M7: 
( )

( )xtttt

xtttt
xt xx

xx
q

−

−

++++
+++

=
γκκκ

γκκκ
2)2()1()0(

2)2()1()0(

exp1
exp

, 

 

M8: 
( )( )

( )( )xxx
xxx

q
cxttt

cxttt
xt −+++

−++
=

−

−

γκκ
γκκ

)1()0(

)1()0(

exp1
exp

, 

 
where xc is a parameter to be determined. The authors find that all three of these models 
achieve a very significant improvement over M5 in goodness of fit to both England and Wales 
and United States male population data, with M7 giving a sufficient improvement over M6 to 
justify the introduction of the κ(2) parameters. The criterion used to measure goodness of fit 
here is the Bayes Information Criterion (BIC), which is discussed further in Section 2.5 of this 
paper. The authors find that models M7 and M6 (which is a special case of M7) are 
adequately robust but raise concerns about the robustness of model M8 in the context of US 
data. This is developed further in Cairns et al. (2008) where it is found that model M8 fails to 
produce plausible projections of future mortality at ages over 65 for US data. 
 
Gompertz-Makeham (GM) models 
 
The graduated one-dimensional tables of assured life, annuitant and pensioner mortality 
produced by the CMI extend to ages below 60, with the annuitant and pensioner tables 
including early as well as normal retirements. In most cases, it is found that a model similar to 
the CBD model cannot adequately capture the age structure of the data. As a result, for a 
number of years, the CMI have based most of their graduations on Gompertz-Makeham 
models of order (r,s), or GM(r,s) models, for various non-negative integers r and positive 
integers s. This family of models was proposed by Forfar et al. (1988). The GM(r,s) model is 
defined by: 
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where µx is the force of mortality at age x and κ(0),�,κ(r+s-1) are parameters to be estimated. In 
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mortality at younger ages is driven primarily by the parameters κ(0),�,κ(r-1) and mortality at 
older ages is driven primarily by κ(r),�,κ(r+s-1). 
 
Figure 1.3 shows fitted mortality curves under several different GM models. The data set 
considered is the CMI data set, which will be described in the �Data� section below, and the 
calendar year considered is 2000. The changes for the GM(1,3) model compared with the 
GM(1,2) model, and for the GM(2,3) model compared with the GM(1,3) model, have been 
exaggerated to emphasise the features that have changed. We see from Figure 1.3(i) that 
under the GM(0,2) model, the logarithm of the force of mortality is a linear function of age. It is 
found that this understates mortality at the youngest ages of the data set, and Figure 1.3(ii) 
shows that the main effect of introducing κ(0) parameters is to rectify this by making mortality 
increase more slowly than exponentially with age at the youngest ages of the data set. 
Similarly, Figure 1.3(iii) shows that the main effect of introducing κ(5) parameters is to make 
mortality increase more slowly than exponentially with age at the oldest ages of the data set. 
Figure 1.3(iv) shows that under the GM(2,3) model, the graph of the logarithm of mortality is 
broadly linear below age 45 (with a lower slope than at higher ages), rather than for the slope 
of the graph to continue to decrease as the age approaches the youngest age of the data set 
(30). 
 
In this paper, we shall extend the GM family of models to the two-dimensional case by making 
the kappa parameters functions of time. Thus we shall consider models of the form: 
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where µxt is the force of mortality at age x in calendar year t. We shall fit models of this form to 
the three data sets described below. 
 
Data 
 
The majority of the papers referred to above consider only population data. We, however, will 
also consider CMI male data, which can be expected to be more relevant to a typical life 
insurance company�s liabilities. The population data we shall consider will be England and 
Wales data for both males and females. 
 
The CMI male data we shall use represent the mortality experience of male assured lives 
holding endowment or whole life assurance policies with UK life insurance companies that 
contributed to the CMI�s investigation over the period concerned. The data consist of the 
number of deaths and the central exposed to risk at each of the ages 30-90 nearest birthday 
in each of the calendar years 1947-2005, a total of 3,599 data cells. We shall not consider 
CMI data for females, or for pensioner or annuitant data sets, here as these data sets have 
either insufficient volume or an insufficiently long history to draw reliable conclusions. 
 
The England and Wales data, for both males and females, were taken from the Human 
Mortality Database (www.mortality.org) maintained by the University of California, Berkeley 
(USA) and by the Max Planck Institute for Demographic Research (Germany). The data were 
originally provided by the Office for National Statistics (ONS). The data for each gender 
consist of the number of deaths and the central exposed to risk at each of the ages 30-89 last 
birthday in each of the calendar years 1962-2005, a total of 2,640 data cells. The data were 
downloaded on 20 March 2008. 
 
In what follows, we shall denote the number of deaths in the data at age x in calendar year t 
by Dxt, where x is defined as the age nearest birthday in the case of CMI data and as the age 
last birthday in the case of England and Wales data. We shall denote the central exposed to 
risk at age x in calendar year t by Ext. 
 
Figure 1.1 shows the logarithm of the exposed to risk at each age in each calendar year for 
each data set. Regions of these graphs where the exposed to risk is high are coloured red 
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and those where the exposed to risk is low are coloured blue. We can make the following 
observations from Figure 1.1: 
 
� Noting the different scales of the three graphs, the CMI data is a smaller data set than 

either of the England and Wales data sets. This is because it relates only to assured 
lives rather than to the general population. 

 
� The exposed to risk in all three graphs decreases towards the top of the age range of 

the data. For England and Wales data, this can be explained by relatively few lives 
surviving to these high ages. For CMI data, another factor is that relatively few retired 
lives would be expected to hold life insurance policies, and this results in the 
significant decrease in exposed to risk starting at a rather younger age in CMI data 
than in the England and Wales data sets. 

 
� In all three graphs, relatively low values of the exposed to risk can be seen at years of 

birth in the second half of the 1910s. This is likely to be a result of low birth rates 
during the First World War. For the male data sets, the fact that a substantial 
proportion of these lives were killed in the Second World War is also likely to be a 
significant factor. 

 
� The England and Wales data sets show relatively high values of the exposed to risk 

for lives born in the years immediately following the Second World War and in the 
1960s. This can be identified with high birth rates during those periods. 

 
� The CMI data set shows a significant decrease in the exposed to risk in the last few 

years of the data at ages below a typical retirement age. The decrease in exposed to 
risk begins rather earlier at the younger ages, where the policies tend to be relatively 
new. This can be explained by the tendency in recent years for individuals to take out 
repayment mortgages, under which a life insurance company provides a term 
assurance policy, rather than endowment mortgages, under which the insurer 
provides an endowment. The latter policies are included in the data set but the former 
are not. The decline in popularity of endowments can largely be explained by the 
ending of tax relief on premiums under this business for policies taken out from 1984. 

 

Figure 1.2 shows the logarithm of the crude force of mortality, 








xt

xt

E
D

log , at each age in 

each calendar year for each data set, with a red colour representing high mortality and a blue 
colour representing low mortality. 
 
It is clear from all the graphs in Figure 1.2 that there is an increasing trend of mortality with 
age. In addition, as mentioned in the opening remarks, the bands of colour in the graphs 
slope from bottom left to top right, indicating a trend for mortality to improve over time. There 
is evidence that the rate of this improvement has been highest for CMI data and lowest for 
England and Wales female data. 
 
Figure 1.4 shows graphs of the logarithm of the crude force of mortality for CMI data as a 
function of age x for t = 1960, 1975, 1990 and 2005 respectively. Figure 1.5 shows the same 
information for England and Wales male data and Figure 1.6 shows the same information for 
England and Wales female data, for t = 1970, 1980, 1990 and 2000 respectively. 95% 
confidence limits for the force of mortality are also shown, i.e. the lower limit is the 2.5th 
percentile and the upper limit is the 97.5th percentile. These confidence limits assume that the 
number of deaths at each age in each calendar year has a Poisson distribution. The graph for 
t = 2005 for CMI data (Figure 1.4(iv)) uses an age range of 35-90 instead of 30-90 because of 
the paucity of data at the youngest ages. 
 
The following observations can be made from Figures 1.4-1.6: 
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� As for Figure 1.2, all the figures clearly demonstrate an increasing trend of mortality 
with age. Some evidence can be seen of the increasing trend being smaller in 
percentage terms at younger ages, i.e. the curves are less steep at younger ages. 

 
� As in Figure 1.2, some tendency can be seen for mortality at each age to decrease 

over time. 
 
� Figure 1.4 exhibits greater volatility and wider confidence intervals than Figures 

1.5 and 1.6. This is because the CMI data is a smaller data set than the England and 
Wales data sets. 

 
� In England and Wales data, for a given age and calendar year, the force of mortality 

for females is lower than that for males. 
 
� In both CMI data and England and Wales data, the confidence intervals widen 

towards the bottom of the age range. This is because there are relatively few deaths 
at these ages. 

 
� In CMI data, some widening of the confidence intervals is visible towards the top of 

the age range. Although mortality is high at these ages, the exposed to risk is much 
lower than around the middle of the age range. 

 
Structure of the thesis 
 
Chapter 2 fits GM(r,s) models, for various values of r and s, to the three data sets, and arrives 
at a conclusion as to the most appropriate values of r and s on which to base future mortality 
projections. Chapter 3 considers a simple method of adjusting for cohort effects, introducing a 
further time series of parameters indexed by year of birth rather than by calendar year. 
Chapter 4 fits univariate time series models to the parameter estimates calculated in Chapters 
2 and 3. Chapter 5 presents stochastic projections of the future values of the parameters and 
resulting sample immediate and deferred annuity functions, calculated at a deterministic 
interest rate. An application to risk-based capital calculations, under the Individual Capital 
Assessment (ICA) regime of the Financial Services Authority (FSA), is given. This chapter 
contains more applications and gives more discussion of the observations than can be found 
in most previously published papers on stochastic mortality models. Chapter 6 gives our 
conclusions. 
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Figure 1.1 � Logarithms of the exposed to risk for the three data sets � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 

 
(i) 

6

7

8

9

10

11

12

1950 1960 1970 1980 1990 2000

30

40

50

60

70

80

90

Year

A
ge

(ii) 

9

10

11

12

13

1970 1980 1990 2000

30

40

50

60

70

80

Year
A

ge

(iii) 

10.0

10.5

11.0

11.5

12.0

12.5

13.0

1970 1980 1990 2000

30

40

50

60

70

80

Year

A
ge

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 19

Figure 1.2 � Logarithms of the crude force of mortality for the three data sets � (i) CMI data, 
(ii) England and Wales male data, (iii) England and Wales female data 
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Figure 1.3 � Fitted mortality curves under various GM models, with exaggeration to highlight 
certain features � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 1.4 � CMI crude force of mortality as a function of age for various calendar years � 
solid curve = central estimate, dashed curves = 95% confidence limits (2.5th and 97.5th 

percentiles) � (i) 1960, (ii) 1975, (iii) 1990, (iv) 2005 
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Figure 1.5 � England and Wales male crude force of mortality as a function of age for various 
calendar years � solid curve = central estimate, dashed curves = 95% confidence limits (2.5th 

and 97.5th percentiles) � (i) 1970, (ii) 1980, (iii) 1990, (iv) 2000 
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Figure 1.6 � England and Wales female crude force of mortality as a function of age for 
various calendar years � solid curve = central estimate, dashed curves = 95% confidence 

limits (2.5th and 97.5th percentiles) � (i) 1970, (ii) 1980, (iii) 1990, (iv) 2000 
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2: Fitting a Gompertz-Makeham model for each calendar year 
to CMI male assured lives data and to England and Wales 

population data 
 
2.1 Model 
 
As stated in Chapter 1, the GM(r,s) model is defined by: 
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where µxt is the force of mortality at age x in calendar year t and )0(

tκ ,�, )1( −+sr
tκ  are 

parameters to be estimated for each t. x and t are considered to be discrete variables, i.e. we 
assume that mortality rates only change when lives attain a new age label or when a new 
calendar year begins. 
 
We follow Brouhns et al. (2002) in assuming that the number of deaths at each age x in each 
calendar year t has a Poisson distribution with parameter Ext multiplied by this µxt. The range 
of ages we consider is denoted x1,�,xN. The largest values of r and s we shall consider are 
both 4. We also reparameterise the models so that as x varies for fixed t, the mean of the 
quantities to which each of the kappa parameters (other than )0(

tκ  and )(r
tκ ) is applied is 

zero. This is done to avoid excessively large numbers appearing in the estimation process for 
the kappa parameters. Under the GM(3,4) model, for example, Dxt then has a Poisson 
distribution with parameter µxtExt, where: 
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In what follows, we shall always label the kappa parameters as in the above formula, even 
when we are considering values of r less than 3 and/or values of s less than 4. In the case 
where r = 4, we can no longer label the kappa parameters in this way, but we shall have no 
need to refer explicitly to the kappa parameters in any model with r = 4. 
 
For comparison, the CBD model referred to in Chapter 1 is equivalent to a GM(0,2) model 
except that, instead of a linear function of age for each calendar year being fitted to log µxt, it 
is fitted to: 
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where qxt is the initial mortality rate at age x in calendar year t. 
 
2.2 Parameter estimation methodology 
 
The Poisson assumption implies that the log-likelihood function of the full GM(3,4) model is: 
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and c is a constant. 

 
The estimation of the kappa parameters was by maximum likelihood. An iterative scheme was 
used, where each step consisted of updating the values of one of the kappa parameters for all 
calendar years t using the Newton-Raphson method, leaving the other kappa parameters 
constant. Brouhns et al. (2002) use a similar scheme to fit the model they consider to Belgian 
population mortality data. Further details of the iterative scheme are given in Appendix A. 
 
Table 2.1 shows the parameter values that were taken as the starting point for the estimation 
of each of the GM models fitted. The iterations were stopped when a complete loop of the 
iterations, from one step of updating the κ(0) parameters to another, changed none of the 
parameter estimates by more than 10-6. In other words, the iterations were stopped when, in 
the notation of Appendix A: 
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for all t and all i. An exception was that if this condition was satisfied at the very first loop of 
the iterations, then they were not stopped. 
 

Table 2.1 � Starting points for the iterations to estimate the parameters of the GM models 
 

Model Starting point for iterations 
GM(0,2) Mortality rate independent of age for 

each calendar year � 
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GM(1,2) Result of GM(0,2) model 
GM(1,3) Result of GM(1,2) model 
GM(2,3) Result of GM(1,3) model 

GM(3,3) (fitted to CMI data only) Result of GM(2,3) model 
GM(2,4) Result of GM(2,3) model 

GM(3,4) (fitted to England and Wales data only) Result of GM(2,4) model 
GM(4,4) (fitted to England and Wales data only) Result of GM(3,4) model 

 
In all the models fitted, the κ(3) parameters were the ones of highest magnitude, so in  
practice, the iterations were stopped when the greatest absolute movement of any κ(3) 

parameter over a loop was just less than 10-6. 
 
It should be noted that there is no interaction between calendar years in this fitting procedure, 
other than in the criterion for stopping the iterations. We are therefore estimating the kappa 
parameters for each calendar year independently. We should like to be able to explain the 
kappa parameter graphs we obtain by reference to period effects alone. However, the next 
section shows that period effects alone do not always provide adequate explanations. 
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2.3 Parameter estimation results 
 
2.3.1 CMI data 
 
Graphs of the parameter estimates for each of the models fitted to CMI data are shown in 
Figures 2.1-2.6.  These figures relate to the GM(0,2), GM(1,2), GM(1,3), GM(2,3), GM(3,3) 
and GM(2,4) models respectively. 
 
The downward slope of the κ(3) parameters in Figure 2.1(i) indicates an overall improvement 
of mortality rates over the period 1947-2005, as noted in the �Data� section of Chapter 1. The 
upward slope of the κ(4) parameters in Figure 2.1(ii) indicates that, in percentage terms, this 
improvement has been more rapid at younger ages than at older ages. 
 
In the GM(1,2) model compared with the GM(0,2) model, a quantity, )0(

tκ , independent of age 
x for each calendar year t has been added to the formula for µxt. Intuitively, one might expect 
these quantities to be positive, representing mortality from unnatural causes such as 
accidents and violence. However, Figure 2.2(i) shows that many of the fitted values of )0(

tκ  
are in fact negative. In fact, the years t for which this happens are from 1948 to 1988 
inclusive, excluding 1985. This potentially gives rise to an issue if the model is extrapolated to 
ages under 30 (the youngest age in the data set), in that the extrapolated forces of mortality 
might be negative. This possibility was investigated and it was found that the extrapolated 
forces of mortality at small positive ages were indeed negative in the years 1950-84 inclusive 
and 1987. In certain years, the negative forces of mortality extended up to and including age 
21. This indicates that, for the CMI data set, the GM(1,2) model should not be extrapolated to 
ages under 30 without adjustment. 
 
Figures 2.2(ii) and (iii), compared with Figures 2.1(i) and (ii), respectively show that the overall 
trend of the κ(3) and κ(4) parameters with time is similar under the GM(1,2) model to that under 
the GM(0,2) model. Figure 2.2(ii) is almost identical to Figure 2.1(i). The differences between 
Figures 2.2(iii) and 2.1(ii) are slightly greater but the upward slope of the κ(4) parameters 
remains the key feature. 
 
We see from Figure 2.3(i) that in the GM(1,3) model, unlike the GM(1,2) model, all the fitted 
κ(0) parameters are positive. This is consistent with the intuitive interpretation of the κ(0) 
parameters as representing mortality from unnatural causes. It means that, for this data set, 
the GM(1,3) model is more likely than the GM(1,2) model to be suitable for extrapolation to 
ages under 30, as all the extrapolated forces of mortality will be positive. 
 
Figures 2.3(ii) and (iii) show, respectively, the fitted κ(3) and κ(4) parameters under the GM(1,3) 
model. As in the case of the GM(1,2) model compared with the GM(0,2) model, the overall 
trend has not changed in the GM(1,3) model compared with the GM(1,2) model for either the 
κ(3) or κ(4) parameters. Figure 2.3(ii) is almost identical to Figure 2.2(ii). The differences 
between Figures 2.3(iii) and 2.2(iii) are slightly greater but the upward slope of the κ(4) 
parameters remains the key feature. 
 
The negative fitted κ(5) parameters under the GM(1,3) model shown in Figure 2.3(iv) indicate 
underlying mortality that increases more slowly than exponentially with age at the oldest ages. 
 
According to the two statistical tests which we shall describe in Section 2.5, the GM(2,3) 
model achieves a statistically significant improvement in fit over the GM(1,3) model. However, 
inspection of the parameter graphs for the GM(2,3) model in Figure 2.4 reveals certain 
features which seem more likely to constitute evidence of overfitting rather than reflecting 
genuine features of the underlying mortality rates. Of particular note are the strong positive 
correlation between the fitted κ(0) and κ(1) parameters and the strong positive correlation 
between the κ(3) parameters, the negatives of the κ(4) parameters and the κ(5) parameters, 
together with the greatly increased range of values taken by each of the parameter series 
individually. The volatility of the κ(3) parameters in particular is also much increased compared 
with the GM(1,3) model. If such features are included in future projections, then the results 
are likely to be inappropriate. Note that the correlations might be eliminated by considering 
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linear combinations of the different kappa series that are uncorrelated, but this would give rise 
to the issue that there is no unique method of constructing such linear combinations. 
 
Figures 2.4(i) and (ii), showing negative κ(0) and κ(1) parameters respectively, suggest that the 
GM(2,3) model, like the GM(1,2) model, has the potential to give negative forces of mortality 
when extrapolated to ages under 30. This was investigated and was found to be an issue for 
the calendar years 1998 and 2000-05 inclusive. The year for which this issue is most 
significant is 2004, with the extrapolated forces of mortality being negative up to and including 
age 25. This indicates that for this data set, the GM(2,3) model, like the GM(1,2) model, is not 
suitable for extrapolation to ages under 30 without adjustment. 

Figure 2.5 shows that the fitted parameter values of the GM(3,3) model, as for the GM(2,3) 
model, have certain features which suggest that there has been overfitting. There are strong 
positive correlations between the κ(0), κ(1) and κ(2) parameters and between the κ(3) 
parameters, the negatives of the κ(4) parameters and the κ(5) parameters, and the ranges of 
values taken by the parameters are even wider than under the GM(2,3) model. The shape of 
the graph of κ(3) parameters is difficult to interpret as one would expect a steady improvement 
in mortality with time, and hence a steady fall in the κ(3) parameters. 
 
Figure 2.6, showing graphs of the parameter estimates for the GM(2,4) model, has parameter 
values for 1955 and 1956 that are very different from those for adjacent years. It is not 
apparent what feature of the data is causing these differences, but in general, when a model 
is overfitted, issues can arise in that small changes in the input data can lead to significant 
changes in the parameter estimates. Figure 2.6 also shows strong positive correlation 
between the κ(3) parameters, the negatives of the κ(4) parameters, the κ(5) parameters and the 
negatives of the κ(6) parameters, again providing evidence of overfitting. 
 
2.3.2 England and Wales male data 
 
Figures 2.7, 2.8, 2.9 and 2.10 respectively show the parameter estimates for the GM(0,2) 
model, the GM(1,2) model, the GM(1,3) model and the GM(2,3) model fitted to England and 
Wales male data. For models more complex than the GM(2,3) model, the corresponding 
graphs have not been shown because overfitting is already apparent in the graphs for the 
GM(2,3) model. 
 
As for Figure 2.1, Figure 2.7 shows that there is an overall trend of improving mortality with 
time and that the improvements have tended to be faster in percentage terms at younger 
ages than at older ages. Comparing Figure 2.7 with Figure 2.1, there is evidence that the rate 
of improvement has been lower for England and Wales male data than for CMI data, although 
the difference in scale on the time axis are should be borne in mind. As the CMI data is 
weighted towards the higher socio-economic groups, this is consistent with the observation 
that mortality has improved more quickly among higher than among lower socio-economic 
groups. See Willets et al. (2004). The values of the κ(4) parameters are lower for the England 
and Wales male data than for the CMI data, indicating that these mortality differentials 
between socio-economic groups narrow with increasing age. 
 
In Figure 2.8, we again have a downward-sloping graph of κ(3) parameters and an upward-
sloping graph of κ(4) parameters. It is not clear how the graph of κ(0) parameters should be 
interpreted � it is likely that it reflects effects that are more appropriately incorporated in the 
model by introducing κ(5) parameters. As in Figure 2.2, the negative values of the earlier κ(0) 
parameters will lead to negative forces of mortality if the model is extrapolated below age 30, 
but in more recent years the κ(0) parameters have been positive. 
 
Figure 2.9 shows that, as for CMI data, introducing κ(5) parameters to the model for England 
and Wales male data makes all the κ(0) parameters positive. However, the most striking 
features of Figure 2.9 are that the κ(0) and κ(4) parameters rise sharply from 1980 to the early 
1990s and then fall again, the κ(3) parameters fall more steeply than usual in the 1980s and 
early 1990s and the κ(5) parameters rise sharply from the mid-1990s onwards. Similarly to the 
graphs of the fitted parameter values in Cairns et al. (2006), the shapes of the graphs in 
Figure 2.9 can be explained by the cohort effect described in Chapter 1. Lives in England and 
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Wales born between 1925 and 1945, and particularly around 1931, have experienced 
significantly lower mortality than the preceding generation, to an extent not explained by the 
overall improvement of mortality with time. In the 1980s and early 1990s, these lives were 
mostly in their 50s, and so a significant improvement in their mortality but not in the mortality 
of older generations might be expected to lead to a sharper than usual fall in the general level 
of the mortality curve, as measured by the κ(3) parameters, and to an increase in the slope of 
the mortality curve, as measured by the κ(4) parameters. As the κ(4) parameters have 
increased, the κ(0) parameters will then tend to increase to maintain broadly the same level of 
mortality at the youngest ages. This is indeed what we observe. Between the early 1990s and 
2005, these lives were mostly in their 60s and early 70s, and so we might expect a decrease 
in the slope of the mortality curve, as measured by the κ(4) parameters, and an increase in 
mortality at the oldest ages relative to mortality in the 60s and early 70s of age, as measured 
by the κ(5) parameters. Again we do in fact observe this. We also observe the increases in the 
κ(0) parameters that occurred in the 1980s reversing out between the early 1990s and 2005. 
 
As for Figure 2.4, Figure 2.10 suggests that the introduction of κ(1) parameters constitutes 
overfitting. In the GM(2,3) model fitted to England and Wales male data, there is strong 
positive correlation between the κ(0) parameters, the κ(1) parameters, the negatives of the κ(3) 
parameters, the κ(4) parameters and the negatives of the κ(5) parameters, and the range of 
variation of the κ(4) parameters in particular has increased significantly compared with the 
GM(1,3) model. As for the GM(2,3) model fitted to CMI data, the GM(2,3) model fitted to 
England and Wales male data was also extrapolated below age 30. Some issues with the 
extrapolated forces of mortality being negative were found, although fewer than for CMI data. 
 
2.3.3 England and Wales female data 
 
Figures 2.11, 2.12, 2.13 and 2.14 respectively show the parameter estimates for the GM(0,2) 
model, the GM(1,2) model, the GM(1,3) model and the GM(2,3) model fitted to England and 
Wales female data. For models more complex than the GM(2,3) model, the corresponding 
graphs have again not been shown. 
 
Figure 2.11(i), showing the κ(3) parameters under the GM(0,2) model for female data, is 
slightly less steep than Figure 2.7(i), for male data, indicating that female mortality has 
improved slightly less rapidly than male mortality over the period 1962-2005, although the 
majority of the mortality differential between the genders that was present in 1962 remains in 
2005. The higher values of the κ(4) parameters for the GM(0,2) model fitted to England and 
Wales female data, as shown in Figure 2.11(ii), than fitted to England and Wales male data, 
as shown in Figure 2.7(ii), indicate that the mortality differential between the genders narrows 
with increasing age, although this effect is not significant enough to close the gap between 
the genders completely at the oldest ages in the data. 
 
The key differences between Figure 2.12 and Figure 2.8 are that, between 1962 and the late 
1970s, the κ(0) parameters for females decreased whereas those for males increased, the κ(3) 
parameters for females decreased rather more slowly than for males, and the κ(4) parameters 
for females decreased whereas those for males increased. Similar (indeed, stronger) features 
can also be seen in Figure 2.13 and will be discussed below.  
 
The discussion of the impact of cohort effects on Figure 2.9 is also relevant to Figure 2.13. 
However, in the case of Figure 2.13, the shapes of the graphs between 1962 and the late 
1970s also require explanation. It seems likely that the graphs reflect a further cohort effect, 
but in the direction of low rather than high mortality improvements for a particular generation. 
Table 1b and Figure 1b of Willets (2004) indicate that females born around 1915 have 
experienced particularly low rates of mortality improvement over the previous generation. This 
is likely to be mainly a result of an increase in smoking prevalence � Figure 5 of the same 
paper shows that lifetime cigarette consumption for females as a function of year of birth was 
increasing most rapidly around 1915. 
 
Two further features of Figure 2.13 which did not occur in the corresponding figures for either 
of the male data sets should be noted. Firstly, most of the fitted κ(0) parameters are negative 
and this may lead to negative forces of mortality if the GM(1,3) model fitted to England and 
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Wales female data is extrapolated to ages below 30. This extrapolation was performed and it 
was found that in 26 of the 44 years from 1962 to 2005, the extrapolated force of mortality at 
age 0 was negative. In certain years the negative extrapolated forces of mortality extended up 
to and including age 21. This shows that the GM(1,3) model fitted to this data set should not 
be extrapolated below age 30 without adjustment. 
 
The second feature of Figure 2.13 that should be noted is that, unlike either of the male data 
sets, the fitted κ(5) parameters are all positive, indicating mortality that increases more rapidly 
than exponentially with age at the oldest ages. This increase is offset to some extent by the 
lower values of the fitted κ(4) parameters than for the male data sets. 
 
On the basis of Figure 2.14, the GM(2,3) model appears to be overfitted to England and 
Wales female data. There is strong positive correlation between the κ(0) parameters, the κ(1) 
parameters, the negatives of the κ(3) parameters, the κ(4) parameters and the negatives of the 
κ(5) parameters, and the ranges over which the parameter values vary (except for the κ(0) 
parameters) have increased substantially compared with the GM(1,3) model. This is the same 
conclusion that we reached when fitting the GM(2,3) model to the male data sets. 
 
2.4 Results for the force of mortality 
 
Under the GM(0,2) model, the graph of the logarithm of the fitted force of mortality against 
age for a given calendar year is a straight line. Figures 2.15-2.17 show the differences 
between the fitted forces of mortality under the more complex models and these straight lines 
for a typical calendar year, 2000. 
 
The graphs labelled (ii) in Figures 2.15-2.17 show that, for all three data sets, by far the 
largest impact of moving from the GM(0,2) model to the GM(1,2) model is to increase the 
fitted force of mortality at younger ages. This is consistent with our observation in the 
discussion of Figures 1.4-1.6 that the percentage rate of increase of mortality with age slows 
down at the younger ages in the data. The graphs labelled (ii) also show that moving from 
GM(0,2) to GM(1,2) decreases fitted mortality over the approximate age range 50-75 and 
increases it at ages over approximately 75. It is not clear at this stage whether these changes 
improve the fit or whether they arise because of the restricted range of shapes of the mortality 
curve available under the GM(1,2) model. 
 
The key changes in the graphs labelled (iii) in Figures 2.15-2.17, for the GM(1,3) model, 
compared with the graphs labelled (ii) are towards the top of the age range of the data, which 
is not surprising given that the κ(5) parameter has more impact on fitted mortality towards the 
top of the age range than at other ages. For the male data sets, the negative κ(5) parameter 
tends to reduce mortality at the oldest ages, but for England and Wales female data, the 
positive κ(5) parameter tends to increase mortality at the oldest ages. The graphs give us no 
reason to doubt that the decrease in fitted mortality over the age range 50-75 under the 
GM(1,2) model compared with the GM(0,2) model did genuinely improve the fit, but they do 
suggest that for both the male data sets, the increase at ages over 75 was caused mainly by 
the restricted range of shapes under the GM(1,2) model. We shall consider the goodness of 
fit of the models at different ages further in Section 2.8. 
 
The graphs in Figures 2.15-2.17 for models more complex than the GM(1,3) model show no 
significant qualitative changes in shape compared with the graphs for the GM(1,3) model, with 
the exception of the very youngest ages in England and Wales female data where there is a 
decrease in mortality compared with the GM(1,3) model. Thus Figures 2.15-2.17 do not 
provide any strong reason to support the use of a more complex model than GM(1,3). 
 
2.5 Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC) 
 
We should like a model with enough parameters to give a good fit to the data. However, we 
should not like to complicate the model unnecessarily by introducing parameters which the 
data do not provide sufficient evidence to conclude are necessary. Two quantitative criteria 
that have been developed to inform the judgement as to this balance between goodness of fit 
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and simplicity are the Akaike Information Criterion (AIC) and the Bayes Information Criterion 
(BIC), also called the Schwarz-Bayes Criterion (SBC). See, for example, Cairns (2000). 
 
The AIC of a model is defined as: 
 

kAIC −= l , 
 
where l  is the maximum log-likelihood of the model and k is the number of parameters in the 
model. Models with a high AIC are to be preferred to those with a low AIC. The AIC is derived 
from the classical problem of testing the null hypothesis that the data are adequately 
described by a simple model M1 against the alternative of a more complex model, M2, which 
contains M1 as a special case. The AIC does not require us to formulate any subjective prior 
beliefs as to which of the proposed models are most likely to be appropriate, and this might 
be thought to be an advantage. However, a disadvantage of the AIC is that its derivation 
assumes that the models being compared are nested, and so does not address the question 
of whether it is appropriate to use the AIC to compare two models that are not nested.  
 
The BIC of a model is defined as: 
 

NkBIC log2
1−= l , 

 
where l  and k are as above and N is the number of data cells, i.e. N = 3,599 for CMI data 
and 2,640 for England and Wales data. Models with a high BIC are to be preferred to those 
with a low BIC. The BIC is derived using Bayesian theory, starting from a prior belief that all 
the models under consideration are equally likely to be the correct one and comparing the 
posterior probabilities of the different models. Note that the BIC penalises complexity more 
severely than the AIC, particularly when, as in this case, N is large. The prior assumption that 
all models are equally likely could be modified subjectively if this were considered necessary, 
by assigning different prior probabilities to different models, but such subjectivity might still be 
considered undesirable. 
 
Comparisons of the AIC and BIC between different models can be used to gain an indication 
of how significant certain features of the data are as well as to inform the choice of model. 
Therefore, in the tables below, we shall also show the AIC and BIC of the �static GM(0,2)� 
model, in which the κ(3) and κ(4) parameters do not depend on calendar year, so that the force 
of mortality at age x for all calendar years t is: 
 

)](exp[ xxbaxt −+=µ , 
 
where a and b are parameters to be determined. The fitted values of a and b are shown in 
Table 2.2. 
 

Table 2.2 � Fitted values of the parameters a and b for the static GM(0,2) model 
 

 Data set a b 
CMI -4.5348 0.10410 

E&W Male -4.1818 0.09571 
E&W Female -4.7492 0.10075 

 
The improvement in the AIC and BIC from the static GM(0,2) model to the GM(0,2) model, 
compared with the improvements from the GM(0,2) model to the more complex GM models, 
will give an indication of the relative significance of the improvement of mortality over time and 
the nonlinearity of the shape of the graph of log mortality against age. 
 
Table 2.3 shows the values of both the AIC and BIC for the GM models that were fitted to the 
CMI data. 
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Table 2.3 � AIC and BIC values for a number of possible GM models fitted to CMI data 
 

Model 
Maximum  

log-likelihood Number of parameters AIC BIC 
Static 

GM(0,2) -65,320.81 2 -65,322.81 -65,329.00 
GM(0,2) -19,237.78 118 -19,355.78 -19,720.90 
GM(1,2) -18,536.30 177 -18,713.30 -19,260.98 
GM(1,3) -16,644.01 236 -16,880.01 -17,610.25 
GM(2,3) -16,257.82 295 -16,552.82 -17,465.61 
GM(3,3) -16,202.21 354 -16,556.21 -17,651.56 
GM(2,4) -16,181.63 354 -16,535.63 -17,630.98 

 
We conclude from Table 2.3 that each of the models up to and including GM(2,3) achieves a 
statistically significant improvement in fit over the previous one, under both the BIC and the 
AIC. However neither GM(3,3) nor GM(2,4) achieves a statistically significant improvement 
over GM(2,3) under the BIC, and only GM(2,4) achieves a marginal improvement over 
GM(2,3) under the AIC. 
 
We also conclude from Table 2.3 that the improvement of mortality over time is a much more 
significant feature of the data than nonlinearity of the graph of log mortality against age, as 
moving from the static GM(0,2) model to the GM(0,2) model increases the AIC and BIC much 
more than moving from the GM(0,2) model to the more complex models. This suggests that 
there is unlikely to be justification in any application for failing to allow for the improvement of 
mortality over time. Failure to allow for this feature will result in unduly low reserves and 
prices being calculated for annuity business and, potentially, unduly high reserves and prices 
for assurance business. However, in applications where only an approximate result is 
required, it may be appropriate to assume that mortality is a linear function of age for each 
calendar year with parameters depending on the year, i.e. to use the GM(0,2) model.   
 
The fact that the GM(2,3) model achieves a statistically significant improvement in fit over the 
GM(1,3) model, under both the BIC and the AIC, demonstrates that there is more structure in 
the data than is reflected in the GM(1,3) model. However, this does not necessarily imply that 
the GM(2,3) model is the most appropriate model to use for future projections. In general, if 
the fitted parameters under a model show features which we are unable to interpret, then we 
are unable to assess whether or not these features are likely to be repeated in the future, and 
hence whether or not it is appropriate to include them in future projections. In the case of the 
GM(2,3) model, interpretation of the changes in the kappa parameter values over time is 
significantly complicated by the strong correlations between them, and this would tend to 
support the use of the GM(1,3) model rather than the GM(2,3) model for projections. 
 
Table 2.4 shows the values of the AIC and BIC for the GM models that were fitted to England 
and Wales male data, and Table 2.5 shows the values for England and Wales female data. 

 
Table 2.4 � AIC and BIC values for a number of possible GM models fitted to England and 

Wales male data 
 

Model 
Maximum 

log-likelihood Number of parameters AIC BIC 
Static 

GM(0,2) -309,023.91 2 -309,025.91 -309,031.79 
GM(0,2) -47,095.64 88 -47,183.64 -47,442.29 
GM(1,2) -34,306.16 132 -34,438.16 -34,826.14 
GM(1,3) -18,478.49 176 -18,654.49 -19,171.81 
GM(2,3) -17,751.70 220 -17,971.70 -18,618.34 
GM(2,4) -17,181.03 264 -17,445.03 -18,221.00 
GM(3,4) -16,937.19 308 -17,245.19 -18,150.48 
GM(4,4) -16,785.46 352 -17,137.46 -18,172.08 
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Table 2.5 � AIC and BIC values for a number of possible GM models fitted to England and 
Wales female data 

 

Model 
Maximum  

log-likelihood Number of parameters AIC BIC 
Static 

GM(0,2) -177,258.66 2 -177,260.66 -177,266.54 
GM(0,2) -26,688.23 88 -26,776.23 -27,034.89 
GM(1,2) -21,918.09 132 -22,050.09 -22,438.07 
GM(1,3) -18,911.86 176 -19,087.86 -19,605.17 
GM(2,3) -17,705.78 220 -17,925.78 -18,572.42 
GM(2,4) -16,411.35 264 -16,675.35 -17,451.32 
GM(3,4) -16,140.94 308 -16,448.94 -17,354.23 
GM(4,4) -15,872.44 352 -16,224.44 -17,259.06 

 
The GM(4,4) model was found to be the most complex model for which the iterative scheme 
converged, for both male and female England and Wales data. 
 
Given the greater size of the England and Wales data sets than of the CMI data set, it was  
expected that more parameters would be statistically significant in Tables 2.4 and 2.5 than in 
Table 2.3. In fact, for both the male and the female England and Wales data sets, the most 
complex model we have fitted, the GM(4,4) model, has been determined to be optimal under 
both the AIC and the BIC, with the exception that the BIC of the GM(4,4) model fitted to male 
data is slightly less than that of the GM(3,4) model. However, the improvement of mortality 
over time is again a much more significant feature of the data than nonlinearity of the graph of 
log mortality against age. 
 
As with the CMI data, the conclusion to be drawn from the fact that more complex models can 
improve the AIC and BIC compared with the GM(1,3) model is that there is additional 
structure in the data, rather than that it is appropriate to base projections on those more 
complex models. For similar reasons to those for the CMI data, the GM(1,3) model is more 
likely than the GM(2,3) model to be an appropriate basis for projections. However, as 
consideration of cohort effects was necessary to explain the shapes of the parameter graphs 
under the GM(1,3) model for both males and females, we should also investigate models that 
make explicit allowance for cohort effects. This will be the subject of Chapter 3. 
 
2.6 Standardised residuals 
 
For a given model fitted to a given data set, the standardised residual at age x in calendar 
year t, Zxt, is defined as: 
 

xtxt

xtxtxt

E
ED

µ
µ

�
�−

, 

 
where xtµ�  is the fitted force of mortality at age x in calendar year t. The xtxt Eµ�  in the 
numerator represents the mean of the fitted Poisson distribution of the number of deaths at 
age x in calendar year t and the xtxt Eµ�  in the denominator represents the variance of this 
Poisson distribution. 
 
If the model under consideration were a perfect representation of reality, then the 
standardised residuals would be realisations of independent random variables with mean 0 
and variance 1. In practice, the sample variance of the standardised residuals would be 
expected to be greater than 1, as there will always be some patterns of variation in the data 
that are not captured by the model. Table 2.6 shows the sample variances of the 
standardised residuals observed for each of the GM models fitted to the CMI data. These 
have been calculated as: 
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where N is the number of data cells, k is the number of parameters and z  is the sample 
mean of the standardised residuals, rather than as: 
 

,)(1 2∑∑ −
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N

 

 
i.e. they are unbiased estimates rather than maximum likelihood estimates of the population 
variance of the standardised residuals. 
 

Table 2.6 � Sample variances of the standardised residuals for a number of possible GM 
models fitted to CMI data 

 
Model Sample variance of standardised residuals 

Static GM(0,2) 28.3338 
GM(0,2) 3.5309 
GM(1,2) 3.1662 
GM(1,3) 2.0829 
GM(2,3) 1.8843 
GM(3,3) 1.8847 
GM(2,4) 1.8723 

 
It can be seen from Table 2.6 that the fit, as measured by the sample variance of the 
standardised residuals, improves significantly as we move from the GM(0,2) model to the 
GM(1,2) model and, particularly, from the GM(1,2) model to the GM(1,3) model. The 
improvement from the GM(1,3) model to the GM(2,3) model is rather smaller. There is very 
little improvement beyond the GM(2,3) model � in fact there is a deterioration for the GM(3,3) 
model compared with the GM(2,3) model as the decrease in the sum of squares is not 
sufficient to outweigh the increase in the number of parameters.  
 
Table 2.7 shows the sample variances of the standardised residuals observed for each of the 
GM models fitted to the England and Wales male data, and Table 2.8 shows the same 
information for the England and Wales female data. 

 
Table 2.7 � Sample variances of the standardised residuals for a number of possible GM 

models fitted to England and Wales male data 
 

Model Sample variance of standardised residuals 
Static GM(0,2) 221.3328 

GM(0,2) 26.4706 
GM(1,2) 17.2309 
GM(1,3) 4.5875 
GM(2,3) 4.0648 
GM(2,4) 3.6561 
GM(3,4) 3.5154 
GM(4,4) 3.4497 
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Table 2.8 � Sample variances of the standardised residuals for a number of possible GM 
models fitted to England and Wales female data 

 
Model Sample variance of standardised residuals 

Static GM(0,2) 124.5906 
GM(0,2) 11.3289 
GM(1,2) 7.5568 
GM(1,3) 5.2179 
GM(2,3) 4.3146 
GM(2,4) 3.2973 
GM(3,4) 3.1266 
GM(4,4) 2.9505 

 
The figures in Tables 2.7 and 2.8 are higher than the corresponding figures for the same 
model in Table 2.6. This is to be expected because the greater size of the England and Wales 
data sets than of the CMI data set makes it likely that more features of the data not captured 
by the model are will be statistically significant in the former than in the latter. It is also likely 
that the higher figures in Tables 2.7 and 2.8 than in Table 2.6 are partly due to lower accuracy 
of the exposed to risk in the England and Wales data than in the CMI data. The CMI 
calculates the exposed to risk in its data sets every year, whereas a census of the England 
and Wales population is only carried out every ten years, with the exposed to risk being 
estimated in intermediate years. 
 
Tables 2.7 and 2.8 show very significant improvements in fit for both males and females as 
we move from the GM(0,2) to the GM(1,2) model, and as we move from the GM(1,2) to the 
GM(1,3) model. From the GM(1,3) to the GM(2,3) model and from the GM(2,3) to the GM(2,4) 
model, the improvement in fit is fairly significant for females, but less so for males. Beyond the 
GM(2,4) model, the improvements are relatively small for both males and females. 
 
2.7 Coefficient of determination, R2 

 
For each of the data sets, it is instructive to examine what proportion of the variation in the 
crude force of mortality between data cells is explained by each of the models. The measure 
generally used for this purpose is called the coefficient of determination and is denoted by R2. 
 
We define the residual sum of squares (RSS) to be the sum of the squares of the 
standardised residuals: 
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∑∑=++
x t

xtEE . 

 
Thus RSS0 is the RSS of the model in which µxt is a constant, µ, independent of both age x 

and calendar year t. The maximum likelihood estimate of µ under this model is 
++

++

E
D

. 

 
R2 is then defined as: 
 

0

2 1
RSS
RSSR −= . 

 
Thus R2 = 1 in a model where the graduated force of mortality equals the observed force of 

mortality exactly in every data cell, and R2 = 0 if 
++

++=
E
D

xtµ�  for all x and all t. 

 
The values of R2 for the different models fitted to CMI data, to England and Wales male data 
and to England and Wales female data are shown in Tables 2.9, 2.10 and 2.11 respectively. 
In Tables 2.9, 2.10 and 2.11, 'Flat' represents the model where µxt is independent of both age 
x and calendar year t. 

 
Table 2.9 � Values of R2 for a number of possible GM models fitted to CMI data 

 
Model R2 
Flat 0 

Static GM(0,2) 0.981448 
GM(0,2) 0.997763 
GM(1,2) 0.998028 
GM(1,3) 0.998725 
GM(2,3) 0.998867 
GM(3,3) 0.998887 
GM(2,4) 0.998894 

 
Table 2.10 � Values of R2 for a number of possible GM models fitted to England and Wales 

male data 
 

Model R2 
Flat 0 

Static GM(0,2) 0.981410 
GM(0,2) 0.997849 
GM(1,2) 0.998624 
GM(1,3) 0.999640 
GM(2,3) 0.999687 
GM(2,4) 0.999723 
GM(3,4) 0.999739 
GM(4,4) 0.999749 
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Table 2.11 � Values of R2 for a number of possible GM models fitted to England and Wales 
female data 

 
Model R2 
Flat 0 

Static GM(0,2) 0.989749 
GM(0,2) 0.999098 
GM(1,2) 0.999409 
GM(1,3) 0.999599 
GM(2,3) 0.999674 
GM(2,4) 0.999756 
GM(3,4) 0.999773 
GM(4,4) 0.999789 

 
For all three data sets, by far the greatest increase in R2 occurs when we move from the flat 
model to the static GM(0,2) model. In each case, over 98% of the variation in the crude force 
of mortality between data cells is explained when we move from assuming that mortality is 
independent of age to assuming that it increases exponentially with age, without making any 
allowance for the improvement of mortality over time. 
 
The GM(0,2) model, in which mortality increases exponentially with age for each calendar 
year with different parameters for each calendar year, accounts for over 99.75% of the 
variation in the crude force of mortality between data cells for all three data sets. However, we 
saw in Section 2.5 that there is still sufficient structure in the residuals of the GM(0,2) model 
to justify a more complex model, as more complex models improved the BIC and AIC 
compared with the GM(0,2) model. 
 
Although Section 2.3.1 concluded that models more complex than the GM(1,3) model were 
overfitted to CMI data, the GM(1,3) model has a rather lower value of R2 than for England and 
Wales data. This can be attributed to the fact that, as the CMI data is a smaller data set than 
the England and Wales data sets, more of the variation in the crude force of mortality 
between data cells is a result of stochastic fluctuations. 
 
2.8 Residual plots 
 
For each of the GM models fitted to each of the data sets, it is instructive to examine which 
ages and calendar years have observed mortality rates above the modelled mortality rates 
(i.e. positive standardised residuals), and which have observed mortality rates below the 
modelled mortality rates (i.e. negative standardised residuals). For CMI data, these ages and 
years are shown respectively as red and blue in the graphs in Figure 2.18. Darker shades of 
red and blue are used to highlight the more extreme residuals. 
 
The key observations from Figure 2.18(i) are that the GM(0,2) model systematically 
understates mortality at the very youngest ages of the data set, systematically overstates it 
around ages 35-50, systematically understates it around ages 55-65 and systematically 
overstates it above age 80. It is clear that modelling the force of mortality as an exponential of 
a linear function of age for each calendar year is inadequate to capture the structure of the 
data set. There is some evidence of diagonal patterns in the residuals, in that the age bands 
in which there is systematic understatement and systematic overstatement increase towards 
the end of the period 1947-2005. It seems likely that much of this reflects the favourable 
cohort effect centred on 1926. There is also a possible adverse cohort effect for lives born 
after 1945 � as discussed below, a similar effect is also visible for England and Wales male 
data. 
 
Figure 2.18(ii) shows that the addition of κ(0) parameters is not in itself sufficient to eliminate 
the above inadequacies in the GM(0,2) model. The GM(1,2) model shows systematic 
discrepancies between observed and fitted mortality at broadly the same ages as the GM(0,2) 
model. This is despite the statistically significant improvement the GM(1,2) model showed in 
goodness of fit, under both the BIC and AIC, compared with the GM(0,2) model. There is still 
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some evidence, though slightly weaker than for the GM(0,2) model, of diagonal patterns in the 
residuals. 
 
The generally paler colour of Figures 2.18(iii) and (iv) compared with Figures 2.18(i) and (ii) 
indicates that the systematic overstatements of mortality at certain ages and the systematic 
understatements at others are much reduced in the GM(1,3) model and, particularly, the 
GM(2,3) model, compared with the GM(1,2) model. However, one feature that remains is a 
systematic understatement of mortality around ages 60-65 and a systematic overstatement 
around ages 65-70. As we shall see later in this section, this feature is specific to the CMI 
data and is not observed with England and Wales data. A plausible explanation for this 
feature is that the policies around ages 60-65 are mostly endowments maturing at or near age 
65, whereas the policies around ages 65-70 are mostly whole life assurances. The life 
insurance companies that contributed to the CMI's investigation may have sold endowments 
and whole life assurances to different market segments, possibly with stricter underwriting for 
whole life assurances, or the understatement of mortality in the CMI data resulting from 
unclaimed policies may have been more significant for whole life than for endowment 
business. As shown in Figure 1.1(i), the exposed to risk in the CMI data decreases rapidly 
with increasing age around age 65, which is consistent with this explanation. The author 
contacted the CMI regarding this feature and received the following response: 
 
'As far as we are aware this feature has not previously been investigated or brought to the 
attention of the CMI.  Unfortunately, the scheduled nature of the data provided to the CMI 
means that we are unable to give firm answers on why this might be occurring, for example 
we cannot separately identify endowment business and whole of life business.   
However, most endowment business would be written to mature by age 65 and so it may be 
reasonable to treat the data after age 65 as arising mainly from whole life policies.' 
 
This feature of the CMI data has, however, become less significant since the early 1990s. 
 
The diagonal patterns that we observed in Figures 2.18(i) and (ii) have been largely 
eliminated in Figures 2.18(iii) and (iv). This suggests that cohort effects in the CMI data are 
largely captured indirectly via the parameter estimates of the GM(1,3) and GM(2,3) models. 
When we discussed the parameter graphs in Section 2.3, we did not identify cohort effects as 
a significant driver of the shapes of the graphs. However, further inspection of Figure 2.3 in 
particular reveals a particularly steep fall in the κ(3) parameters, and a particularly steep rise in 
the κ(4) parameters, from 1980 to the early 1990s. In Section 2.3 we explained a similar 
feature of the England and Wales data sets by reference to cohort effects. 
 
Figures 2.18(v) and (vi) reveal very little change compared with Figure 2.18(iv). This is 
consistent with the fact that the GM(3,3) model failed to improve the BIC or AIC compared 
with the GM(2,3) model, and the GM(2,4) model failed to improve the BIC and improved the 
AIC only marginally. 
 
Figures 2.19(i), (ii), (iii) and (iv) are similar residual plots for the England and Wales male 
data, for the GM(0,2), GM(1,2), GM(1,3) and GM(2,3) models respectively. The residual plots 
for more complex models than GM(2,3) have not been shown, as we concluded in Section 2.3 
that even the GM(2,3) model was overfitted. Figures 2.20(i)-(iv) are the corresponding plots 
for the female data. 
 
The standardised residuals for a given model tend to be larger in magnitude for England and 
Wales data than for CMI data. This is again a consequence of the larger population 
underlying the England and Wales data than underlying the CMI data. 
 
Cohort effects, represented by diagonal bands, are much more apparent in the residual plots 
for England and Wales data than for CMI data. As mentioned in Section 1 and in Section 2.3, 
the cohort centred on year of birth 1931 has been identified as exhibiting particularly large 
mortality improvements compared with the previous generation, for both England and Wales 
males and England and Wales females. In fact, if we draw the diagonals on Figures 2.19 and 
2.20 representing year of birth 1931, then we find that the area close to and above the 
diagonals tends to be red, representing observed mortality above the modelled mortality for 
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years of birth just before 1931, and the area close to and below the diagonals tends to be 
blue, representing observed mortality below the modelled mortality for years of birth just after 
1931. This is consistent with what we would expect if the cohort centred on year of birth 1931 
exhibits particularly large mortality improvements compared with the previous generation. 
 
Section 2.3 also mentioned that females born around 1915 have exhibited particularly low 
mortality improvements compared with the previous generation. In fact, if we draw the 
diagonals representing year of birth 1915 on Figure 2.20, then we find that the area close to 
and above the diagonals is mostly blue, while the area close to and below the diagonals is red 
or lighter blue. This is consistent with females born around 1915 exhibiting particularly low 
mortality improvements compared with the previous generation. 
 
One feature that can be seen in all the residual plots for England and Wales data, for both 
males and females, is that lives born in 1919 have exhibited unusually low mortality and lives 
born in 1920 have exhibited unusually high mortality. Renshaw and Haberman (2006) 
observe a similar feature and attribute it to the 1919 influenza epidemic. It seems plausible 
that this epidemic could have had either a favourable impact on the mortality of the cohort 
born during or shortly after the epidemic, by reducing the chances of unhealthy children being 
born alive and/or surviving past infancy, or an adverse impact, because the epidemic had a 
permanent impact on the health of this cohort. However, it is by no means clear that the 
epidemic would have had a favourable impact on the mortality of lives born in 1919 and an 
adverse impact on the mortality of lives born in 1920. This is an area that would benefit from 
further research. 
 
Figure 2.19(i) also suggests a possible adverse cohort effect for England and Wales males 
born since 1945. This feature is no longer apparent in Figure 2.19(ii), having been captured 
indirectly via κ(0) parameters that increase over time. Paragraph 2.15.6 of Willets et al. (2004) 
suggests the possible existence of such an adverse cohort effect for some generations born 
since 1945, but it cannot be said that there is sufficient evidence to demonstrate its existence 
definitively. 
 
We shall now discuss each of the graphs in Figures 2.19 and 2.20 individually. From Figure 
2.19(i), we see that the ages at which the GM(0,2) model systematically overstates and 
understates England and Wales male mortality are fairly similar to those for CMI data. 
However, with England and Wales male data there is no systematic understatement of 
mortality at the very youngest ages of the data set in the early years of the period 1962-2005, 
although such an understatement does appear in the later years. The systematic 
understatement at ages 55-65 that existed in CMI data has moved to the age range 60-75. 
There is stronger evidence than for CMI data of cohort effects giving rise to increases in the 
age bands of systematic overstatement and understatement in the later years of the data set. 
 
Figure 2.19(ii) shows that the GM(1,2) model fitted to England and Wales male data 
systematically overstates and understates mortality at broadly the same ages as the GM(0,2) 
model. However, there is now a systematic understatement at the youngest ages in the 
earlier years as well as the later years of the data set, and elsewhere there is a limited 
amount of weakening of both the systematic overstatements and understatements. 
 
Figure 2.19(iii) is significantly paler than Figures 2.19(i) and (ii), and the systematic 
overstatements and understatements of mortality at certain ages have largely been 
eliminated, indicating that the GM(1,3) model explains significantly more of the structure of 
the England and Wales male data than the GM(0,2) and GM(1,2) models. Some diagonal 
patterns remain, indicating cohort effects. We observed in Section 2.3 that the parameter 
estimates reflected the impact of cohort effects indirectly, but Figure 2.19(iii) shows that the 
parameter estimates captured only part of the cohort effects. 
 
A comparison of Figure 2.19(iv) with Figure 2.19(iii) reveals some differences in specific 
regions, but it is unlikely that such a comparison would be used to justify the use of the 
GM(2,3) model in preference to the GM(1,3) model for England and Wales male data. 
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Comparing Figures 2.20(i) and (ii) with Figures 2.19(i) and (ii) shows that the ages for which 
the GM(0,2) and GM(1,2) models systematically overstate and understate England and Wales 
female mortality are broadly the opposite to those for England and Wales male mortality. In 
other words, mortality is systematically understated over the age range 35-50, systematically 
overstated over the age range 60-75 and systematically understated above age 80. As we 
move from the GM(0,2) to the GM(1,2) model, a systematic understatement of mortality at the 
youngest ages of the data set is replaced by a systematic overstatement. 
 
The observations from Figures 2.20(iii) and (iv) are similar to those from Figures 2.19(iii) and 
(iv). There are signs that the GM(2,3) model achieves slightly more improvement in fit over 
the GM(1,3) model for females than for males. However, particularly as this greater 
improvement in fit is less significant in the later years of the data set, it is unlikely to be a 
sufficient reason to apply the GM(2,3) rather than the GM(1,3) model to England and Wales 
female data. 
 
As an alternative visualisation of the structure of the standardised residuals, Figures  
2.18-2.20 were projected onto the age axis and the year of birth diagonal to produce scatter 
diagrams. Figures 2.21 and 2.22 are the projections of the CMI standardised residuals onto 
the age axis and the year of birth diagonal respectively. Figures 2.23 and 2.24 are the 
projections of the England and Wales male standardised residuals onto the age axis and the 
year of birth diagonal respectively. Figures 2.25 and 2.26 are the projections of the England 
and Wales female standardised residuals onto the age axis and the year of birth diagonal 
respectively. 
 
The following observations can be made from Figures 2.21-2.26: 
 
� As we move from the simpler models to the more complex models, there are 

progressively fewer standardised residuals that are large in absolute value. This is to 
be expected because introducing each new time series of parameters captures more 
of the structure of the data. 

 
� Figures 2.21(i) and (ii) show that, in the GM(0,2) and GM(1,2) models fitted to CMI 

data, the standardised residuals close to age 30 are mostly positive, those around 
age 40 are mostly negative, those around age 60 are mostly positive and those close 
to age 90 are mostly negative. This indicates that these models systematically 
understate mortality close to age 30, systematically overstate it around age 40, 
systematically understate it around age 60 and systematically overstate it close to 
age 90. This is consistent with what we observed from Figures 2.18(i) and (ii). As we 
move to the GM(1,3) model and to the more complex models, these systematic 
patterns in the sign of the residuals are largely eliminated. 

 
� Even in the most complex models fitted to the CMI data, there is still evidence of the 

residuals being systematically positive in the age range 60-65 and negative in the age 
range 65-70. This feature was commented on in the discussion of Figures 2.18(iii) 
and (iv), where it was suggested that the explanation was that the exposed to risk at 
ages 60-65 consisted primarily of endowments, while that at ages 65-70 consisted 
primarily of whole life assurances. This feature is not observed in England and Wales 
data, which is what we would expect if this explanation is correct. 

 
� For the CMI data, the graphs for the GM(3,3) and GM(2,4) models are very similar to 

those for the GM(2,3) model. For the England and Wales data, the graphs for more 
complex models than GM(2,3) have not been shown. Some differences between the 
graphs for the GM(1,3) and GM(2,3) models are visible for both CMI data and 
England and Wales data, but none of these differences is likely to be regarded as 
significant grounds for preferring one model to the other. 

 
� In Figure 2.24, relating to England and Wales male data, and Figure 2.26, relating to 

England and Wales female data, the points relating to year of birth 1919 tend to have 
large negative standardised residuals and the points relating to year of birth 1920 
tend to have large positive standardised residuals. As noted in the discussion of 
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Figures 2.19 and 2.20, this is likely to be due to the 1919 influenza epidemic. The 
same effect can be seen to some extent in CMI data in Figure 2.22, although it is less 
prominent. 

 
� In England and Wales data compared with CMI data, there are more standardised 

residuals that are large in absolute value. As discussed in Section 2.6, this can be 
explained by the larger size of the England and Wales data sets than of the CMI data 
set, in that the England and Wales data are likely to contain more statistically 
significant features not captured by the models, and the more approximate procedure 
for calculating the exposed to risk for the England and Wales data than for the CMI 
data is also likely to have an effect. 

 
� For the GM(0,2) model fitted to England and Wales male data, Figure 2.23(i) 

indicates that the residuals around age 70 are almost all positive, and that the 
residuals close to age 89 are almost all negative. This agrees with what we observed 
from Figure 2.19(i), namely a systematic understatement of mortality around age 70 
and a systematic overstatement at ages close to 89. In both cases, it is necessary to 
introduce κ(5) parameters as well as κ(0) parameters to make the bias insignificant. 
Figure 2.23 also shows that the GM(0,2) and GM(1,2) models do not adequately 
capture the age structure of the England and Wales male data at younger ages, but 
that the GM(1,3) and GM(2,3) models give greatly improved results. 

 
� Cohort effects can be seen under the simpler models in all three of the figures 2.22, 

2.24 and 2.26, over the ranges of years of birth that we would expect from our earlier 
remarks. For CMI data, the fall in standardised residuals which can be seen in Figure 
2.22(i), representing the favourable cohort effect centred on 1926, has largely been 
eliminated in the more complex models, indicating that most of this cohort effect has 
been captured implicitly via the shape of the kappa parameter graphs. Again for CMI 
data, Figures 2.22(i) and (to a lesser extent) (ii) show an increase in standardised 
residuals for lives born since 1945, but this has been captured implicitly via the kappa 
parameter estimates in the more complex models. Figure 2.24(i), for England and 
Wales male data, also shows an increase in standardised residuals for lives born 
since 1945, but this time introducing κ(0) parameters is sufficient to capture this effect 
implicitly. However, in the case of the favourable cohort effect centred on 1931 for 
both England and Wales males and England and Wales females, and the adverse 
cohort effect centred on 1915 for England and Wales females, many of the cohort 
effects remain in the residuals of the more complex models. For England and Wales 
males, the significant fall in the standardised residuals centred on 1931 visible in 
Figures 2.24(i) and (ii) has been noticeably reduced, but by no means eliminated, in 
Figures 2.24(iii) and (iv). For England and Wales females, the GM(1,3) and GM(2,3) 
models are still less successful at capturing the fall in the standardised residuals 
centred on 1931 visible under the GM(0,2) and GM(1,2) models. Also for England 
and Wales females, the GM(1,3) and GM(2,3) models have only limited success at 
capturing the rise in standardised residuals from 1905 to 1925, which is interrupted by 
the 1919-20 discontinuity. 

 
� From Figure 2.25(i), the residuals when the GM(0,2) model is fitted to England and 

Wales female data are mostly positive up to age 50 and above age 80 and negative 
around age 70. This indicates systematic understatement of mortality up to age 50 
and above age 80 and systematic overstatement around age 70, consistently with 
Figure 2.20(i). From Figure 2.25(ii), when κ(0) parameters are introduced, the 
residuals close to age 30 become mostly negative, those around ages 50 and 70 
mostly remain positive and negative respectively and those close to age 89 become 
negative at certain years (actually in earlier years, although this cannot be seen from 
Figure 2.25(ii)). This agrees with Figure 2.20(ii). 

 
� In the GM(1,3) and GM(2,3) models fitted to England and Wales female data (Figures 

2.25(iii) and (iv)) rather than male data (Figures 2.23(iii) and (iv)), there is rather more 
age structure remaining in the residuals. However, this should not be taken as 
support for the use of a more complex GM model than the GM(2,3) model for 
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England and Wales female data. We observed in Section 2.3 that even in the 
GM(2,3) model, there were significant problems of overfitting. 

 
� Some negative standardised residuals can be seen at the oldest ages in all the 

graphs in Figure 2.25, relating to England and Wales female data. It seems likely that 
these are due to issues with the quality of the data, with ages at death in the late 80s 
that were not known exactly being reported as 90 which is outside the range of the 
graphs. The graphs in Figure 2.20 suggest that these negative standardised residuals 
occur mainly in the earlier years of the data set, so that this issue has become less 
significant in more recent years. 

 
2.9 Conclusion 
 
A number of different GM models have been fitted to the three data sets. It was found that the 
parameter graphs for the GM(1,3) model had a clear interpretation but that the graphs for 
more complex GM models were much more difficult to interpret. In addition, no major features 
of the data have been identified that were not captured in the GM(1,3) model but were in 
more complex GM models. Therefore, despite the fact that some more complex GM models 
improved the AIC and BIC compared with the GM(1,3) model, we conclude that the GM(1,3) 
model is the most appropriate model on which to base future mortality projections. Cohort 
effects are reflected indirectly via the fitted parameters of this model, but there are still some 
cohort effects visible in the residuals, particularly for the England and Wales data sets. We 
shall next extend the model to incorporate an explicit allowance for these cohort effects. 
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Figure 2.1 � Maximum likelihood parameter estimates for the GM(0,2) model fitted to CMI 
data � )](exp[ )4()3( xxttxt −+= κκµ  � (i) )3(
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Figure 2.2 � Maximum likelihood parameter estimates for the GM(1,2) model fitted to CMI 
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Figure 2.3 � Maximum likelihood parameter estimates for the GM(1,3) model fitted to CMI 
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Figure 2.4 � Maximum likelihood parameter estimates for the GM(2,3) model fitted to CMI 
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Figure 2.5 � Maximum likelihood parameter estimates for the GM(3,3) model fitted to CMI 

data � 
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Figure 2.6 � Maximum likelihood parameter estimates for the GM(2,4) model fitted to CMI 

data � 
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Figure 2.7 � Maximum likelihood parameter estimates for the GM(0,2) model fitted to 
England and Wales male data � )](exp[ )4()3( xxttxt −+= κκµ  � (i) )3(

tκ , (ii) )4(
tκ  

 
(i) 

1970 1980 1990 2000

-4
.6

-4
.4

-4
.2

-4
.0

kappa3(t)

Year, t

ka
pp

a3
(t)

 
(ii) 

1970 1980 1990 2000

0.
09

4
0.

09
5

0.
09

6
0.

09
7

0.
09

8
0.

09
9

0.
10

0

kappa4(t)

Year, t

ka
pp

a4
(t)

 
 
 



 49

Figure 2.8 � Maximum likelihood parameter estimates for the GM(1,2) model fitted to 
England and Wales male data � )](exp[ )4()3()0( xxtttxt −++= κκκµ  � (i) )0(

tκ , (ii) )3(
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Figure 2.9 � Maximum likelihood parameter estimates for the GM(1,3) model fitted to 
England and Wales male data � )]�)(()(exp[ 22)5()4()3()0(
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Figure 2.10 � Maximum likelihood parameter estimates for the GM(2,3) model fitted to 
England and Wales male data � 
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Figure 2.11 � Maximum likelihood parameter estimates for the GM(0,2) model fitted to 
England and Wales female data � )](exp[ )4()3( xxttxt −+= κκµ  � (i) )3(

tκ , (ii) )4(
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Figure 2.12 � Maximum likelihood parameter estimates for the GM(1,2) model fitted to 
England and Wales female data � )](exp[ )4()3()0( xxtttxt −++= κκκµ  � (i) )0(

tκ , (ii) )3(
tκ , 
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Figure 2.13 � Maximum likelihood parameter estimates for the GM(1,3) model fitted to 
England and Wales female data � 
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Figure 2.14 � Maximum likelihood parameter estimates for the GM(2,3) model fitted to 
England and Wales female data � 
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Figure 2.15 � 2000 mortality curves fitted to CMI data � differences from the GM(0,2) model �  
(i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3), (v) GM(3,3), (vi) GM(2,4) 
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Figure 2.16 � 2000 mortality curves fitted to England and Wales male data � differences from 
the GM(0,2) model � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 2.17 � 2000 mortality curves fitted to England and Wales female data � differences 
from the GM(0,2) model �(i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 

 
(i) 

30 40 50 60 70 80 90

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Age

D
iff

er
en

ce
 in

 lo
g 

(F
or

ce
 o

f m
or

ta
lit

y)

(ii) 

30 40 50 60 70 80 90

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Age
D

iff
er

en
ce

 in
 lo

g 
(F

or
ce

 o
f m

or
ta

lit
y)

(iii) 

30 40 50 60 70 80 90

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Age

D
iff

er
en

ce
 in

 lo
g 

(F
or

ce
 o

f m
or

ta
lit

y)

(iv) 

30 40 50 60 70 80 90

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Age

D
iff

er
en

ce
 in

 lo
g 

(F
or

ce
 o

f m
or

ta
lit

y)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59

Figure 2.18 � Plots of standardised residuals for a number of possible GM models fitted to 
CMI data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3), (v) GM(3,3), (vi) GM(2,4) 
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Figure 2.19 � Plots of standardised residuals for a number of possible GM models fitted to 
England and Wales male data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 2.20 � Plots of standardised residuals for a number of possible GM models fitted to 
England and Wales female data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 2.21 � Scatter diagrams of standardised residuals plotted against age for CMI data � 
 (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3), (v) GM(3,3), (vi) GM(2,4) 
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Figure 2.22 � Scatter diagrams of standardised residuals plotted against year of birth for CMI 
data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3), (v) GM(3,3), (vi) GM(2,4) 
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Figure 2.23 � Scatter diagrams of standardised residuals plotted against age for England and 
Wales male data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 2.24 � Scatter diagrams of standardised residuals plotted against year of birth for 
England and Wales male data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 2.25 � Scatter diagrams of standardised residuals plotted against age for England and 
Wales female data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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Figure 2.26 � Scatter diagrams of standardised residuals plotted against year of birth for 
England and Wales female data � (i) GM(0,2), (ii) GM(1,2), (iii) GM(1,3), (iv) GM(2,3) 
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3: Adding a cohort effect to the model 
 
3.1 Introduction 
 
We observed strong evidence of a cohort effect for England and Wales data in Chapter 2. 
Some of this cohort effect was implicit in the shapes of the parameter graphs under the more 
complex models, e.g. the graphs in Figure 2.9 for male data and Figure 2.13 for female data, 
and some of it remained in the residuals and is visible in Figure 2.24 for male data and Figure 
2.26 for female data. For the CMI data, we also observed evidence of a cohort effect, but it 
was mainly implicit in the shapes of the parameter graphs, e.g. Figure 2.3, rather than 
remaining in the residuals in Figure 2.22. 
 
It would be desirable to allow for cohort effects via a model that incorporates them directly 
and places them on an equal footing with period effects. An example of such a model would 
be: 
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However, it is found that models of this type fail to produce sensible maximum likelihood 
estimates of the kappa and gamma parameters. The reasons for this are essentially the same 
as those in Appendix B, which is referred to below. 
 
Although we shall not fit a model of this type, we should still allow for the cohort effects that 
have already been observed in certain generations when projecting future mortality rates for 
those generations. We should also allow in stochastic projections for the risk that future 
generations will experience either favourable or adverse cohort effects. Accordingly we shall 
apply a factor depending on year of birth to the force of mortality modelled in Chapter 2. Thus 
the revised force of mortality at age x in year t is: 
 

0
xtxtxt µγµ −= , 

 
where γc is a parameter to be estimated for each year of birth c and 0

xtµ  is the force of 
mortality modelled in Chapter 2. In view of the findings of Chapter 2, we shall use the GM(1,3) 
model for the values of 0

xtµ . 
 
Ideally, we would use a single iterative procedure to estimate both the gamma and the kappa 
parameters. However, if this is done, then it is found that towards the extremities of the range 
of years of birth, the gamma parameters reflect effects that clearly cannot be genuine cohort 
effects. The gamma parameters instead serve to extend the range of shapes of the mortality 
curve as a function of age available in each calendar year. Appendix B gives further details of 
the investigations that were carried out in relation to this. Given this problem, in the estimation 
of the gamma parameters, we shall assume that the kappa parameters have already been 
fixed. 
 
3.2 Restricted data sets 
 
Consistently with the approach of Cairns et al. (2007), it was considered that there were 
insufficient data to estimate the gamma parameters reliably for years of birth observed for 
less than five years in the data. Accordingly, the data relating to lives born before 1861 or 
after 1971 were removed from the CMI data set, and the data relating to lives born before 
1877 or after 1971 were removed from the England and Wales data sets. In what follows, the 
resulting data sets will be referred to as the �restricted data sets�. 
 
Before estimating the gamma parameters, it was then necessary to re-estimate the 
parameters of the GM(1,3) model, i.e. the kappa parameters, based on the restricted data 
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sets. Graphs of the revised parameter values are shown in Figures 3.1, 3.2 and 3.3, which 
are revised versions of Figures 2.3, 2.9 and 2.13 respectively. Only the parameter values for 
calendar years before 1951 and after 2001 have changed for CMI data, and only the 
parameter values for calendar years before 1966 and after 2001 have changed for England 
and Wales data. This is what we would expect because these are the only years for which 
any data have been excluded. 
 
Figures 3.4(i), (ii) and (iii) are the graphs corresponding to Figures 2.18(iii), 2.19(iii) and 
2.20(iii) respectively for the GM(1,3) model fitted to the restricted data sets, before introducing 
gamma parameters. The graphs in Figure 3.4 show white triangles in the top left and bottom 
right corners, representing the years of birth excluded from the data. Otherwise the graphs 
are very similar to Figures 2.18(iii), 2.19(iii) and 2.20(iii) respectively, and identical for years of 
birth 1951-2001 inclusive for CMI data and 1966-2001 inclusive for England and Wales data. 
 
Figures 3.5 and 3.6 are the graphs corresponding to Figures 2.21-2.26(iii) when the GM(1,3) 
model is fitted to the restricted data sets, before introducing gamma parameters. Again there 
are no significant changes compared with the unrestricted data sets. 
 
3.3 γ parameters (cohort parameters) 
 
As discussed in Section 3.1 and in Appendix B, we have selected a simple method of 
adjusting for a cohort effect, estimating the gamma parameters, which are applied as 
multiplicative factors to the fitted forces of mortality, without changing our estimates of the 
kappa parameters. Specifically, γc was estimated, for each year of birth c, as: 
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the maximum likelihood estimate of γc subject to the constraint that the kappa parameters are 
unchanged. This is the ratio of the actual number of deaths to the expected number of deaths 
under the GM(1,3) model for year of birth c, the �A/E�. 
 
Figures 3.7(i), (ii) and (iii) show the values of cγ�  for each year of birth c, for CMI data, 
England and Wales male data and England and Wales female data respectively. The 
following observations can be made from these figures: 
 
� All three figures show a large increase in 1920�γ  compared with 1919�γ . This feature 

was commented on in Section 2.8. It is slightly smaller than for CMI data than for the 
England and Wales data sets but still not insignificant. 

 
� All three figures show a fall in the gamma parameters which can be identified with the 
 1925-45 favourable cohort effect. The fall is larger for England and Wales females 
 than for England and Wales males, which ties in with the observation in Section 2.8 
 that more of the cohort structure was captured implicitly via the kappa parameters for 
 England and Wales males than for England and Wales females. For CMI data, the fall 
 is smaller than for England and Wales data, consistently with the observation in 
 Section 2.8 that most of the cohort structure is captured implicitly via the kappa 
 parameters. 
  
� Figure 3.7(iii) shows a rise in the gamma parameters centred on 1915, which can be 
 identified with the adverse cohort effect for females born around this time that was 
 mentioned in Sections 2.3 and 2.8. There is evidence of this rise continuing into the 
 early 1920s, on the far side of the 1919-20 discontinuity. 
 
� The gamma parameters for CMI data in particular become volatile for the more 
 recent years of birth and fall to exceptionally low values for the last two years of birth 
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 in the data (1970 and 1971). These values are based on particularly small numbers of 
 deaths and so should not be incorporated uncritically into future projections. 
 
� Further similarities can be seen between the graphs for the two male data sets in 

addition to those relating to the 1919-20 discontinuity and to the 1925-45 favourable 
cohort effect. For example, both graphs show a rise in the gamma parameters for 
years of birth in the 1890s, followed by a fall from 1900 to around 1915. 

 
� The most significant differences between the graphs for England and Wales males 

and females occur at the earliest years of birth, where the gamma parameters for 
males are relatively high and those for females are relatively low. This may be a 
consequence of data quality issues in this region of the data sets. 

 
3.4 AIC and BIC 
 
Table 3.1 shows the impact on both the AIC and BIC of introducing gamma parameters, for all 
three restricted data sets. 

 
Table 3.1 � Impact on the AIC and BIC of introducing gamma parameters 

 

Data set 

With or without 
gamma 

parameters? 
Maximum log-

likelihood 
Number of 
parameters AIC 

 
 

BIC 
CMI Without -16,584.48 236 -16,820.48 -17,550.06 
CMI With -16,185.71 347 -16,532.71 -17,605.43 

E&W Male Without -18,277.96 176 -18,453.96 -18,970.60 
E&W Male With -15,016.88 271 -15,287.88 -16,083.39 

E&W Female Without -18,669.46 176 -18,845.46 -19,362.10 
E&W Female With -15,824.09 271 -16,095.09 -16,890.60 

 
Note that the number of data cells, N, used in the calculation of the BIC values in Table 3.1 
has been reduced from 3,599 to 3,579 for CMI data and from 2,640 to 2,620 for the two 
England and Wales data sets, as a result of the exclusion of years of birth observed for less 
than five years in the data. 
 
From Table 3.1, we see that the introduction of a cohort effect into the model has improved 
both the BIC and the AIC very significantly for England and Wales data for both males and 
females. For CMI data, however, the improvement in the AIC is much smaller, and there is 
actually a deterioration in the BIC. As discussed in Sections 2.8 and 3.1, it appears that most 
of the cohort effects are captured implicitly via the kappa parameters for CMI data, but that 
this is less true for England and Wales data. In addition, the smaller size of the CMI data set 
means that the remaining cohort effects will be less statistically significant. Nevertheless, the 
similarities between the graphs in Figure 3.7 for CMI data and for England and Wales male 
data suggest that we are justified in including the cohort effect in the model for CMI data. 
 
It should be noted that it would be posssible to improve further on the AIC and BIC figures 
shown in Table 3.1 for the models with gamma parameters by estimating both the kappa and 
gamma parameters in a single iterative procedure. This was investigated for England and 
Wales male data under the two methods of carrying out the single iterative procedure 
described in Appendix B. It was found that under both methods, the AIC and BIC increased 
by approximately 600. The significant size of the improvements is consistent with the 
observations in Chapter 2 regarding cohort effects being reflected implicitly in the shapes of 
the kappa parameter graphs, as these observations suggest that we should be able to 
improve the fit significantly by making these cohort effects explicit. Unfortunately, however, 
the shapes of the parameter graphs given by the single iterative procedures, as shown in 
Figures B.1 and B.2, are unsuitable for forecasting. 
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3.5 Standardised residuals 
 
Table 3.2 shows how the sample variances of the standardised residuals are affected by the 
introduction of gamma parameters. 
 

Table 3.2 � Impact on the sample variances of the standardised residuals of introducing 
gamma parameters 

 

Data set 

Sample variance of 
standardised residuals 

without gamma parameters 

Sample variance of 
standardised residuals with 

gamma parameters 
CMI 2.0878 1.9106 

E&W Male 4.5321 1.9531 
E&W Female 5.1339 2.9200 

 
The values in Table 3.2 for the model without gamma parameters are slightly different from 
the values in Tables 2.6-2.8 as a result of the exclusion of years of birth observed for less 
than five years in the data. 
 
Table 3.2 shows that for the England and Wales data sets, a very significant part of the 
variation in the standardised residuals of the GM(1,3) model is explained by cohort effects. 
Consistently with the conclusions we drew from the AIC and BIC values in Table 3.1, the part 
of the variation explained by cohort effects for CMI data is smaller. The amount of variation in 
the standardised residuals that remains unexplained after introducing gamma parameters is 
greater for the England and Wales female data set than for the male data sets. 
 
3.6 Residual plots 
 
Figure 3.8 shows the graphs corresponding to those in Figure 3.4 after the introduction of 
gamma parameters. As expected from our previous observations, the changes are more 
significant for the England and Wales data sets than for the CMI data set. For England and 
Wales data, the significant diagonal patterns in Figures 3.4(ii) and (iii) have largely been 
eliminated in Figures 3.8(ii) and (iii), and for CMI data, the more limited diagonal patterns in 
Figure 3.4(i) have largely been eliminated in Figure 3.8(i). The introduction of gamma 
parameters does not help to eliminate the systematic understatement of mortality at ages  
60-65 and the systematic overstatement at ages 65-70 in CMI data � these features can still 
be seen in Figure 3.8(i). 
 
Figures 3.9 and 3.10 respectively show the standardised residuals plotted against age and 
year of birth for the GM(1,3) model after the introduction of gamma parameters. The 
corresponding figures before the introduction of gamma parameters are Figures 3.5 and 3.6 
respectively. Points will have moved significantly in Figures 3.9 and 3.10 compared with 
Figures 3.5 and 3.6 for years of birth where the estimated gamma parameters are significantly 
different from 1, particularly if the expected number of deaths is sufficiently large to make the 
movement credible. 
 
The graphs in Figure 3.9 have the same general shape as those in Figure 3.5. The main 
difference is that most of the extreme standardised residuals for England and Wales data that 
can be seen in Figure 3.5 have been eliminated in Figure 3.9. It would appear that cohort 
effects explain most of the extreme standardised residuals that existed before introducing 
gamma parameters. In fact, most of these extreme standardised residuals arose from the 
1919-20 discontinuity, which is now reflected in the higher fitted value of γ1920 than of γ1919. 
 
It is clear that Figure 3.10 shows far fewer systematic patterns than Figure 3.6, particularly in 
England and Wales data where cohort effects not already captured implicitly via the kappa 
parameters are more significant than for CMI data. In particular, the jumps between years of 
birth 1919 and 1920 that existed in Figure 3.6 are no longer present in Figure 3.10, because 
this feature of the data is now reflected in the higher fitted value of γ1920 than of γ1919. 
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3.7 Conclusion 
 
An explicit cohort effect has been added to the GM(1,3) model fitted in Chapter 2. As a result 
of the need to ensure that the cohort parameters represented genuine cohort effects, a simple 
approach was selected, in which a multiplicative �A/E� factor depending on year of birth was 
applied to the force of mortality under the GM(1,3) model without changing the parameter 
estimates of the latter. Introducing the cohort effect was found to improve the fit significantly 
for the England and Wales data sets but not for the CMI data set. However, the view was 
taken that it was appropriate to include the cohort effect in the model for CMI data as well as 
for England and Wales data, given the similarities between the fitted cohort parameter values 
for the different data sets. 
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Figure 3.1 � Maximum likelihood parameter estimates for the GM(1,3) model fitted to the 
restricted set of CMI data, before the introduction of gamma parameters � 
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Figure 3.2 � Maximum likelihood parameter estimates for the GM(1,3) model fitted to the 
restricted set of England and Wales male data, before the introduction of gamma parameters 
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Figure 3.3 � Maximum likelihood parameter estimates for the GM(1,3) model fitted to the 
restricted set of England and Wales female data, before the introduction of gamma 

parameters �  )]�)(()(exp[ 22)5()4()3()0(
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Figure 3.4 � Plots of standardised residuals for the GM(1,3) model fitted to the restricted data 
sets, before the introduction of gamma parameters � (i) CMI data, (ii) England and Wales 

male data, (iii) England and Wales female data 
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Figure 3.5 � Scatter diagrams of standardised residuals plotted against age for the GM(1,3) 
model fitted to the restricted data sets, before the introduction of gamma parameters � (i) CMI 

data, (ii) England and Wales male data, (iii) England and Wales female data 
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Figure 3.6 � Scatter diagrams of standardised residuals plotted against year of birth for the 
GM(1,3) model fitted to the restricted data sets, before the introduction of gamma parameters 

� (i) CMI data, (ii) England and Wales male data, (iii) England and Wales female data 
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Figure 3.7 � Estimates of the gamma parameters (or equivalently, A/Es for each year of birth) 
� (i) CMI data, (ii) England and Wales male data, (iii) England and Wales female data 
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Figure 3.8 � Plots of standardised residuals for the GM(1,3) model extended to incorporate a 
cohort effect � (i) CMI data, (ii) England and Wales male data, (iii) England and Wales female 

data 
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Figure 3.9 � Scatter diagrams of standardised residuals plotted against age for the GM(1,3) 
model extended to incorporate a cohort effect � (i) CMI data, (ii) England and Wales male 

data, (iii) England and Wales female data 
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Figure 3.10 � Scatter diagrams of standardised residuals plotted against year of birth for the 
GM(1,3) model extended to incorporate a cohort effect � (i) CMI data, (ii) England and Wales 

male data, (iii) England and Wales female data 
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4: Fitting time series models to the parameter estimates 
 

4.1 Introduction 
 

In this chapter, time series models are fitted to the estimated parameters of the GM(1,3) 
model, after introducing gamma parameters, for all three data sets. 
 
We needed to consider cohort effects to explain the shapes of some of the kappa parameter 
graphs in Chapter 2. None of the time series models we shall consider is capable of 
incorporating these cohort effects explicitly. Therefore, we shall need to give careful 
consideration to the impact of cohort effects on each of the kappa parameter graphs before 
fitting a time series model. 
 
It is to be expected that the parameter estimates of the time series models we fit will be 
different for the three data sets. If there is clear justification from the data, then it may also be 
appropriate to fit different models to different data sets. However, this should not be done 
without careful consideration as it might lead to inconsistencies between the future mortality 
projections for the different data sets, e.g. mortality for assured lives might become higher 
than for the general population in the later years of the projection. 
 
Ideally we would fit a multivariate time series model to all the kappa parameter graphs 
together. This was investigated but it was found that the cohort effects implicit in the kappa 
parameter graphs distorted the estimation of the parameters of the multivariate model. 
Therefore, we shall instead fit univariate time series models to each of the kappa parameter 
graphs individually, calculate the correlations between the resulting residuals and (in Chapter 
5) use these as the correlations between the innovations in future projections. We shall also 
fit a separate time series model to the gamma parameters. 
 
Appendix C contains the results from the theory of time series analysis that we shall use. 
However, we note here that a first-order autoregressive process, or AR(1) process, (Xt) is 
defined by: 
 

Xt = µ + α(Xt-1 � µ) + et, 
 

where the et are independent N(0,σ2) random variables and α, µ and σ2 are parameters to be 
estimated, with |α| < 1. Under such a process, the values of X tend to revert to the mean level 
µ, with the reversion being more rapid for small absolute values of α. If α > 0, then a value of 
X above µ tends to be followed by another value of X above µ and vice versa. If α < 0, then a 
value of X above µ tends to be followed by a value of X below µ and vice versa. 
 
A first-order moving average process, or MA(1) process, (Xt) is defined by: 
 

Xt = µ + et + βet-1, 
 

where the et are independent N(0,σ2) random variables and β, µ and σ2 are parameters to be 
estimated. If β > 0, then a value of Xt above µ suggests that Xt+1 will also be above µ, but 
subsequent values of X are equally likely to be above or below µ. If β < 0, then a value of Xt 
above µ suggests that Xt+1 will be below µ, but subsequent values of X are equally likely to be 
above or below µ. 
 
4.2 κ(0) parameters 
 
Figures 3.1(i), 3.2(i) and 3.3(i) show no clear signs of a trend over time in the κ(0) parameters, 
with the shapes of Figures 3.2(i) and 3.3(i) being driven mostly by cohort effects. In addition, 
the κ(0) parameters may be thought of as representing mortality from unnatural causes, and it 
may be reasonable to assume that rates of unnatural death remain broadly constant over 
time. Thus it is unlikely to be appropriate to fit a model incorporating a trend over time to the 
κ(0) parameters. 
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Figure 4.1 shows the sample autocorrelation functions, as defined in Section C.1, of the κ(0) 
parameters for the three data sets. All three graphs in Figure 4.1 start with a significant 
positive autocorrelation at lag 1, which then decays but remains positive for at least the next 
six lags. As explained in Section C.1, this is a characteristic feature of an AR(1) process. It 
appears that the κ(0) parameters are reverting to some mean level, µ. 
 
Table 4.1 shows the estimates of the parameters α, µ and σ2 when AR(1) processes are fitted 
to each of the κ(0) series. Figure 4.2 plots the resulting residuals, and Figure 4.3 plots their 
sample autocorrelation functions. 
 

Table 4.1 � Parameter estimates of the AR(1) processes fitted to the κ(0) series 
 

Data set α µ σ2 
CMI 0.7388 3.624 x 10-4 5.734 x 10-9 

E&W Male 0.9374 4.693 x 10-4 2.945 x 10-9 
E&W Female 0.9439 -1.738 x 10-4 6.798 x 10-9 

 
On inspection of Figure 4.2(i), for CMI data, it seems reasonable to model the residuals as 
independent N(0,σ2) random variables, where σ2 has been estimated as 5.734 x 10-9, and 
thus the AR(1) model seems reasonable. Figures 4.2(ii) and (iii), for England and Wales data, 
do show certain patterns in the residuals but they are in line with what we would expect given 
the known cohort effects. 
 
As per Section C.2, we should regard the autocorrelations shown in Figure 4.3 as statistically 
significant if their absolute value exceeds 2 / N1/2, where N is the number of years of data, so 
that N = 44 for the England and Wales data sets and 59 for the CMI data set. Thus 
autocorrelations exceeding 0.260 in absolute value for CMI data, and exceeding 0.302 in 
absolute value for England and Wales data, are statistically significant. These critical values 
are shown as blue dashed lines in Figure 4.3, as they are in all the autocorrelation graphs we 
shall show. Figure 4.3 shows a few autocorrelations outside the blue dashed lines for each 
data set but the lags where this occurs are different for each data set and Figure 4.3 does not 
suggest any key feature of the data which we have failed to model. Accordingly, we shall use 
the AR(1) model rather than introducing more complex models. 

 
4.3 κ(3) parameters 
 
Figures 3.1(ii), 3.2(ii) and 3.3(ii) all show a clear downward trend over time in the κ(3) 
parameters. We should therefore fit a time series model to the differences between the κ(3) 
parameters for successive years, rather than to the κ(3) parameters themselves. This will 
represent the general improvement in mortality over time. Figure 4.4 shows, for each data set, 
the difference between the κ(3) parameter for each year and the parameter for the previous 
year. Figure 4.5 shows the sample autocorrelation functions of these differences. 
 
Figure 4.5(i), for CMI data, and Figure 4.5(ii), for England and Wales male data, show 
significant negative autocorrelation at lag 1. The negative autocorrelation does not persist at 
higher lags. As explained in Section C.1, this is a characteristic feature of an MA(1) process. 
In Figure 4.5(iii), for England and Wales female data, the negative autocorrelation at lag 1 is 
not quite statistically significant, but it is reasonable on grounds of consistency with the other 
data sets to introduce a moving average parameter for England and Wales female data also. 
 
Table 4.2 shows the estimates of the parameters β, µ and σ2 when MA(1) processes are fitted 
to each of the series of κ(3) differences. Figure 4.6 plots the resulting residuals, and Figure 4.7 
plots their sample autocorrelation functions. 

 
Table 4.2 � Parameter estimates of the MA(1) processes fitted to the κ(3) differences 

 
Data set β µ σ2 

CMI -0.4041 -0.02066 0.001697 
E&W Male -0.2257 -0.01609 0.0007734 

E&W Female -0.1067 -0.01050 0.0008256 
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The model fitted here, i.e. an MA(1) model fitted to the differences, is generally referred to as 
an ARIMA(0,1,1) model in the literature on time series analysis. ARIMA stands for 
�autoregressive integrated moving average�. The 0 in (0,1,1) indicates that no autoregressive 
parameters have been introduced, the first 1 indicates that the time series has been 
differenced once and the second 1 indicates that one moving average parameter has been 
introduced. 

 
Figure 4.6 shows some evidence of the residuals being systematically positive until 1980, 
negative from 1980 to the early 1990s and positive thereafter, particularly for England and 
Wales data. This is a consequence of the 1925-45 cohort effect, as lives born in 1925-45 
have experienced particularly high mortality improvements compared with the previous 
generation and the mortality of these lives will be driven mainly by the κ(3) parameters from 
1980 to the early 1990s. However, after considering Figures 3.2(ii) and 3.3(ii), it was 
concluded that is still reasonable to fit a time series model to the κ(3) differences over the full 
range of years in the data. This is because these figures show a flattening of the κ(3) 
parameters after the early 1990s, as the 1925-45 cohort ages and their mortality is driven 
more by the κ(4) and κ(5) parameters. This effectively cancels out the steepening of the fall in 
the κ(3) parameters from 1980 to the early 1990s. 
 
Figure 4.7(i) suggests that the ARIMA(0,1,1) model fits the CMI data well, with no statistically 
significant autocorrelations of the residuals. For England and Wales data, Figures 4.7(ii) and 
(particularly) (iii) reveal one potential source of concern, namely the significant positive 
autocorrelations at lag 2. However, cohort effects appear to have caused the autocorrelations 
at the shorter lags in these graphs to be systematically positive. If we fitted a model that 
placed cohort effects on an equal footing with period effects, it seems likely that the 
autocorrelations at lag 2 would no longer be statistically significant. On balance, therefore, 
introducing additional complexity into the model for the England and Wales data sets to 
capture this feature would not appear to be warranted. Thus we shall use the ARIMA(0,1,1) 
model. 
 
It is of interest to consider what property of the underlying mortality rates the moving average 
parameter is reflecting. The negative moving average parameter is implying that high 
mortality in one year has a tendency to be followed by low mortality in the following year, and 
vice versa. In fact, if mortality is high in a particular year, then it is likely that some external 
factor driving mortality was adverse in that year, e.g. the year may have had a particularly 
harsh winter. In the following year, not only is it unlikely that this external factor will be equally 
adverse, but even if it is, mortality is unlikely to be as high because many of the lives who 
would otherwise have died in the second year died in the first year instead. 
 
4.4 κ(4) parameters 
 
We shall consider the most appropriate time series model for the κ(4) parameters for England 
and Wales male data first, then for England and Wales female data and finally for CMI data. 
 
Before 1980, the graph of κ(4) parameters for England and Wales male data, Figure 3.2(iii), 
remains relatively level around 0.105. After 1980, the graph is dominated by the peak in the 
early 1990s which is a consequence of the 1925-45 cohort effect. By the final years of the 
data set, the graph has returned to levels around 0.105. Due to the singular nature of the 
cohort effect, this suggests that it is reasonable to assume a long-term mean of 0.105 for the 
κ(4) parameters. 
 
If the κ(4) parameters move away from 0.105 as a result of future cohort effects, then it is likely 
that they will follow a similar pattern to that of Figure 3.2(iii), moving away over a period of  
10-15 years before returning to a level around 0.105 over the following 10-15 years. If we fit 
an AR(1) process with µ = 0.105 to the κ(4) parameters, then we will not be able to replicate 
this behaviour exactly as the time taken to return to a level around 0.105 will be random. 
However, for the purpose of quantifying the extent of uncertainty in future mortality rates, such 
a process is likely to be appropriate. 
 



 86

If we fit an AR(1) process to the κ(4) parameters, forcing µ to equal 0.105, then the estimated 
parameter α is 0.9678. It is to be expected that the estimated value of α is close to 1, as the 
cohort effect caused the κ(4) parameters to be away from 0.105 over an extended period, 
rather than to move away from 0.105 briefly and then return. 
 
For England and Wales female data, it seems likely that the long-term mean of the κ(4) 
parameters is approximately 0.09. This conclusion has been based mainly on the years since 
the early 1990s, once the lives born around 1915 who experience an adverse cohort effect 
have reached an age where they no longer have a significant impact on the κ(4) parameters. 
We see that, since the early 1990s, Figure 3.3(iii) has closely resembled a shifted-down 
version of Figure 3.2(iii). This suggests that, consistently with the treatment of England and 
Wales male data, we should use the lower end of the downward trend from the early 1990s to 
2005 as our estimate of the long-term mean of the κ(4) parameters. 

 
If we fit an AR(1) process to the estimated κ(4) parameters, forcing µ to equal 0.09, then the 
estimated parameter α is 0.9712. Again it is to be expected that the estimated value of α is 
close to 1. 

 
For CMI data, a first glance at Figure 3.1(iii) suggests that we should be fitting a time series 
model incorporating an upward trend to the κ(4) parameters. However, it does not seem likely 
that the κ(4) parameters will continue to increase indefinitely for assured lives but not for the 
general population, as this would eventually cause assured lives mortality to exceed 
population mortality at older ages. Therefore, instead of fitting a time series model 
incorporating an upward trend, we shall seek to estimate a long-term mean µ of the κ(4) 
parameters and fit an AR(1) process with this value of µ, in a similar way to that for England 
and Wales data. 
 
Although cohort effects are not as apparent in Figure 3.1(iii) as in Figures 3.2(iii) and 3.3(iii), it  
is still likely that the apparent trend in Figure 3.1(iii) is in fact mainly a consequence of cohort 
effects. We indicated in Section 2.8 that the 1925-45 cohort effect is likely to be the 
explanation for the rise in κ(4) parameters from 1980 to the early 1990s, and the overall trend 
of a rise in the κ(4) parameters is in fact heavily concentrated in this period. The more 
interesting question is why, in CMI data, the κ(4) parameters have shown no sign of falling 
since the early 1990s as in England and Wales data, but the κ(3) parameters have instead 
continued to fall at broadly the same rate as during the period when they were the main driver 
of the mortality of the 1925-45 cohort. 
 
As a difference has arisen between the behaviour of the parameter graphs for CMI data and 
for England and Wales data, there must have been a change in the characteristics of the 
assured lives population relative to the general population. The key change which suggests 
itself in this case is that UK life insurance companies began to write large volumes of 
mortgage-related endowment business when tax relief on premiums under qualifying life 
insurance contracts was introduced in 1979. Although this tax relief was abolished for new 
business from 1984, insurers continued to write mortgage-related endowment business in 
significant quantities until the early 1990s. The CMI does not publish assured lives mortality 
data separately for mortgage-related and non-mortgage-related business, but what we 
observe regarding the κ(3) and κ(4) parameters is consistent with mortgage-related business 
exhibiting lower mortality than non-mortgage-related business. This is because, as the 
mortgage endowment policyholders reach ages around 60, the κ(3) parameters can then be 
expected to fall. The κ(4) parameters will then tend to rise to maintain broadly the same level 
of mortality at older ages, by which the mortgage endowments have mostly matured. We also 
observe that the κ(0) parameters did not increase as much in the 1980s for CMI data as for 
England and Wales data, and this is consistent with mortgage endowment policyholders of 
working age experiencing low mortality. 
 
If the above is the correct explanation of why the κ(3) parameters have continued to fall 
steeply, and the κ(4) parameters have not fallen, since the early 1990s, then the phenomenon 
is likely to be temporary as most of the mortgage endowment business is due to mature within 
the next 5-10 years. It is therefore likely that the falls in the κ(3) parameters will slow down to a 
rate more in line with historical rates. The κ(4) parameters will then tend to decrease, so that 
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mortality in the early years of retirement continues to improve at a similar rate to that in the 
past. Thus we conclude that the κ(4) parameters are likely to fall back to the levels of the 
1960s and 1970s. We shall fit an AR(1) process to the estimated κ(4) parameters forcing µ to 
equal 0.1125, which is approximately equal to the mean value of the κ(4) parameters over the 
1960s and 1970s. 
 
We cannot estimate the parameter α of this AR(1) process by reference to the whole period 
1947-2005, as the estimation procedure will fail to take account of the fact that the κ(4) 
parameters can be expected to fall back to a level around 0.1125 after 2005. Neither is it 
likely to be appropriate to estimate α by reference only to the period 1947-1980, as this would 
not consider the possibility of the κ(4) parameters being away from 0.1125 for an extended 
period of time because of cohort effects. Instead we shall use the same value of α as for 
England and Wales males, 0.9678. 
 
Table 4.3 summarises the parameters of the AR(1) processes we have selected. It also 
shows the estimates of the error variances σ2. 
 

Table 4.3 � Parameter estimates of the AR(1) processes fitted to the κ(4) series 
 

Data set α µ σ2 
CMI 0.9678 0.1125 7.476 x 10-6 

E&W Male 0.9678 0.105 1.446 x 10-6 
E&W Female 0.9712 0.09 3.102 x 10-6 

 
Figure 4.8 shows the residuals resulting from fitting these AR(1) processes. The residuals for 
CMI data show no clear pattern. The shapes of the graphs for England and Wales data are 
generally in line with what we would expect given the known cohort effects, with the residuals 
tending to be positive over periods where cohort effects cause the κ(4) parameters to rise, and 
negative over periods where cohort effects cause the κ(4) parameters to fall. It seems unlikely 
that we would be able to eliminate the patterns remaining in these graphs without using a 
model placing cohort effects on an equal footing with period effects. 
 
Figure 4.9 shows the sample autocorrelation functions of the residuals in Figure 4.8. 
 
The CMI data show a significant negative autocorrelation at lag 1, which does not persist at 
subsequent lags, possibly suggesting a need to introduce a moving average parameter. The 
England and Wales data sets do not show similar effects. Introducing a (negative) moving 
average parameter for the CMI data only would improve the fit somewhat, but it would make 
the model for CMI data inconsistent with those for England and Wales data. It is also unlikely 
to have a significant impact on future projections as, rather than implying a different overall 
trend in mortality over time, it simply means that mortality increasing rapidly with age in one 
year tends to be followed by mortality increasing more slowly with age in the following year 
and vice versa. We shall not introduce such a moving average parameter here. 
 
The England and Wales male data show significant positive autocorrelations for the first few 
lags, but this is more likely to be related to the systematic patterns in the residuals arising 
from the cohort effect rather than suggesting a need to introduce a further autoregressive 
parameter. 
 
4.5 κ(5) parameters 
 
The graphs of κ(5) parameters in Figures 3.1(iv), 3.2(iv) and 3.3(iv) show a rapid increase in 
the κ(5) parameters since the early 1990s, particularly for England and Wales data, as a 
consequence of the 1925-45 cohort effect. There is strong reason to believe that this increase 
will reverse out over the next 10-15 years, as lives in the 1925-45 cohort approach the upper 
age limit of the data sets. It is therefore necessary to fit a model under which the κ(5) 
parameters revert to a long-term mean, whose estimation should not be biased by cohort 
effects. This mean reversion should occur over a period of 10-15 years rather than a single 
year, suggesting the use of an AR(1) rather than an MA(1) model. 
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Inspection of Figures 3.1(iv) and 3.2(iv) suggests -6 × 10-4 as an appropriate long-term mean 
for the κ(5) parameters, based on the period up to the early 1990s. We shall therefore fit AR(1) 
models to the κ(5) parameters for both CMI data and England and Wales male data, forcing 
the long-term mean µ to equal -6 × 10-4. 
 
We cannot estimate the autoregressive parameter α directly by reference to the values in 
Figures 3.1(iv) and 3.2(iv), as this will not allow for the fact that the κ(5) parameters can be 
expected to fall back to a level around -6 × 10-4 after 2005. However, a cohort effect would be 
expected to cause the κ(5) parameters to deviate from their long-term mean over a similar 
number of years to that for the κ(4) parameters. We shall therefore use the same value of α as 
for the κ(4) parameters, α = 0.9678. 
 
For England and Wales female data, it seems likely that the long-term mean of the κ(5) 
parameters is approximately 1 × 10-4, which is approximately equal to the minimum value the 
κ(5) parameters reach in the early 1990s. It is not immediately obvious that the combined 
impact on the κ(5) parameters of the adverse cohort effect centred on 1915 and the favourable 
cohort effect centred on 1931 will be broadly neutral over this period. However, the fall in κ(4) 
parameters since the early 1990s, which should not be significantly affected by the adverse 
cohort effect centred on 1915, is approximately 90% of that for the male data, and this 
suggests that, in the absence of the adverse cohort effect, the rise in κ(5) parameters since the 
early 1990s due to the cohort effect centred on 1931 would also be approximately 90% of that 
for male data, which is in fact close to the rise we observe. 
 
Again the parameter α cannot be estimated directly from the values in Figure 3.3(iv), so we 
shall use the same value as for the κ(4) parameters, α = 0.9712. 
 
Table 4.4 summarises the parameters of the AR(1) processes we have selected. It also 
shows the estimates of the error variances σ2. 
 

Table 4.4 � Parameter estimates of the AR(1) processes fitted to the κ(5) series 
 

Data set α  µ σ2 
CMI 0.9678 -6 x 10-4 1.291 x 10-8 

E&W Male 0.9678 -6 x 10-4 3.742 x 10-9 
E&W Female 0.9712 1 x 10-4 2.852 x 10-9 

 
Figure 4.10 shows the residuals arising from fitting these AR(1) processes. The residuals for 
CMI data show no clear pattern. The patterns that can be seen for England and Wales data 
can largely be explained by the known cohort effects, so it seems unlikely that we would be 
able to eliminate these patterns without using a model placing cohort effects on an equal 
footing with period effects. 
 
Figure 4.11 contains graphs of the sample autocorrelation functions of the residuals in Figure 
4.10. For CMI data, there is a similar issue to that for the κ(4) parameters in that there is a 
significant negative autocorrelation at lag 1, but the additional complexity of introducing a 
moving average parameter to accommodate this was again not considered to be justified. For 
the England and Wales male data, Figure 4.11(ii) does not suggest any justification for 
introducing additional parameters. Figure 4.11(iii), for England and Wales female data, shows 
a significant positive autocorrelation at lag 2, but similarly to Figure 4.7(iii), it is doubtful 
whether this autocorrelation would still be significant if a model were fitted that placed cohort 
effects on an equal footing with period effects, and so we shall not introduce additional 
complexity by attempting to model this feature. 
 
4.6 γ parameters (cohort parameters) 
 
The procedure we used to fit the model involved setting all the gamma parameters to 1 
initially, estimating the kappa parameters, and then estimating the gamma parameters as 
A/Es without changing the kappa parameter estimates. This procedure places a limit on the 
period for which the gamma parameters can be away from 1. For example, if there were any 
calendar year such that the gamma parameters were less than 1 for all years of birth that 
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were within the age range of the data in that year, then the kappa parameters for that year 
could not maximise the log-likelihood of the model without gamma parameters � it must be 
possible to increase the log-likelihood by increasing both the κ(0) and κ(3) parameters for that 
year in such a way that all the fitted forces of mortality for that year increase by a 
multiplicative constant. Therefore, we should represent the gamma parameters by a time 
series model with the property of mean reversion to 1. 
 
We commented in Section 3.3 that the estimates of the gamma parameters for the last few 
years of birth in the restricted set of CMI data are volatile, and are likely to be unreliable 
because they are based on small numbers of deaths. For example, if the mean number of 
deaths in a particular year of birth is 1,000, then the variance is also 1,000 because the 
variance of a Poisson distribution is equal to its mean. Thus the standard deviation is 
(1,000)1/2 = 31.6, or 3.16% of the mean. This corresponds to a difference of 0.0316 in the 
estimated gamma parameter value, so random fluctuations potentially distort Figure 3.7 
significantly in years of birth where there are fewer than 1,000 deaths. We shall therefore 
regard estimates of the gamma parameters as unreliable if they are based on fewer than 
1,000 deaths. 
 
In the CMI data, there are fewer than 1,000 deaths for each year of birth from 1956 onwards. 
(There are also fewer than 1,000 deaths for the year of birth 1861 but this should not have 
material implications for the reliability of future projections.) In the England and Wales data for 
both males and females, there are over 1,000 deaths for each year of birth, with the one 
exception of females born in 1971, where the number of deaths is 958 which is only 
marginally less than 1,000. Accordingly, we shall fit a time series model to the gamma 
parameters for CMI data based on years of birth 1861-1955 only. We shall take the gamma 
parameters for subsequent years of birth from projections, ignoring the values calculated from 
the data. We shall fit time series models to the gamma parameters for England and Wales 
data based on the full range of years of birth in the restricted data sets, 1877-1971. 
 
We should like to ensure that there is no possibility, however remote, of the gamma 
parameters becoming negative in future projections, so that the forces of mortality do not 
become negative in future projections. We shall therefore fit a time series model to the 
logarithms of the gamma parameters rather than to the gamma parameters themselves. 
These logarithms are illustrated in Figure 4.12. We then need a time series model with the 
property of mean reversion to 0 rather than to 1. As we have observed cohort effects that 
move the gamma parameters away from 1 over a period of several years rather than for just a 
single year, we shall use an AR(1) model rather than an MA(1) model. 
 
We should consider the treatment of the 1919-20 discontinuity relating to the influenza 
epidemic. We have chosen to retain it in the data on the grounds that similar epidemics may 
occur in the future. An alternative approach, which we do not pursue here but which 
constitutes a possible area for future research, would be to exclude the discontinuity from the 
data used to fit the main part of the model but to extend the model to incorporate shocks 
either in a particular year or for lives born in a particular year. 
 
Table 4.5 shows the estimates of the parameters α and σ2 when AR(1) processes with µ = 0 
are fitted to each of the logged γ series. Figure 4.13 plots the resulting residuals, and Figure 
4.14 plots their sample autocorrelation functions. 

 
Table 4.5 � Parameter estimates of the AR(1) processes fitted to the logged γ series 

 
Data set α µ σ2 

CMI 0.4182 0 8.008 x 10-4 

E&W Male 0.4378 0 5.115 x 10-4 
E&W Female 0.4923 0 5.118 x 10-4 

 
We are now fitting a time series model to 95 rather than 59 data items for CMI data, and to 95 
rather than 44 data items for England and Wales data. The threshold absolute value above 
which we should regard autocorrelations in Figure 4.14 as statistically significant has 
therefore decreased to 2 / (95)1/2 = 0.205, for both CMI data and England and Wales data. 
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Figure 4.14 shows that this threshold is exceeded at lag 3 only for CMI data and for England 
and Wales female data, and is not exceeded at any lag for England and Wales male data. 
Overall, Figures 4.13 and 4.14 do not suggest any need to add further parameters to the 
AR(1) model. 
 
4.7 Correlations 
 
We expect there to be significant correlations between the residuals of the time series models 
we have fitted to the different kappa parameter graphs. Cohort effects are an important 
source of such correlations � for example, the 1925-45 cohort effect caused a decrease in the 
κ(3) parameters together with an increase in the κ(4) parameters from 1980 to the early 1990s. 
It is necessary to allow for these correlations in projecting future parameter values and thus 
projecting future mortality rates. Tables 4.6, 4.7 and 4.8 show the sample correlation 
coefficients between the residuals of the different kappa time series models, for CMI data, 
England and Wales male data and England and Wales female data respectively. As 
mentioned in Section 4.1, these correlations will be assumed for the innovations in the future 
projections in Chapter 5. 
 
Table 4.6 � Sample correlation coefficients between the residuals of the time series models 

fitted to the kappa parameter graphs for CMI data 
 

 κ(0) κ(3) κ(4) κ(5) 
κ(0) 1    
κ(3) -0.5187 1   
κ(4) 0.6306 -0.5852 1  
κ(5) -0.4404 0.5804 -0.6771 1 

 
Table 4.7 � Sample correlation coefficients between the residuals of the time series models 

fitted to the kappa parameter graphs for England and Wales male data 
 

 κ(0) κ(3) κ(4) κ(5) 
κ(0) 1    
κ(3) -0.6744 1   
κ(4) 0.6798 -0.3946 1  
κ(5) -0.7421 0.5879 -0.6349 1 

 
Table 4.8 � Sample correlation coefficients between the residuals of the time series models 

fitted to the kappa parameter graphs for England and Wales female data 
 

 κ(0) κ(3) κ(4) κ(5) 
κ(0) 1    
κ(3) -0.7427 1   
κ(4) 0.8835 -0.5362 1  
κ(5) -0.7999 0.7033 -0.7204 1 

 
We shall not consider the possibility of cross-correlation between the kappa residuals and the 
gamma residuals here. Ideally, all period effects should be captured in the kappa parameters 
and all cohort effects should be captured in the gamma parameters. In this situation, it 
becomes clear that it is appropriate to assume no cross-correlation. 
 
4.8 Conclusion 
 
Univariate time series models have been fitted to the kappa and gamma parameter graphs 
obtained from fitting the GM(1,3) model, after extension to incorporate a cohort effect, to all 
three data sets. The models were AR(1) models for the κ(0), κ(4) and κ(5) parameters, an 
ARIMA(0,1,1) model, incorporating the downward trend, for the κ(3) parameters and an AR(1) 
model fitted to the logarithms of the γ parameters. For the κ(4), κ(5), and γ parameters, the form 
and parameters of the time series models selected depended fundamentally on a subjective 
consideration of how cohort effects influenced these parameter graphs, and it is likely that 
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very different models and/or parameter estimates would have been obtained by naïve 
application of standard fitting techniques. The possibility of fitting a multivariate time series 
model to all the kappa parameter graphs together was considered, but was not pursued 
because, in the multivariate case, it was not feasible to give subjective consideration to the 
impact of cohort effects on the parameter values and naïve application of standard fitting 
techniques was found not to produce reasonable results. Instead the correlations between the 
residuals of the time series models for the different kappa parameters were calculated, and 
these will be used as the correlations between the future innovations in Chapter 5. 
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Figure 4.1 � Sample autocorrelation functions of the κ(0) parameters � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.2 � Residuals of the AR(1) processes fitted to the κ(0) series � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.3 � Sample autocorrelation functions of the residuals in Figure 4.2 � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.4 � Differences between the κ(3) parameters for successive years � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.5 � Sample autocorrelation functions of the differences in Figure 4.4 � (i) CMI data, 
(ii) England and Wales male data, (iii) England and Wales female data 
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Figure 4.6 � Residuals of the MA(1) processes fitted to the differences in Figure 4.4 � (i) CMI 
data, (ii) England and Wales male data, (iii) England and Wales female data 
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Figure 4.7 � Sample autocorrelation functions of the residuals in Figure 4.6 � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.8 � Residuals of the AR(1) processes fitted to the κ(4) series � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.9 � Sample autocorrelation functions of the residuals in Figure 4.8 � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.10 � Residuals of the AR(1) processes fitted to the κ(5) series � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.11 � Sample autocorrelation functions of the residuals in Figure 4.10 � (i) CMI data, 
(ii) England and Wales male data, (iii) England and Wales female data 
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Figure 4.12 � Logarithms of the γ parameters � (i) CMI data, (ii) England and Wales male 
data, (iii) England and Wales female data 
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Figure 4.13 � Residuals of the AR(1) processes fitted to the logged γ series � (i) CMI data, (ii) 
England and Wales male data, (iii) England and Wales female data 
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Figure 4.14 � Sample autocorrelation functions of the residuals in Figure 4.13 � (i) CMI data, 
(ii) England and Wales male data, (iii) England and Wales female data 
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5: Forecasting and life insurance applications 
 
5.1 Introduction 
 
For each of the data sets, under the time series models fitted in Chapter 4, 500 sets of 
sample paths of the future parameter values were generated. The same 500 sets of future 
normal variates were used for all three data sets. The correlations assumed between the 
different kappa innovations were those in Tables 4.6-4.8. 
 
Section 5.2 shows prediction intervals to illustrate the extent of uncertainty in the future 
parameter values. We do not base these prediction intervals on the simulation output, as 
closed formulae exist for them. 
 
The relationship between the uncertainty in the future parameter values and the uncertainty in 
projected forces of mortality is relatively complex because of the significant correlations 
between the different kappa parameter series. We therefore show separate prediction 
intervals for projected forces of mortality in Section 5.3. These prediction intervals are based 
on the simulation output. Section 5.3 also compares these projected forces of mortality with a 
number of previously published projections. 
 
In order to use these forces of mortality to calculate annuity values, it is necessary to 
extrapolate the mortality curves to ages above the highest age in the data, i.e. above 90 for 
CMI data and 89 for England and Wales data. We identify two methods that might be 
considered appropriate for extrapolating the mortality curve for 2005 (the latest year in the 
data). These methods are, however, unlikely to be appropriate for extrapolating projected 
mortality curves in future years, and so a separate method is required for determining future 
improvements at ages above the highest age in the data. Two possible methods are 
considered for this as well.  
 
Section 5.5 uses the projected forces of mortality to calculate immediate and deferred annuity 
values for lives at different ages in 2005. These annuity values are compared with values 
from previously published projections. 
 
Section 5.6 applies the projections to calculate risk-based capital requirements for the same 
immediate and deferred annuities as in Section 5.5, under the Individual Capital Assessment 
(ICA) regime of the UK insurance regulator, the Financial Services Authority (FSA). The 
capital requirements calculated are found to be significantly lower than those given by a �rule 
of thumb� widely used within the UK life insurance industry, and the implications of this are 
discussed. Section 5.7 concludes. 
 
5.2 Prediction intervals for the future parameter values 

 
Figures 5.1-5.5 show 95% prediction intervals for the projected parameter values, based on 
the 2.5th and 97.5th percentiles of the distributions of those values. Both the kappa (period) 
and gamma (cohort) parameters are shown. This gives the range within which a particular 
parameter for a particular future year lies under 95% of scenarios. As stated in Section 5.1, 
these prediction intervals were calculated analytically rather than being based on the 
simulation output. Section C.3 details the formulae used. 
 
The following observations can be made from Figures 5.1-5.5: 
 
� In Figures 5.1, 5.4 and 5.5, the prediction intervals broadly correspond to the range of 

values that the κ(0), κ(5) and γ parameters (respectively) have exhibited in the past. 
This is because we have fitted a time series model not incorporating a trend to these 
parameters. 

 
� In Figure 5.3(i), for CMI data, the prediction interval broadly corresponds to the range 

of values the κ(4) parameter has taken in the past. In Figures 5.3(ii), for England and 
Wales male data, and 5.3(iii), for England and Wales female data, the prediction 
intervals are biased towards the lower end of the range of past values. For both the 
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England and Wales data sets, we argued in Section 4.4 that future values of this 
parameter were likely to be around the lower end of the range of past values, and 
fitted an AR(1) model with a value of µ reflecting this. 

 
� In Figure 5.2, relating to the κ(3) parameters, for which we have fitted a time series 

model incorporating a downward trend, the prediction intervals show a continuation of 
this trend. Although the long-term average annual rate of this trend is fixed, being 
equal to the parameter µ of the MA(1) process fitted to the κ(3) parameters, there is 
significant uncertainty in the actual rate of the trend realised over the projection 
period. 

 
� The prediction intervals are, in most cases, widest for CMI data and narrowest for 

England and Wales male data, consistently with the relative values of the estimated 
innovation variances σ2. It is likely that the relatively small volume of data in the CMI 
data set has given rise to volatility in the parameter estimates for successive calendar 
years and years of birth, resulting in an increase in the estimated innovation 
variances. For England and Wales female data, the existence of two significant 
cohort effects, one favourable and one adverse, which are not being modelled 
explicitly leads to more variation in the parameter values being reflected in the 
innovation terms than for England and Wales male data. 

 
� For the parameters other than the κ(3) parameters, the future width of the prediction 

intervals converges relatively quickly over time to a limiting value. For the κ(3) 
parameters, however, the prediction intervals continue to widen over time, and their 
width would in fact increase without limit if the projections were extended indefinitely. 
In other words, under the model we have fitted, the uncertainty about the overall level 
of mortality increases the further into the future projections are made, but the 
uncertainty about the shape of the mortality curve far into the future is not very much 
greater than in the near future. 

 
It is important to note that the boundaries of the prediction intervals shown in Figures 5.1-5.5 
are not sample paths. A typical sample path will have high parameter values in some future 
years and low parameter values in others, and in addition, as a result of the correlations 
between the different kappa innovations, a typical sample path will have high values of some 
kappa parameters and low values of others. Consequently, much less than 5% of sample 
paths will be as extreme, in terms of financial impact, as the boundaries of the prediction 
intervals. 
 
5.3 Prediction intervals for projected forces of mortality 
 
Figure 5.6 extends the contour plots of the logarithm of the force of mortality in Figure 1.2 to 
future years, using a deterministic projection with all the future innovation terms set to zero. 
The fact that the bands of colour in the graphs continue along a broadly linear path indicates 
that we are forecasting a broadly constant future percentage improvement rate in mortality. 
 
Figures 5.7-5.9 show 95% prediction intervals for future forces of mortality at specific ages, 
for all three data sets, based on the 2.5th and 97.5th percentiles. Unlike the prediction intervals 
for the future parameter values calculated in Section 5.2, these prediction intervals are based 
on the simulation output. 
 
Superimposed on Figures 5.7-5.9 are the future forces of mortality given by a number of 
previously published projections. These projections were all obtained from version 1.0 of the 
�library� of mortality projections issued by the CMI in 2007. They were applied to the 2005 
mortality curves fitted in this thesis, before the introduction of gamma parameters, and the 
gamma parameter for the appropriate year of birth was then applied to the resulting force of 
mortality, taking the gamma parameter from a deterministic projection of the time series 
model fitted in this thesis with all the future innovation terms set to zero if the year of birth was 
after 1955 for CMI data or 1971 for England and Wales data. Further details of the previously 
published projections are given below. 
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For CMI data, two of the three previously published projections we consider are the �Medium 
Cohort� and �Long Cohort� projections first proposed in CMI (2002). These projections were 
issued by the CMI after the favourable cohort effect centred on 1926 had first been observed 
in CMI data. This cohort effect was not allowed for in the projection originally published with 
the �92� series of mortality tables in CMI (1999). The Medium Cohort and Long Cohort 
projections assume higher mortality improvement rates compared with the previous 
generation than the projection in CMI (1999) for lives born between 1910 and 1942 inclusive. 
Between 1992 (the base year of the �92� series mortality tables) and 2000, the higher 
improvement rates apply to the whole of the range of years of birth from 1910 to 1942, but 
after 2000, the range of years of birth where they apply reduces linearly, reaching zero in 
2020 for the Medium Cohort projection and in 2040 for the Long Cohort projection. The range 
continues to be centred on 1926. 
 
Baxter (2007) argues that the future increases in period life expectancy implied by the CMI 
projections are too slow compared with what has been observed in the England and Wales 
population, a separate issue from the cohort effect. Baxter proposes applying an underpin to 
the improvement rate across all ages and all future years. Thus the third previously published 
projection we consider for CMI data is the Medium Cohort projection with an underpin of 1% 
p.a. applied to the improvement rate. 
 
The previously published projections we consider for England and Wales data, for both males 
and females, are those underlying the population projections produced by the Government 
Actuary�s Department (GAD) on the basis of data to 2004 (GAD, 2006). Responsibility for 
producing the official UK population projections has since been transferred to the Office for 
National Statistics (ONS). A �Principal� projection, a �High Life Expectancy� (HLE) variant and 
a �Low Life Expectancy� (LLE) variant were produced. The male projections relate to England, 
Wales and Northern Ireland, while the female projections relate to the whole of the UK. 
 
The key points to be noted from Figures 5.7-5.9 are as follows: 
 
� For both the male data sets, the model of this thesis predicts higher future mortality 

improvements, in percentage terms, at older ages than at younger ages. For England 
and Wales female data, the long-term mortality improvements predicted are broadly 
independent of age, but faster at the very youngest ages as a result of the negative 
κ(0) parameters. 

 
� For CMI data, the improvements given by the previously published projections are the 

same at age 30 as at age 50, as the previously published projections as implemented 
in the �library� are the same below age 60 as at age 60. Nevertheless, it is clear that 
the previously published projections give higher mortality improvements than the 
model of this thesis in the early years of the projection at younger ages, but that this 
is no longer the case in the later years of the projection, except in the case of age 30 
where a 1% underpin is applied to the improvement rate from the previously 
published projection. 

 
� For lives aged 70 in CMI data, the three previously published projections are broadly 

in line with the central projection from the model of this thesis in the early years of the 
projections. This also applies to the Long Cohort projection, although not to the 
Medium Cohort or Medium Cohort subject to a 1% underpin, for lives aged 90. 
However, the Medium Cohort and Long Cohort projections only exhibit higher 
improvements than the projection in CMI (1999) for one particular generation, so it is 
to be expected that for subsequent generations, these projections will show lower 
improvements than the model of this thesis. This can be seen in Figure 5.7(iii) and 
(iv). Imposing a 1% underpin on the improvement rate is not sufficient to close this 
gap, because the model of this thesis predicts an improvement rate greater than 1% 
p.a. 

 
� The curves representing both the model of this thesis and the previously published 

projections become smoother when the year of birth being represented passes 1955 
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for CMI data or 1971 for England and Wales data. This is because the applicable 
gamma parameters then begin to come from a projection rather than from the data. 

 
� For England and Wales data, all the curves representing the GAD projections 

eventually become straight lines, with the lines being horizontal for the LLE 
projections, downward-sloping for the HLE projections and downward-sloping with 
half the HLE slope for the Principal projections. This is because the GAD projections 
have the property that after 2029, mortality improves at a constant rate across all 
ages and all calendar years, the constant rate being 0% p.a. for the LLE projections, 
1% p.a. for the Principal projections and 2% p.a. for the HLE projections. All the 
curves representing the central projections from the model of this thesis, except those 
at age 30, eventually become close to straight lines, which are reasonably close to 
being parallel to the green lines, signifying a long-term improvement rate of 
approximately 1% p.a. For males aged 70 and 90, the long-term improvement rate is 
slightly faster than this. 

 
� The 2.5th and 97.5th percentile curves from the model of this thesis are less smooth 

than the median curves. This can be attributed to sampling error, which typically has 
more effect on the estimation of the more extreme percentiles of a distribution for a 
given sample size. 

 
� The 2.5th percentile curve for England and Wales females aged 30 falls without limit 

in the late 2030s. This is because, by this point, the force of mortality has become 
negative in more than 2.5% of scenarios. The structure of the model of this thesis 
does not impose any theoretical reason why the force of mortality must be positive, 
and it is the negative values of the κ(0) parameters for females which make it a 
practical possibility that the force of mortality may become negative at the youngest 
ages far into the future. It is unlikely that these negative forces of mortality are a 
major barrier to the practical applicability of the model. For assurance business, the 
scenario where mortality falls to zero is unlikely to be of much interest as it is 
favourable for the insurer. For deferred annuity business, as mortality rates are so low 
around age 30, the value of a deferred annuity is unlikely to be significantly 
understated as a result of underestimating mortality at these ages. The business 
affected will, in any case, not come into force for some years. 

 
5.4 Ages above the highest age in the data 
 
In order to use these projections to calculate annuity values, it was necessary to calculate 
extrapolated mortality rates at ages above the highest age in the data. For the 2005 mortality 
curve, before the introduction of gamma parameters, the simplest approach is to perform this 
extrapolation log-linearly, with the slope and intercept of the line set so that the logarithm of 
the force of mortality is a differentiable function of age at the highest age of the data set. 
Specifically, let a be the highest age of the data set, so that a = 90 for CMI data and a = 89 for 
England and Wales data. It is assumed that the force of mortality in 2005 at ages x > a, 
before the introduction of gamma parameters, is: 
 

( )][exp0
2005,

0
2005, axax −= λµµ , 

 
where λ is calculated so as to make 0

2005,log xµ  a differentiable function of x at x = a. We find 
that: 
 

0
2005,

22)5(
2005

)4(
2005

)3(
2005

)5(
2005

)4(
2005 )]�)(()(exp[)](2[

a

xxaxaxa
µ

σκκκκκλ −−+−+−+
= . 

 
This extrapolation method, which we shall refer to as the �log-linear extrapolation method�, will 
be used in most of the applications in this chapter. Section A.3.6 of LifeMetrics (2007) 
suggests an alternative extrapolation method which we shall also investigate for comparison. 
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In this method, the 2005 force of mortality at ages above a, before the introduction of gamma 
parameters, is assumed to be a cubic polynomial function of age, with coefficients determined 
by the following four constraints. The log-linear extrapolation method satisfies the first two of 
these constraints but not (in general) the last two. 
 
� The force of mortality is a continuous function of age x at x = a. 
 
� The derivative of the force of mortality is a continuous function of age x at x = a. 
 
� The force of mortality at age 119 is that corresponding to an initial mortality rate of 
 0.6, i.e. �log (1 � 0.6). 
 
� The derivative of the force of mortality at age 119 is zero. 
 
In this extrapolation method, all remaining lives are assumed to die just before their 120th 
birthday. 
 
Figures 5.10 and 5.11 respectively show the extrapolations that would have been obtained if 
the log-linear and the LifeMetrics extrapolation method (respectively) had been applied in the 
past. Unlike Figure 5.6, the mortality shown in the region of the data in these graphs is the 
fitted mortality, before introducing gamma parameters, rather than the crude mortality. 
 
The conclusion to be drawn from Figures 5.10 and 5.11 is that both extrapolation methods are 
potentially appropriate for extrapolating the 2005 mortality curve to ages above a but, for 
different reasons in each case, neither method is likely to be appropriate for extrapolating 
projected future mortality curves. In the case of the log-linear extrapolation method, there is 
some evidence of the historical extrapolated mortality curves being unstable from year to 
year, which is not a desirable feature to incorporate into a projection. This instability arises 
from the fact that small differences in mortality close to age a tend to be magnified by the 
extrapolation. In the case of the LifeMetrics extrapolation method, the method assumes that 
no improvements occur at age 119, which is an extreme assumption. Furthermore, even if 
this assumption is considered appropriate, then it is still an unnecessarily complex procedure 
to carry out an extrapolation using the LifeMetrics method for each future year in each 
scenario of a stochastic projection � it would be simpler to use the �low improvement 
assumption� described below. Accordingly we shall not use either the log-linear or the 
LifeMetrics extrapolation method to extrapolate projected future mortality curves. We shall 
instead consider two possible assumptions as to how this extrapolation should be carried out, 
to demonstrate a range of potential outcomes: 
 
� Mortality improvements after 2005 at ages above a, before the introduction of gamma 

parameters, occur at the same percentage rate as at age a in the same calendar 
year, i.e. for x > a and t > 2005: 
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 This assumption will be referred to as the 'high improvement assumption'. 
 
� Mortality improvements after 2005 at ages close to and above a, before the 

introduction of gamma parameters, occur at a similar rate to those at age a. There 
are no mortality improvements after 2005 at age 120, before the introduction of 
gamma parameters. Improvement rates at ages between a and 120 are derived by 
linear interpolation. In other words, for a < x ≤ 120 and t > 2005: 
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 This assumption will be referred to as the 'low improvement assumption'. 
 
The high improvement assumption produces lower projected forces of mortality at ages above 
a, and hence higher annuity values, than the low improvement assumption. The high 
improvement assumption might be considered appropriate if prudent annuity values are 
required and the low improvement assumption might be considered appropriate if best 
estimate annuity values are required. 
 
Under the log-linear extrapolation method, no fixed limiting age was used at which all 
remaining lives were assumed to die. In practice the calculations of annuity values in Section 
5.5 could only be performed up to a finite age, but it was verified in each case that allowing for 
the possibility of survival beyond that age would affect the calculated annuity value by less 
than 10-3. In the case of the low improvement assumption, it was found in all cases that it was 
sufficient at this level of accuracy to consider only ages up to 120, so that there was no need 
to define a formula for the force of mortality at ages over 120 under the low improvement 
assumption. 
 
5.5 Annuity values 
 
Annuity values under each of the 500 scenarios were calculated for lives who had just 
attained each of the age labels 35, 45, 55, 65 and 75 at the end of 2005, based on all three 
data sets, under both the low and the high improvement assumptions. As a result of the age 
definitions used, i.e. age nearest birthday for CMI data and age last birthday for England and 
Wales data, this means that the exact ages of the lives at the end of 2005 were 
34.5,44.5,�,74.5 for CMI data and 35,45,�,75 for England and Wales data, but for simplicity 
we shall refer to the ages only as 35,45,�,75 in 2005 in what follows. The annuities for lives 
aged 35, 45 and 55 in 2005 were deferred annuities payable from age label 65, i.e. from an 
exact age of 64.5 for CMI data and 65 for England and Wales data, and the annuities for lives 
aged 65 and 75 in 2005 were immediate annuities. The log-linear extrapolation method was 
used. A deterministic interest rate of 4.5% p.a. was used, and the annuities were assumed to 
be level single life annuities of 1 p.a. payable annually in advance. Thus the annuity value 
under the kth scenario was calculated as: 
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is the proportion of lives having just attained the age label x at the end of 2005 who survive 
for a further i years, v = 1 / 1.045, }65,max{0 xx =  and the superscript k represents the kth 
scenario. 
 
For CMI data, for lives aged 35 and 45 in 2005, the year of birth is outside the range where 
we identified our estimates of the gamma parameters as being reliable in Section 4.6. 
Accordingly, in these cases, instead of using the gamma parameter estimated from the data, 
it was taken from the stochastic projection. In all other cases, the gamma parameter 
estimated from the data was used. 
 
Tables 5.2-5.14 show the mean, standard deviation and some key percentiles of the empirical 
distributions of the annuity values. Although not all the figures in these tables will be referred 
to in what follows, the same information is shown in all the tables for consistency. Table 5.1 
shows which data set, which improvement assumption (high or low) and which extrapolation 
method were used in each of the tables 5.2-5.14. Table 5.1 also shows that, for one of the 12 
possible combinations of data set, improvement assumption and extrapolation method, a 
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table was calculated using 5,000 scenarios in addition to the 500-scenario table. This was to 
investigate the extent to which it would be desirable to add more scenarios. 
 
The following are the key observations from Tables 5.2-5.14: 
 
� For all five values of the age in 2005, under both the low and the high improvement 

assumptions and under both the log-linear and the LifeMetrics extrapolation methods, 
the mean annuity value for England and Wales male data is less than that for 
England and Wales female data, which is less than that for CMI data. This ordering of 
the mean annuity values indicates that the mortality differential between assured lives 
and the general population is more significant than that between males and females. 

 
� As the age in 2005 increases from x to x + 10, where x = 35, 45 or 55, i.e. before the 

annuities come into payment, we might expect the mean annuity value to increase by 
a factor close to (1.045)10, as we are discounting for 10 fewer years. The fact that 
lives aged x in 2005 benefit from 10 years of mortality improvements compared with 
lives aged x + 10 in 2005 would tend to make the factor less than this, whereas the 
possibility that a life aged x in 2005 will not survive to age x + 10 would tend to make 
the factor greater than this. In fact, we observe that the factor is less than (1.045)10 in 
all cases for an increase in age in 2005 from 35 to 45 or from 45 to 55. From 55 to 65, 
the factor is greater than (1.045)10 except for CMI data under the high improvement 
assumption. This seems reasonable as there is a relatively significant probability of a 
life aged 55 dying before age 65. Only in the CMI data set under the high 
improvement assumption, with relatively high improvements over the period of the 
data, a relatively small probability of death between ages 55 and 65 and an equally 
high percentage rate of improvement above age 90 as at age 90, do the 
improvements outweigh the possibility of death between ages 55 and 65 to give a 
value of the factor less than (1.045)10. 

 
� As we move from the low to the high improvement assumption, it is clear that the 

mean annuity value should increase. The standard deviation of the annuity values, as 
a percentage of the mean, also increases. The justification for this is that, under the 
low improvement assumption, the extent of uncertainty about future mortality falls 
after age 90 (89 for England and Wales data), reducing to zero at age 120, whereas 
under the high improvement assumption, the uncertainty about future mortality, in 
percentage terms, is the same above age 90 as at age 90. 

 
� The standard deviation of the annuity values, as a percentage of the mean, tends to 

be greater for younger than for older generations. This is not surprising in view of the 
remark made in Section 5.2 that under this model, uncertainty about the overall level 
of mortality increases significantly the further into the future projections are made 
(though uncertainty about the shape of the mortality curve does not increase 
significantly). The movement between ages 65 and 75 in 2005 is an exception to this. 
The increase in the standard deviation as a percentage of the mean from age 65 to 
75 in 2005 is a consequence of the removal of the first ten years� annuity payments, 
which have a relatively high probability of being made under all scenarios. 

 
� In terms of impact on the annuity values, the difference between the high and the low 

improvement assumptions is most significant (by far) for CMI data and least 
significant for England and Wales female data. As the CMI data set has generally 
lower base mortality and higher improvements than the England and Wales data sets, 
a higher proportion of lives survive to an age where the difference between the high 
and low improvement assumptions becomes relevant. The relatively high 
improvements also make the differences between projected mortality rates under the 
high and low improvement assumptions relatively large for CMI data. As the England 
and Wales female data set has generally lower improvements than the male data 
sets, the difference between projected mortality rates under the high and low 
improvement assumptions is less significant. 
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� Compared with the log-linear extrapolation method, the LifeMetrics extrapolation 
method produces lower mean annuity values for CMI data and higher mean annuity 
values for both England and Wales data sets. The differences are smaller than the 
differences between the low and high improvement assumptions. To gain an 
understanding of why the change of extrapolation method has the opposite effect for 
CMI data to that for England and Wales data, the graphs in Figure 5.12 were plotted. 
In these graphs, the solid curves, representing the extrapolated 2005 mortality curves 
under the log-linear extrapolation method, before the introduction of gamma 
parameters, are straight lines above age 90 (89 for England and Wales data). The 
dashed curves represent the LifeMetrics extrapolation method. We see that for the 
England and Wales data sets, mortality is lower under the LifeMetrics extrapolation 
method than under the log-linear extrapolation method at all ages above 89, which 
explains why the LifeMetrics annuity values are higher. For CMI data, the LifeMetrics 
extrapolation method produces slightly higher forces of mortality than the log-linear 
method from age 90 up to and including age 103, but significantly lower forces of 
mortality above age 103. The proportion of lives surviving to age 103 is sufficiently 
small that the higher forces of mortality from age 90 to age 103 outweigh the lower 
forces of mortality above age 103. Thus the LifeMetrics annuity values are lower than 
the log-linear annuity values. 

 
� A comparison of the mean and median annuity values in Table 5.8 with those in 

Table 5.5 reveals that if we are only interested in the mean or median annuity values, 
then there is little benefit to be gained from considering more than 500 scenarios as 
the sampling errors incurred as a result will generally be smaller than the impact of 
the choice of extrapolation method, and much smaller than the impact of the choice of 
improvement assumption. If we are interested in relatively extreme percentiles of the 
distributions of annuity values, then it becomes more important to use a large number 
of scenarios. In this thesis, although we shall make some reference to percentiles of 
the distributions, including some relatively extreme percentiles, we are primarily 
interested in mean annuity values, with Section 5.6 focusing on the distribution of the 
conditional mean annuity value after one year. 

 
The annuity values we have calculated will now be compared with values from the same 
previously published projections as referred to in Section 5.3. The values from the previously 
published projections are shown in Tables 5.15-5.17, and were calculated consistently with 
the values in Tables 5.2-5.8. In particular, the log-linear extrapolation method was used. We 
shall discuss the results in Tables 5.15-5.17 for ages 35-65 in 2005 first, and then discuss the 
results for age 75 in 2005. 
 
For lives aged 65 in 2005 in CMI data, the model of this thesis generally predicts higher 
annuity values, i.e. greater mortality improvements, than the previously published projections. 
The mean annuity value of 14.305 under the high improvement assumption is higher than all 
the values from the previously published projections, and the mean value of 14.160 under the 
low improvement assumption is only slightly lower than the value of 14.182 from the Long 
Cohort projection. Under the low improvement assumption, over 90% of the annuity values 
exceed that under the Medium Cohort projection, just under 90% exceed that under the 
Medium Cohort projection subject to a 1% underpin, and just under 50% exceed that under 
the Long Cohort projection. Under the high improvement assumption, just under 95% of the 
annuity values exceed that under the Medium Cohort projection, between 90% and 95% 
exceed that under the Medium Cohort projection subject to a 1% underpin and between 60% 
and 70% exceed that under the Long Cohort projection. 
 
For younger generations in CMI data, the annuity values from the previously published 
projections move further towards the lower end of the ranges of annuity values from the 
model of this thesis. In the extreme, for lives aged 35 in 2005, all but two of the 500 annuity 
values under the low improvement assumption exceed even that from the Long Cohort 
projection and all 500 annuity values under the high improvement assumption exceed even 
that from the Long Cohort projection. 
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For lives aged 65 in 2005 in England and Wales male data, the model of this thesis predicts 
generally lower annuity values, i.e. lower mortality improvements, than the GAD projections. 
The mean annuity values of 12.546 under the low improvement assumption and 12.591 under 
the high improvement assumption are lower than all the values from the GAD projections. The 
annuity values from the GAD projections do, however, lie within the ranges produced by the 
model of this thesis. Between 30% and 40% of the annuity values under the low improvement 
assumption, and between 40% and 50% under the high improvement assumption, exceed 
that from the LLE projection. Between 5% and 10% of the annuity values under the low 
improvement assumption, and between 10% and 20% of the annuity values under the high 
improvement assumption, exceed that from the Principal projection. Between 0.5% and 1% of 
the annuity values under the low improvement assumption, and just under 2.5% of the annuity 
values under the high improvement assumption, exceed that from the HLE projection. 
 
For younger generations in England and Wales male data, the model of this thesis gives 
annuity values more in line with those from the GAD projections. For lives aged 55 in 2005, 
the mean annuity value under both the low and high improvement assumptions lies between 
the values from the LLE and Principal projections. For lives aged 45 in 2005, the mean 
annuity value under the low improvement assumption lies between the values from the LLE 
and Principal projections, while the mean annuity value under the high improvement 
assumption lies between the values from the Principal and HLE projections. For lives aged 35 
in 2005, the mean annuity value under both the low and high improvement assumptions lies 
between the values from the Principal and HLE projections. However, one notable feature of 
Table 5.16 compared with Tables 5.4 and 5.5 is that the difference between the LLE, Principal 
and HLE projections is wider compared with the range of annuity values from the model of 
this thesis for younger generations than for older generations. The explanation for this is that 
the range of annuity values from the model of this thesis represents the potential impact of 
stochastic fluctuations, which have some tendency to average out over long periods, whereas 
the difference between the LLE, Principal and HLE projections represents the potential impact 
of parameter risk, i.e. the risk that parameters have been estimated incorrectly. As mentioned 
in Section 5.3, the LLE, Principal and HLE projections all assume that improvement rates tend 
towards a common value across all ages between 2004 (the base year of the projections) and 
2029, the difference between the projections being that this common value is set to zero for 
the LLE projection, 1% for the Principal projection and 2% for the HLE projection. It would be 
a valuable topic for further research to produce stochastic projections that allow for both 
stochastic fluctuations and parameter risk together. 
 
For England and Wales female data, the model of this thesis again generally predicts lower 
annuity values than the GAD projections. For females aged 65 in 2005, the mean annuity 
values under both the low and high improvement assumptions are less than the values from 
the GAD projections. This continues to be the case for females aged 55 in 2005, but for 
females aged 35 and 45 in 2005, the mean annuity value is between the LLE projection and 
the Principal projection. For females aged 65 in 2005, the annuity value from the Principal 
projection is between the 95th and 97.5th percentiles of the distribution of annuity values from 
the model of this thesis under the low improvement assumption and between the 90th and 95th 
percentiles under the high improvement assumption. As the age in 2005 decreases, the 
Principal annuity value moves rather closer to the centre of the distribution, being close to the 
80th percentile under the high improvement assumption, and between the 80th and 90th 
percentiles under the low improvement assumption, for age 35 in 2005. As for England and 
Wales male data, the difference between the LLE, Principal and HLE projections is wider 
compared with the range of annuity values from the model of this thesis for younger than for 
older generations. 
 
As the age in 2005 increases from 65 to 75, the trend for CMI data for the annuity values from 
the model of this thesis to decrease relative to those from the previously published projections 
with increasing age continues, but under the Medium Cohort projection and the Medium 
Cohort projection subject to a 1% underpin, it remains the case that the mean annuity value 
from the previously published projection is less than from the model of this thesis, under both 
the low and high improvement assumptions. For England and Wales data, however, the trend 
reverses and the annuity values from the previously published projections move closer to the 
centre of the distribution from the model of this thesis. Despite this, the values from the 
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previously published projections remain above the mean values from the model of this thesis, 
with the exception of the high improvement assumption compared with the LLE projection for 
male data. 

 
To gain a greater understanding of the reasons for the differences between Tables 5.2-5.7 
and Tables 5.15-5.17, Figures 5.13-5.24 were plotted. Figures 5.13-5.18 compare the 
distribution of the projected forces of mortality at each future age with the previously 
published projections, and are similar to Figures 5.7-5.9 except that we are following a 
particular generation as it ages rather than considering what mortality rate each generation 
experiences as it passes a particular age. Figures 5.19-5.24 compare the distribution of the 
projected number of survivors to each future age with the previously published projections. 
 
The following are the key observations from Figures 5.13-5.18: 
 
� For CMI data, most of the stochastic scenarios produce higher forces of mortality in 

the first year of the projection, for the ages considered, than the previously published 
projections. Thus the improvement rates from over 2006 predicted by the model of 
this thesis are generally lower than those shown in the previously published 
projections.  

 
� For England and Wales data, for both males and females, most of the stochastic 

scenarios again produce higher forces of mortality in the first year of the projection 
than the previously published projections, although there are exceptions. This again 
indicates generally lower 2006 improvement rates predicted by the model of this 
thesis than by the previously published projections. 

 
� All the graphs for CMI data show that the Medium Cohort projection, the Medium 

Cohort projection subject to a 1% underpin and the Long Cohort projection are 
identical below age 65. The reason for this is that by 2005, the range of years of birth 
for which the Medium Cohort projection is different from the projection in CMI (1999) 
has narrowed to 1914-1938, and the range of years of birth for which the Long Cohort 
projection is different has narrowed to 1912-1940. Lives born in 1940 are aged 65 in 
2005. In addition, for lives in the age range considered in 2005, the 1% underpin does 
not �bite� until after the lives have reached age 65. 

 
� For England and Wales data, for both males and females, the differences between 

the three GAD projections in the early years are smaller than the range of the 
stochastic scenarios. This is because the differences between the GAD projections 
relate to the long-term value improvement rates tend towards, whereas the range of 
the stochastic scenarios relates to random fluctuations. 

 
� For CMI data, for lives aged 35, 45 and 55 in 2005, most of the stochastic scenarios 

continue to produce higher forces of mortality than the previously published 
projections until the life passes age 60. In the model of this thesis, mortality at these 
younger ages is driven mainly by the κ(0) parameters, which are assumed to revert to 
a mean level, and so improvement rates are lower below age 60 than at age 60. 
However, in the previously published projections, as defined in the �library�, future 
mortality improvement rates below age 60 are assumed to be the same as at age 60. 

 
� For England and Wales data, for both males and females, most of the scenarios 

produce higher forces of mortality over the age range 60-80 than the Principal GAD 
projection. This effect is generally stronger for females than for males. The 
differences tend to be larger for higher values of the age in 2005, although the 
reverse is the case as the age in 2005 increases from 65 to 75. 

 
� For CMI data, as the age approaches 90, mortality from the model of this thesis 

decreases relative to mortality from the previously published projections. The 
previously published projections exhibit mortality improvements which slow down as 
the age approaches 90. The model of this thesis, on the other hand, forecasts the 
same long-term percentage rate of improvement at all ages, because the 
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improvements are driven entirely by the downward trend in the κ(3) parameters. (An 
exception to this is at the youngest ages, where the positive κ(0) parameters cause 
mortality to improve more slowly than this.) 

 
� At the oldest ages, under the low improvement assumption, the model of this thesis 

produces higher forces of mortality than any previously published projection under 
which the improvement rates do not approach zero as the age approaches 120. For 
CMI data, this applies to the Medium Cohort projection subject to a 1% underpin. For 
both the England and Wales data sets, this applies to the Principal projection and to 
the HLE projection. 

 
� At the oldest ages under the high improvement assumption for CMI data, all the 

stochastic scenarios produce lower forces of mortality than the Medium Cohort and 
Long Cohort projections, as mortality improvements under the model of this thesis do 
not approach zero at the oldest ages but those under the Medium Cohort and Long 
Cohort projections do. There are only a few scenarios producing higher forces of 
mortality than the Medium Cohort projection subject to a 1% underpin, i.e. there are 
only a few scenarios for which the model of this thesis predicts improvements of less 
than 1% p.a. at the oldest ages. 

 
� At the oldest ages under the high improvement assumption for England and Wales 

data, most or all of the stochastic scenarios produce higher forces of mortality than 
both the Principal and HLE projections, the former representing a long-term 
improvement rate of 1% p.a. and the latter representing a long-term improvement rate 
of 2% p.a. Most or all of the scenarios produce lower forces of mortality than the LLE 
projection, as the improvement rates under the scenarios do not approach zero as 
the age approaches 120 but those under the LLE projection do. 

 
� In most of the graphs, the interval between the 2.5th and 97.5th percentiles widens 

with increasing age up to age 90 (89 for England and Wales data), as a result of the 
expanding funnels of doubt in Figures 5.1-5.5. 

 
� In the graphs for age 35 in 2005 for CMI data (Figures 5.13(i) and 5.14(i)), the interval 

between the 2.5th and 97.5th percentiles stands out as being particularly wide in the 
early years of the projection. This is due to two main factors. Firstly, the gamma 
parameter comes from the projection rather than from the data and is therefore 
subject to stochastic variation � the only other graphs where the gamma parameter 
comes from the projection are Figures 5.13(ii) and 5.14(ii). Secondly, the uncertainty 
in the κ(0) parameters gives rise to significant uncertainty in log mortality at younger 
ages. 

 
� As the age increases above 90 (89 for England and Wales data), the width of the 

interval between the 2.5th and 97.5th percentiles under the high improvement 
assumption remains approximately constant. There is a slight increase arising from 
the continued expansion of the funnel of doubt in the κ(3) parameters, but the funnels 
of doubt in the other parameters have almost reached their ultimate width by this 
point. Under the low improvement assumption, the width of the interval decreases, 
reaching zero at age 120 where the projected force of mortality under all scenarios is 
the same as that extrapolated from the 2005 mortality curve. 

 
The vertical position of a point in Figures 5.19-5.24 is determined by the vertical positions of 
all the points to the left of it in Figures 5.13-5.18, i.e. the proportion of lives surviving to a 
given age is determined by mortality rates at all younger ages. Thus Figures 5.19-5.24 
contain the same information as Figures 5.13-5.18, with the exception that the range of the 
stochastic scenarios is rather narrower in Figures 5.19-5.24 because of scenarios that have 
high mortality in some future years but low mortality in others. The main reason why the 
presentation of Figures 5.19-5.24 is useful is to give an understanding of how the different 
projected forces of mortality in Figures 5.13-5.18 affect annuity values. The areas under the 
graphs in Figures 5.19-5.24 are expectations of life, i.e. annuity values calculated at a 0% 
interest rate. 
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5.6 Individual Capital Assessments (ICAs) 
 
We shall now apply the model to risk-based capital calculations under the Individual Capital 
Assessment (ICA) regime of the UK insurance regulator, the Financial Services Authority 
(FSA), for deferred and immediate annuities. We shall continue to use a deterministic interest 
rate of 4.5%. Mortality at ages above 90 (89 for England and Wales data) will be assumed to 
be in accordance with the log-linear extrapolation method and the high improvement 
assumption. For lives aged 35 and 45 in 2005 in CMI data, we shall not use the stochastic 
projection of the gamma parameters, but we shall instead use a deterministic projection with 
all the future innovation terms set to zero, as used for the previously published projections in 
Section 5.3.  
 
Section 7.1.42R of the FSA�s Prudential Sourcebook for Insurers (INSPRU) states: 
 
�Where the FSA requests a firm to submit to it a written record of the firm's assessments of the 
adequacy of its capital resources�those assessments must include an assessment comparable to a 
99.5% confidence level over a one year timeframe that the value of assets exceeds the value of 
liabilities, whether or not this is the confidence level otherwise used in the firm's own assessments.� 
 
If the calculation described is performed by a simulation approach, then it requires a number 
of scenarios to be generated for the kappa parameter values, and the resulting mortality 
experience, in 2006 (the first year beyond the period of the data). For lives that survive 2006, 
the mean annuity value must then be calculated separately under each scenario. These mean 
annuity values need to be multiplied by the probability of surviving 2006 in the same scenario, 
and the 99.5th percentile of the resulting distribution needs to be taken. As the mean annuity 
values themselves need to be calculated by a simulation approach, we are faced with having 
to run simulations within simulations, which is highly computationally intensive. Accordingly 
we shall develop a less computationally intensive approximation to the ICA, and carry out 
some testing to confirm that the approximation is sufficiently accurate. 
 
Consider a group of N deferred or immediate annuitants who have just attained the age label 
x at the start of calendar year t, where calendar year t � 1 is the last year of the data. (The 
assumption that the annuitants have just attained a particular age label is not critical to the 
analysis, but has been made to simplify the presentation.) The annuities are assumed to be 
payable annually in advance. x1 denotes the age label from which the annuities are payable 
for deferred annuities, and is set equal to x + 1 for immediate annuities. The probability of a 
particular one of the annuitants surviving to age label x + 1 is: 
 

)}])�)(()(exp{[exp()exp( 22)5()4()3()0(
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The expected number of annuitants surviving to age label x + 1 is therefore: 
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In what follows, we shall assume that N is sufficiently large that the actual number of 
annuitants surviving to age label x + 1 may be assumed to be equal to the above value. 
 
We now use the time series models fitted in Chapter 4 to express the kappa parameters for 
year t in terms of the innovations for year t and other quantities that are assumed to be 
known: 
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where )0(
tZ , )3(

tZ , )4(
tZ  and )5(

tZ  are jointly normally distributed with zero mean, unit 
variance and the correlations shown in Section 4.7. A small letter z has been used for the 
innovation term )3(

1−tz  from year t � 1 to signify that the value is assumed known. 
 
The number of annuitants surviving to age label x + 1 is then: 
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We now linearise this expression in the )(l

tZ . We shall refer to this linearisation as 
Approximation 1 in what follows. We shall later carry out some testing to confirm that the error 
introduced by the linearisation is acceptably small. We find that the number of annuitants 
surviving to age label x + 1 is: 
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Consider an annuitant who has survived to age label x + 1. We express the (random) value at 
the start of year t + 1 of the liabilities in respect of this annuitant, L(t + 1), in terms of the )(l

tZ , 

some �future annuity values� independent of the )(l
tZ , some of which have payments varying 

over time and/or are calculated at revised interest rates, and other quantities that are 
assumed to be known. In deriving this expression, we again linearise in the )(l

tZ , and we 
shall refer to this linearisation as Approximation 2 in what follows. Appendix D shows that the 
resulting expression is: 
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and λ is as in Section 5.4. 
 
Multiplying this by the number of survivors to age label x + 1 gives the (random) value at the 
start of year t + 1 of all the liabilities together as: 
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after linearisation in the )(l

tZ , where: 
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This linearisation will be referred to as Approximation 3 in what follows. 
 
As the �future annuity values�, e.g. ),( txFutAnnVal , do not depend on the )(l

tZ , the 

conditional expected value at the start of year t + 1 of all the liabilities, given the )(l
tZ , is 

therefore NC(x), where: 
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and all the expectations can be calculated in the same way as the mean annuity values in 
Section 5.5, except that some of the annuities have payments varying over time or are valued 
at revised interest rates, The �annuitant� has just attained the age label x + 1 rather than x, 
and the starting kappa parameters have been rolled forward for one year on best estimate 
assumptions. Note that the random variable C(x) is a constant plus a linear combination of the 

)(l
tZ . 

 
It is instructive to consider how the different terms in the above expression for C(x) arise. 

)],([ txFutAnnValEpxt  is the expected value at the start of year t + 1 of all the liabilities 

conditional on all the )(l
tZ  being equal to zero. All the other terms containing 

)],,([ txFutAnnValE  with the exception of 
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variation of the number of lives surviving year t with the )(l
tZ . The remaining terms arise from 

the variation of the conditional mean annuity value at the end of year t with the )(l
tZ . Thus for 

each kappa parameter, there is one term inside the square brackets arising from the variation 
of the number of lives surviving year t and one term arising from the variation of the 
conditional mean annuity value, with the exception that there are four different terms 
containing )0(

tZ  arising from the variation of the conditional mean annuity value. The sum of 
these four terms can alternatively be written as: 
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The first and third of these terms can be thought of as the impact of )0(

tZ  on the conditional 
mean value of the annuity payments up to and including age a and after age a respectively, 
ignoring the fact that not all of the impact of )0(

tZ  will have occurred by the time these annuity 
payments are made as the conditional mean of the AR(1) process for the κ(0) parameters 
following the disturbance )0(

tZ  will not have reverted completely to µ(0) by the time the 
payments are made. The second and fourth terms, respectively, then make an adjustment for 
this to the impact on the conditional mean value of the annuity payments up to and including 
age a and after age a respectively. 
 
For a portfolio of annuities on lives of different ages, the conditional expected value at the 
start of year t + 1 of all the liabilities is: 
 

∑
x

xCxN )()( , 

 
where N(x) is the number of annuitants at each age x. This conditional expected value is 
again a constant plus a linear combination of the )(l

tZ . We should expect the portfolio to 
produce a lower ICA capital requirement than the sum of the capital requirements for the 
individual ages, as a result of diversification benefits arising from the fact that mortality 
changes at different ages are not perfectly correlated. 
 
As we are assuming that interest rates are constant, and as the amount of annuity payments 
made in the first year is deterministic, being equal to the number of immediate annuitants, the 
value of the assets at the end of the first year is deterministic. Thus the ICA capital is simply 
the difference between the 99.5th percentile and the mean of ∑

x
xCxN )()( , as the )(l

tZ  

vary, discounted for one year. To calculate this, we use the fact that ∑
x

xCxN )()(  is 

normally distributed, with the variance being derived from the parameter estimates of the time 
series models in Chapter 4, from the �future annuity values� calculated in the same way as the 
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mean annuity values in Section 5.5, and from the correlations between the different )(l
tZ  in 

Section 4.7. The ICA capital is then given by: 
 

,)()(var)995.0(1 






Φ ∑−

x
xCxNv  

 
where Φ is the N(0,1) distribution function.  
 
Only 50 scenarios, rather than 500, were used to calculate the �future annuity values�. The 
possibility of adding further scenarios was investigated but it was found that the results for 
ICA capital changed only in the third decimal place, i.e. the last decimal place quoted in Table 
5.18, as a result. 
 
Table 5.18 shows the results for ICA capital considering only one age x in 2005 at a time, i.e. 
N(y) is set to zero for y ≠ x. N(x) is set to 1 � this is for presentational purposes only and does 
not imply that it is sensible to use this method to calculate the ICA capital for a single annuity. 
 
It is not apparent what relationship these ICA capital amounts should bear to the distributions 
of annuity values derived in Section 5.5. The former are based on distributions of mean 
annuity values after one year as the new information arising during the year varies, whereas 
the latter are ranges of outcomes over the full outstanding lifetime of the annuitants. A �rule of 
thumb� for calculating ICA capital for longevity risk that is widely used within the UK life 
insurance industry is to take the 95th percentile of the distribution of annuity values derived in 
Section 5.5. If the discounted mean term of a portfolio of annuity business is approximately 10 
years, then this might be considered reasonable on the grounds that a 99.5% confidence 
level over a one-year timeframe is approximately equivalent to a (100 � 0.5 x 10) = 95% 
confidence level over a 10-year timeframe. However, Table 5.18 shows that the ICA capital 
amounts we have calculated correspond to much lower percentiles than the 95th percentile of 
the distributions of annuity values, particularly for younger generations and for CMI data. An 
insurance company might construe this as supporting the use of a lower percentile than the 
95th percentile in its ICA calculation. This may in some circumstances be reasonable, but the 
company should bear in mind the following before deciding to use a lower percentile than the 
95th percentile: 
 
� The most appropriate percentile to use will depend on the age distribution of the 

company�s annuity portfolio, as the percentages in Table 5.18 vary significantly by 
age in 2005. The company should also consider how its annuity portfolio compares 
with the populations underlying the three data sets. 

 
� The percentages in Table 5.18 make no allowance for parameter risk, i.e. the risk that 

the parameters of the model have been estimated incorrectly. 
 
� The percentages in Table 5.18 make no allowance for model risk, i.e. the risk that the 

model itself is incorrect. 
 
We might expect the percentages in Table 5.18 to be lower for groups of annuitants with a 
long future life expectancy, as this will tend to make the risk over one year relatively small 
compared with the risk over the whole future lifetime of the annuitants. This is indeed what we 
observe � the percentages increase as the age in 2005 increases, they increase as we move 
from CMI data to England and Wales female data, and in most cases they increase as we 
move from England and Wales female data to England and Wales male data. 
 
Table 5.19 shows the coefficients of the different )(

2006
lZ  in the expressions for C(x) for each 

age x and for each data set. Large absolute values in this table indicate that the ICA capital is, 
in absolute terms, highly sensitive to that 2006 innovation term. The following observations 
can be made from Table 5.19: 
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� All the coefficients of )0(
2006Z  and )3(

2006Z  are negative. This is as expected because an 
increase in these innovation terms is always associated with an increase in mortality 
and hence with a decrease in annuity values. 

 
� All the coefficients of )4(

2006Z  are again negative. An increase in this innovation term is 
associated with a decrease in mortality at ages below the mean age of the data set 
(60 for CMI data and 59.5 for England and Wales data) and an increase at ages 
above the mean age of the data set. The negative coefficients show that the effect of 
ages above the mean age of the data set always outweighs the effect of ages below 
the mean age of the data set. This can be explained by the low mortality rates below 
the mean ages of all the data sets and by the fact that, as the α(4) parameters are 
relatively close to 1, )4(

2006Z  has a not insignificant impact on mortality at older ages for 
lives that are still below the mean age. 

 
� The coefficients of )5(

2006Z  are positive for lower values of the age in 2005 but have 
become negative by the time the age in 2005 increases to 65 (75 for England and 
Wales male data). For CMI data, an increase in )5(

2006Z  leads to a decrease in 
mortality between ages 43 and 77 inclusive and to an increase in mortality outside 
this age range. For England and Wales data, an increase in )5(

2006Z  leads to a 
decrease in mortality between ages 43 and 76 inclusive and to an increase in 
mortality outside this age range. The positive coefficients of )5(

2006Z  at ages in 2005 up 
to and including 55 show that the age range 43-77 or 43-76 has the greatest impact. 
Once the age in 2005 has increased to 65, mortality above age 77 (76 for England 
and Wales data) has more of an impact. We find that this impact outweighs the 
impact of the age range 43-77 or 43-76, to give a negative coefficient of )5(

2006Z , for 
CMI data and for England and Wales female data but not for England and Wales 
male data. This seems reasonable as the England and Wales male data set has the 
highest probability of death before age 77 for a life now aged 65. Once the age in 
2005 has increased to 75, the coefficient of )5(

2006Z  is driven almost entirely by 
mortality above age 77 (76 for England and Wales data), so it is negative for all data 
sets. 

 
� The coefficient of )3(

2006Z  has the largest magnitude except at ages 65 and 75 for CMI 
data and at age 75 for England and Wales female data. For lower values of the age x 
in 2005, the key influence on C(x) will be from ages relatively close to the mean age 
of the data set, and the κ(3) parameters are the main driver of mortality in this age 
range. However, as the κ(3) parameters are, in the long term, the only driver of 
mortality improvements over time in the model, it is not surprising that the coefficient 
of )3(

2006Z  continues to be significant for the higher values of the age in 2005. 
 
� At ages 65 and 75 for CMI data and 75 for England and Wales female data, the 

coefficient of )4(
2006Z  has the largest magnitude. The κ(4) parameters provide a first-

order approximation to how quickly the logarithm of the force of mortality increases 
with age as the age rises above the mean age of the data set, so it would be 
expected that the coefficient of )4(

2006Z  would become increasingly significant in 
magnitude as the age in 2005 increases. Although the κ(4) parameters also have a 
significant impact in percentage terms on the force of mortality at the younger ages of 
the data sets, there are relatively few deaths at those ages. The higher estimated 
value of σ(4) for CMI data than for England and Wales female data, and for England 
and Wales female data than for England and Wales male data, provides an 
explanation as to why the change in the coefficient with the highest magnitude from 
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)3(
2006Z  to )4(

2006Z  occurs at a younger age for CMI data than for England and Wales 
female data, and at a younger age for England and Wales female data than for 
England and Wales male data. 

 
� The κ(0) parameters have a relatively minor impact in most cases, with the coefficients 

of )0(
2006Z  being much smaller in magnitude than those of )3(

2006Z , even for the lower 
values of the age in 2005. 

 
� The κ(5) parameters also have a relatively minor impact for ages in 2005 up to and 

including 65. However, for lives aged 75 in 2005, the coefficient of )5(
2006Z  is significant 

in magnitude compared with those of )3(
2006Z  and )4(

2006Z . 
 
Figures 5.25-5.27 provide a check on the ICA capital amounts in Table 5.18 and are also of 
interest in their own right. The figures show the projected future sizes of a fund set up in 2005 
equal to the mean annuity value plus the ICA capital, for different values of the age x in 2005 
and for each of the three data sets. As before, N(x) has been set to 1 for presentational 
purposes only and N(y) has been set to zero for y ≠ x. The red curves show the (100 � p)th 
percentiles of the distributions of the future fund size, where p% is the percentile specified in 
Table 5.18. It is the fact that the red curves reach a fund size close to zero at age 120 that 
provides the check on the ICA capital amounts. The following remarks can also be made on 
Figures 5.25-5.27: 
 
� At ages under 65, the graphs show no stochastic variation as no annuity payments 

are being made. The fund simply earns interest at the deterministic rate of 4.5%. 
 
� At the highest ages shown in Figures 5.25-5.27, the graphs are close to exponential 

curves representing interest being earned at the deterministic rate of 4.5%, as there 
are few annuity payments still being made at these ages. Thus positive fund sizes 
become more positive exponentially and negative fund sizes, representing 
insolvency, become more negative exponentially. 

 
� The black solid curve in each graph, representing the median, has a turning point 

when the rate at which annuity payments are being made equals the rate at which 
interest is being earned on the fund. As a result of the improvement of mortality over 
time, the turning point occurs at higher ages for lower values of the age in 2005. 

 
Table 5.20 calculates the diversification benefit for a portfolio with N(x) = 1 for x = 35, 45, 55, 
65 and 75, and N(y) = 0 for all other ages y, by comparing the ICA capital for this portfolio 
with the sum of the ICA capital results for the individual ages in Table 5.18. We find that the 
diversification benefit is greatest for CMI data and least for England and Wales male data. 
Some understanding of this result can be gained by observing that for CMI data, Table 5.19 
shows that the main risk factor at the younger ages, )3(

2006Z , is different from the main risk 

factor at the older ages, )4(
2006Z , whereas for England and Wales male data, Table 5.19 shows 

that )3(
2006Z  is the main risk factor at all the ages. In addition, Tables 4.6-4.8 show that the 

correlations between the different risk factors are lowest for CMI data. 
 
A greater understanding of the sources of the diversification benefits shown in Table 5.20 can 
be gained from Figures 5.28-5.30 and Tables 5.21-5.23. Figures 5.28, 5.29 and 5.30 are 
scatter diagrams showing the values of C(x) and C(y) for each pair of ages (x,y) in 2005, 
under the same 500 sets of values of the )(

2006
lZ  that were used in calculating the annuity 

values in Section 5.5, for CMI data, England and Wales male data and England and Wales 
female data respectively. Tables 5.21, 5.22 and 5.23 show the corresponding correlations 
between C(x) and C(y), for CMI data, England and Wales male data and England and Wales 
female data respectively. The correlations in Tables 5.21-5.23 were calculated analytically 
rather than being based on the data points in Figures 5.28-5.30. 
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The correlations in Tables 5.21-5.23 tend to be higher, and the points in Figures 5.28-5.30 
tend to lie closer to a straight line of positive slope, when x and y are close together than 
when they are far apart. The correlations also tend to be higher and the points closer to a 
straight line of positive slope for England and Wales male data compared with England and 
Wales female data, and for England and Wales female data compared with CMI data. This 
suggests that pairs of ages x and y that are close together give rise to relatively little 
diversification benefit, and is consistent with the observation from Table 5.20 that the overall 
diversification benefit is greatest for CMI data and least for England and Wales male data. 
However, the relative magnitudes of C(x) and C(y) for different pairs of ages (x,y) also 
influence where the diversification benefits come from. As the annuity values increase with 
age in 2005, with the exception of a decrease from age 65 to 75, a large value of x and a 
large value of y may give rise to a comparable diversification benefit to a small value of x and 
a large value of y, even though the correlation is lower in the latter case. 
 
Tables 5.24-5.29 and Figures 5.31-5.36 present some investigations into the accuracy of the 
linear approximations we have used, considering only one age in 2005 at a time. Tables 5.24-
5.26 and Figures 5.31-5.33 relate to Approximation 1, while Tables 5.27-5.29 and Figures 
5.34-5.36 relate to Approximation 2. A comparable investigation was carried out in relation to 
Approximation 3, but the results are not shown here as the errors were found to be 
considerably smaller than in Approximations 1 and 2.  
 
Each row of Tables 5.24-5.29 represents a particular set of values of the )(

2006
lZ . The first ten 

rows represent randomly generated sets of values. Rows 11, 12, 13 and 14 represent, 
respectively, the effect of setting )0(

2006Z , )3(
2006Z , )4(

2006Z  and )5(
2006Z  to 0.1 and the other )(

2006
lZ  to 

zero. Thus the main purpose of Rows 11-14 is to check that the coefficients in Table 5.19 
have been calculated correctly, as with these relatively small values of the )(

2006
lZ , it is unlikely 

that terms which are second or higher order in the )(
2006

lZ  will be significant. Rows 1-10 then 

indicate the errors introduced by ignoring terms that are second or higher order in the )(
2006

lZ , 

for typical sets of values of the )(
2006

lZ  that arise in practice. We should therefore regard a 
rather smaller margin of error as acceptable in Rows 11-14 than in Rows 1-10. 
 
 Column (1) of Tables 5.24-5.29 shows the value of the quantity we are approximating to on 
the basis that the )(

2006
lZ  are all equal to zero. This is the �deterministic� probability of surviving 

2006, 2006,xp , in Tables 5.24-5.26 and the 50-scenario estimate of the �deterministic� mean 

annuity value at the end of 2006, )]2006,([ xFutAnnValE , in Tables 5.27-5.29. In Tables 
5.24-5.26, Column (2) shows the linear approximations to the conditional probability of 
surviving 2006 given the values of the )(

2006
lZ  that are used in the relevant row, while in Tables 

5.27-5.29, this column shows the linear approximations to the conditional mean annuity value 
at the end of 2006 given the values of the )(

2006
lZ  that are used in the relevant row. Column (3) 

shows the actual probability of surviving 2006 or the actual 50-scenario estimate of the mean 
annuity value at the end of 2006, as appropriate. Column (4) shows the differences between 
Columns (2) and (1), while Column (5) shows the differences between Columns (3) and (1). 
We should like the differences between Columns (2) and (3), or equivalently the differences 
between Columns (4) and (5), to be small. The size of these differences can be measured 
either as the absolute error in the approximation of Column (3) by Column (2), which is shown 
in Column (6), or as the percentage error, which is shown in Column (7). 
 
Figures 5.31-5.36 provide a visual representation of the comparisons between Columns (4) 
and (5) of Tables 5.24-5.29, for Rows 1-10 only. We should like all the points in these figures 
to lie close to a straight line with zero intercept and unit slope, which is also shown in the 
figures. 
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Rows 11-14 in Tables 5.24-5.29 do not give any reason to doubt that the coefficients of the 
)(

2006
lZ  have been calculated correctly � there is only one case where the percentage 

difference between Columns (4) and (5) is greater than 0.5%.  
 
The points in Figures 5.34-5.36 all lie very close to the line with zero intercept and unit slope, 
providing evidence that the use of Approximation 2 is appropriate. In addition, all but two of 
the differences between Columns (4) and (5) of Tables 5.27-5.29, as reported in Column (6), 
are less than 0.001 in absolute value, with most of the differences being significantly less than 
this. These differences of less than 0.001 should have a probability of surviving 2006 applied 
to them and should then be discounted for one year to calculate the impact on ICA capital, so 
the impact on ICA capital is also less than 0.001 in absolute value. 
 
Some of the graphs in Figures 5.31-5.33 reveal outliers. However, the outliers occur at low 
values of the age in 2005, for which the probability of death in 2006 is small, so it is not clear 
that there will be a significant impact on ICA capital. In fact, there are only two cases where 
the difference between Columns (4) and (5) of Tables 5.24-5.26 is greater than 4.5 x 10-5, and 
these two cases both occur at age 75 rather than at the younger ages. To calculate the 
impact on ICA capital, the difference between Columns (4) and (5) needs to be multiplied by 
an annuity factor, which cannot exceed the value at 4.5% interest of a perpetuity of 1 p.a. 
payable annually in advance, and then discounted for one year. Thus, except in the two cases 
where the difference is greater than 4.5 x 10-5, the absolute impact on ICA capital cannot 
exceed 4.5 x 10-5 multiplied by the value at 4.5% interest of a perpetuity of 1 p.a. payable 
annually in arrears, or 4.5 x 10-5 / 0.045 = 0.001. 
 
5.7 Conclusion 
 
Prediction intervals have been constructed for the future values of the different time series of 
parameters for all three data sets. However, the uncertainty in the future mortality projected 
by our model is not in fact as great as the width of these prediction intervals might suggest, as 
a result of the correlations between the different kappa parameter series and because a 
typical scenario will have high parameter values in some future years but low parameter 
values in others. 
 
To use the mortality projections given by our model to calculate annuity values, it was 
necessary to consider both extrapolation of the 2005 mortality curve to ages above the 
highest age in the data and future mortality improvements at ages above the highest age in 
the data. Two possible assumptions were considered for each of these to provide an 
indication of the range of possible outcomes. 
 
Values of both immediate and deferred annuities on lives of different ages were presented at 
different percentiles, at a deterministic interest rate of 4.5%. The means and standard 
deviations of the distributions of annuity values were also presented. These annuity values 
were then compared with previously published projections, starting from the 2005 mortality 
curves fitted in this thesis. It was found that our model generally produced higher annuity 
values than the previously published projections for CMI data, but lower annuity values for 
England and Wales data for both males and females. For ages in 2005 below 65, the annuity 
values from our model increased relative to those from the previously published projections. 
Plots of projected forces of mortality and probabilities of survival were produced to give an 
understanding of the sources of these differences. 
 
Risk-based capital calculations under the ICA regime were presented. It was found that our 
model produced significantly lower capital requirements than a particular �rule of thumb� that is 
widely used within the UK life insurance industry. This might suggest that a company currently 
using the �rule of thumb� can reasonably justify reducing the amount of ICA capital it holds in 
respect of longevity risk, but some issues for the company to consider before reducing this 
capital were highlighted. ICA capital calculations were carried out for portfolios of immediate 
and deferred annuities at different ages as well as for single ages, and it was found that the 
diversification benefit to ICA capital from holding a portfolio of annuities at different ages was 
greatest for CMI data and least for England and Wales male data. Some linear 
approximations were used in the calculation of the ICA capital amounts, and some test results 



 128

were presented to confirm that these approximations were sufficiently accurate for the 
purpose in hand.  

 
Table 5.1 � Key to Tables 5.2-5.14 

 
Table Data set Improvement 

assumption 
Extrapolation 

method 
Number of 
scenarios 

5.2 CMI Low Log-linear 500 
5.3 CMI High Log-linear 500 
5.4 E&W Male Low Log-linear 500 
5.5 E&W Male High Log-linear 500 
5.6 E&W Female Low Log-linear 500 
5.7 E&W Female High Log-linear 500 
5.8 E&W Male High Log-linear 5,000 
5.9 CMI Low LifeMetrics 500 

5.10 CMI High LifeMetrics 500 
5.11 E&W Male Low LifeMetrics 500 
5.12 E&W Male High LifeMetrics 500 
5.13 E&W Female Low LifeMetrics 500 
5.14 E&W Female High LifeMetrics 500 
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Table 5.2 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for CMI data under the low improvement assumption and 

the log-linear extrapolation method � level single life annuity of 1 p.a. payable annually in 
advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 4.065 6.092 9.073 14.160 10.334 

St. dev. 0.090 0.142 0.211 0.290 0.335 
St. dev. / Mean 2.2% 2.3% 2.3% 2.0% 3.2% 
0.5th percentile 3.847 5.750 8.487 13.401 9.453 
1st percentile 3.871 5.764 8.558 13.470 9.498 

2.5th percentile 3.895 5.811 8.625 13.509 9.659 
5th percentile 3.917 5.844 8.710 13.626 9.778 

10th percentile 3.943 5.893 8.814 13.798 9.887 
20th percentile 3.987 5.977 8.905 13.918 10.071 
30th percentile 4.019 6.027 8.961 14.014 10.159 
40th percentile 4.045 6.061 9.016 14.107 10.262 
50th percentile 4.067 6.092 9.072 14.181 10.347 
60th percentile 4.087 6.132 9.132 14.248 10.428 
70th percentile 4.112 6.169 9.196 14.323 10.508 
80th percentile 4.145 6.220 9.253 14.401 10.624 
90th percentile 4.178 6.276 9.346 14.520 10.763 
95th percentile 4.208 6.317 9.407 14.611 10.871 
97.5th percentile 4.236 6.352 9.457 14.678 10.962 
99th percentile 4.265 6.391 9.529 14.778 11.068 

99.5th percentile 4.278 6.421 9.563 14.830 11.131 
 

Table 5.3 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for CMI data under the high improvement assumption and 

the log-linear extrapolation method � level single life annuity of 1 p.a. payable annually in 
advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 4.209 6.249 9.224 14.305 10.458 

St. dev. 0.126 0.183 0.255 0.341 0.389 
St. dev. / Mean 3.0% 2.9% 2.8% 2.4% 3.7% 
0.5th percentile 3.901 5.801 8.566 13.457 9.499 
1st percentile 3.945 5.846 8.652 13.490 9.538 

2.5th percentile 3.972 5.884 8.683 13.590 9.698 
5th percentile 4.014 5.946 8.824 13.715 9.821 

10th percentile 4.046 6.011 8.913 13.868 9.945 
20th percentile 4.094 6.095 9.016 14.020 10.139 
30th percentile 4.140 6.159 9.093 14.139 10.245 
40th percentile 4.177 6.201 9.155 14.234 10.360 
50th percentile 4.205 6.247 9.216 14.328 10.471 
60th percentile 4.235 6.292 9.290 14.414 10.560 
70th percentile 4.273 6.343 9.359 14.493 10.645 
80th percentile 4.317 6.403 9.445 14.579 10.791 
90th percentile 4.371 6.491 9.545 14.727 10.940 
95th percentile 4.431 6.542 9.652 14.845 11.109 
97.5th percentile 4.471 6.597 9.701 14.973 11.239 
99th percentile 4.492 6.681 9.794 15.061 11.320 

99.5th percentile 4.514 6.715 9.843 15.168 11.413 
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Table 5.4 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W male data under the low improvement 

assumption and the log-linear extrapolation method � level single life annuity of 1 p.a. payable 
annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.329 5.008 7.624 12.546 8.803 

St. dev. 0.106 0.144 0.186 0.216 0.214 
St. dev. / Mean 3.2% 2.9% 2.4% 1.7% 2.4% 
0.5th percentile 3.071 4.664 7.186 12.002 8.269 
1st percentile 3.091 4.684 7.225 12.059 8.285 

2.5th percentile 3.127 4.716 7.275 12.126 8.392 
5th percentile 3.155 4.778 7.317 12.185 8.446 

10th percentile 3.190 4.823 7.388 12.282 8.540 
20th percentile 3.238 4.891 7.466 12.349 8.633 
30th percentile 3.269 4.935 7.518 12.427 8.692 
40th percentile 3.296 4.969 7.568 12.493 8.742 
50th percentile 3.332 4.993 7.621 12.545 8.793 
60th percentile 3.357 5.037 7.670 12.597 8.847 
70th percentile 3.384 5.090 7.730 12.651 8.911 
80th percentile 3.418 5.132 7.778 12.731 8.991 
90th percentile 3.464 5.187 7.860 12.826 9.077 
95th percentile 3.514 5.247 7.937 12.882 9.140 
97.5th percentile 3.542 5.296 7.987 12.975 9.240 
99th percentile 3.564 5.348 8.045 13.037 9.328 

99.5th percentile 3.571 5.360 8.102 13.102 9.394 
 

Table 5.5 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W male data under the high improvement 

assumption and the log-linear extrapolation method � level single life annuity of 1 p.a. payable 
annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.374 5.055 7.669 12.591 8.842 

St. dev. 0.122 0.161 0.202 0.234 0.233 
St. dev. / Mean 3.6% 3.2% 2.6% 1.9% 2.6% 
0.5th percentile 3.083 4.680 7.199 12.022 8.275 
1st percentile 3.104 4.705 7.234 12.070 8.301 

2.5th percentile 3.149 4.742 7.295 12.148 8.406 
5th percentile 3.179 4.793 7.345 12.216 8.474 

10th percentile 3.218 4.857 7.414 12.311 8.553 
20th percentile 3.268 4.925 7.493 12.374 8.659 
30th percentile 3.302 4.970 7.554 12.471 8.722 
40th percentile 3.340 5.008 7.604 12.532 8.768 
50th percentile 3.377 5.044 7.659 12.592 8.827 
60th percentile 3.404 5.089 7.716 12.646 8.890 
70th percentile 3.435 5.142 7.778 12.699 8.955 
80th percentile 3.474 5.190 7.840 12.783 9.035 
90th percentile 3.527 5.263 7.924 12.904 9.142 
95th percentile 3.595 5.332 8.016 12.956 9.219 
97.5th percentile 3.627 5.391 8.068 13.069 9.325 
99th percentile 3.660 5.441 8.150 13.188 9.430 

99.5th percentile 3.678 5.468 8.200 13.219 9.494 
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Table 5.6 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W female data under the low improvement 

assumption and the log-linear extrapolation method � level single life annuity of 1 p.a. payable 
annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.539 5.442 8.348 13.620 9.772 

St. dev. 0.115 0.153 0.198 0.236 0.239 
St. dev. / Mean 3.3% 2.8% 2.4% 1.7% 2.4% 
0.5th percentile 3.249 5.068 7.845 13.030 9.178 
1st percentile 3.273 5.075 7.886 13.077 9.210 

2.5th percentile 3.316 5.143 7.952 13.112 9.287 
5th percentile 3.349 5.192 8.014 13.239 9.370 

10th percentile 3.393 5.247 8.110 13.327 9.452 
20th percentile 3.442 5.321 8.183 13.429 9.578 
30th percentile 3.475 5.362 8.241 13.490 9.648 
40th percentile 3.509 5.399 8.286 13.561 9.709 
50th percentile 3.541 5.436 8.337 13.628 9.777 
60th percentile 3.571 5.474 8.396 13.695 9.838 
70th percentile 3.599 5.527 8.458 13.743 9.897 
80th percentile 3.636 5.574 8.520 13.820 9.982 
90th percentile 3.690 5.639 8.596 13.916 10.079 
95th percentile 3.736 5.691 8.671 14.014 10.145 
97.5th percentile 3.762 5.748 8.744 14.057 10.232 
99th percentile 3.784 5.787 8.796 14.133 10.320 

99.5th percentile 3.811 5.818 8.846 14.175 10.343 
 

Table 5.7 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W female data under the high improvement 

assumption and the log-linear extrapolation method � level single life annuity of 1 p.a. payable 
annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.566 5.473 8.379 13.656 9.805 

St. dev. 0.128 0.167 0.213 0.253 0.257 
St. dev. / Mean 3.6% 3.1% 2.5% 1.9% 2.6% 
0.5th percentile 3.253 5.074 7.853 13.033 9.179 
1st percentile 3.278 5.086 7.898 13.090 9.205 

2.5th percentile 3.326 5.156 7.963 13.127 9.292 
5th percentile 3.359 5.207 8.037 13.248 9.382 

10th percentile 3.408 5.268 8.128 13.349 9.466 
20th percentile 3.457 5.339 8.207 13.446 9.598 
30th percentile 3.494 5.383 8.265 13.516 9.665 
40th percentile 3.532 5.426 8.313 13.593 9.732 
50th percentile 3.569 5.464 8.360 13.657 9.809 
60th percentile 3.599 5.508 8.429 13.730 9.877 
70th percentile 3.628 5.559 8.497 13.782 9.931 
80th percentile 3.670 5.616 8.571 13.870 10.022 
90th percentile 3.732 5.685 8.644 13.979 10.142 
95th percentile 3.783 5.749 8.722 14.089 10.212 
97.5th percentile 3.827 5.807 8.815 14.139 10.305 
99th percentile 3.845 5.855 8.890 14.217 10.408 

99.5th percentile 3.874 5.892 8.919 14.305 10.440 
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Table 5.8 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W male data under the high improvement 

assumption and the log-linear extrapolation method � level single life annuity of 1 p.a. payable 
annually in advance from age 65 and valued using 4.5% p.a. interest � 5,000 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.371 5.051 7.662 12.580 8.829 

St. dev. 0.122 0.162 0.202 0.230 0.228 
St. dev. / Mean 3.6% 3.2% 2.6% 1.8% 2.6% 
0.5th percentile 3.051 4.642 7.138 11.988 8.263 
1st percentile 3.083 4.666 7.194 12.063 8.307 

2.5th percentile 3.129 4.729 7.265 12.147 8.401 
5th percentile 3.167 4.778 7.334 12.211 8.462 

10th percentile 3.211 4.841 7.406 12.289 8.542 
20th percentile 3.266 4.916 7.490 12.385 8.636 
30th percentile 3.309 4.968 7.556 12.456 8.707 
40th percentile 3.342 5.011 7.607 12.522 8.765 
50th percentile 3.373 5.049 7.660 12.576 8.821 
60th percentile 3.402 5.093 7.715 12.638 8.880 
70th percentile 3.437 5.138 7.768 12.698 8.945 
80th percentile 3.475 5.187 7.833 12.772 9.020 
90th percentile 3.527 5.260 7.923 12.880 9.127 
95th percentile 3.568 5.317 7.991 12.957 9.208 
97.5th percentile 3.606 5.362 8.053 13.035 9.291 
99th percentile 3.650 5.426 8.131 13.132 9.407 

99.5th percentile 3.677 5.466 8.172 13.192 9.449 
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Table 5.9 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for CMI data under the low improvement assumption and 
the LifeMetrics extrapolation method � level single life annuity of 1 p.a. payable annually in 

advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 
 

Quantity Age 35 in 
2005 

(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 4.058 6.082 9.059 14.140 10.306 

St. dev. 0.089 0.141 0.210 0.288 0.331 
St. dev. / Mean 2.2% 2.3% 2.3% 2.0% 3.2% 
0.5th percentile 3.841 5.741 8.477 13.387 9.433 
1st percentile 3.865 5.756 8.549 13.458 9.480 

2.5th percentile 3.889 5.802 8.613 13.493 9.638 
5th percentile 3.911 5.834 8.697 13.610 9.754 

10th percentile 3.936 5.884 8.803 13.781 9.863 
20th percentile 3.980 5.967 8.891 13.900 10.046 
30th percentile 4.011 6.017 8.948 13.994 10.132 
40th percentile 4.038 6.051 9.003 14.088 10.234 
50th percentile 4.060 6.081 9.058 14.160 10.319 
60th percentile 4.079 6.121 9.118 14.228 10.399 
70th percentile 4.105 6.158 9.180 14.302 10.478 
80th percentile 4.138 6.209 9.238 14.380 10.592 
90th percentile 4.171 6.265 9.330 14.497 10.731 
95th percentile 4.200 6.306 9.391 14.588 10.838 
97.5th percentile 4.228 6.340 9.440 14.655 10.927 
99th percentile 4.257 6.379 9.513 14.754 11.033 

99.5th percentile 4.270 6.409 9.546 14.806 11.095 
 

Table 5.10 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for CMI data under the high improvement assumption and 

the LifeMetrics extrapolation method � level single life annuity of 1 p.a. payable annually in 
advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 4.209 6.247 9.216 14.290 10.432 

St. dev. 0.128 0.185 0.257 0.342 0.388 
St. dev. / Mean 3.0% 3.0% 2.8% 2.4% 3.7% 
0.5th percentile 3.896 5.793 8.556 13.443 9.479 
1st percentile 3.943 5.839 8.645 13.475 9.517 

2.5th percentile 3.970 5.877 8.671 13.575 9.676 
5th percentile 4.010 5.941 8.814 13.700 9.797 

10th percentile 4.044 6.006 8.903 13.852 9.921 
20th percentile 4.093 6.090 9.009 14.006 10.113 
30th percentile 4.140 6.155 9.085 14.122 10.220 
40th percentile 4.176 6.199 9.147 14.219 10.332 
50th percentile 4.205 6.244 9.210 14.311 10.444 
60th percentile 4.236 6.290 9.281 14.400 10.535 
70th percentile 4.274 6.342 9.352 14.481 10.618 
80th percentile 4.319 6.401 9.440 14.566 10.762 
90th percentile 4.372 6.491 9.540 14.713 10.914 
95th percentile 4.433 6.550 9.648 14.830 11.082 
97.5th percentile 4.468 6.600 9.700 14.965 11.220 
99th percentile 4.496 6.686 9.787 15.060 11.295 

99.5th percentile 4.516 6.720 9.848 15.159 11.394 
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Table 5.11 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W male data under the low improvement 

assumption and the LifeMetrics extrapolation method � level single life annuity of 1 p.a. 
payable annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.334 5.015 7.632 12.556 8.815 

St. dev. 0.107 0.146 0.187 0.219 0.217 
St. dev. / Mean 3.2% 2.9% 2.5% 1.7% 2.5% 
0.5th percentile 3.073 4.667 7.190 12.008 8.276 
1st percentile 3.094 4.688 7.228 12.065 8.292 

2.5th percentile 3.130 4.720 7.280 12.133 8.400 
5th percentile 3.158 4.781 7.323 12.192 8.454 

10th percentile 3.194 4.827 7.393 12.289 8.550 
20th percentile 3.243 4.899 7.472 12.357 8.642 
30th percentile 3.273 4.940 7.525 12.438 8.703 
40th percentile 3.302 4.975 7.575 12.503 8.753 
50th percentile 3.338 5.000 7.628 12.556 8.805 
60th percentile 3.363 5.044 7.680 12.608 8.861 
70th percentile 3.390 5.097 7.738 12.662 8.927 
80th percentile 3.424 5.140 7.788 12.743 9.006 
90th percentile 3.472 5.195 7.870 12.839 9.091 
95th percentile 3.521 5.259 7.949 12.895 9.156 
97.5th percentile 3.550 5.305 7.997 12.990 9.259 
99th percentile 3.573 5.359 8.057 13.058 9.350 

99.5th percentile 3.580 5.372 8.114 13.119 9.415 
 

Table 5.12 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W male data under the high improvement 

assumption and the LifeMetrics extrapolation method � level single life annuity of 1 p.a. 
payable annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.389 5.071 7.684 12.609 8.860 

St. dev. 0.127 0.166 0.207 0.240 0.239 
St. dev. / Mean 3.7% 3.3% 2.7% 1.9% 2.7% 
0.5th percentile 3.087 4.687 7.204 12.031 8.281 
1st percentile 3.109 4.711 7.239 12.077 8.312 

2.5th percentile 3.159 4.750 7.303 12.157 8.415 
5th percentile 3.190 4.801 7.354 12.224 8.482 

10th percentile 3.229 4.866 7.425 12.319 8.563 
20th percentile 3.279 4.935 7.505 12.391 8.674 
30th percentile 3.315 4.978 7.562 12.484 8.737 
40th percentile 3.352 5.022 7.621 12.546 8.786 
50th percentile 3.391 5.058 7.674 12.610 8.843 
60th percentile 3.418 5.105 7.733 12.663 8.910 
70th percentile 3.452 5.159 7.797 12.717 8.976 
80th percentile 3.492 5.206 7.861 12.800 9.057 
90th percentile 3.549 5.286 7.942 12.929 9.168 
95th percentile 3.620 5.360 8.036 12.987 9.250 
97.5th percentile 3.651 5.419 8.095 13.101 9.358 
99th percentile 3.686 5.469 8.184 13.229 9.466 

99.5th percentile 3.705 5.500 8.232 13.268 9.531 
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Table 5.13 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W female data under the low improvement 

assumption and the LifeMetrics extrapolation method � level single life annuity of 1 p.a. 
payable annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.547 5.452 8.360 13.638 9.794 

St. dev. 0.117 0.155 0.201 0.240 0.244 
St. dev. / Mean 3.3% 2.9% 2.4% 1.8% 2.5% 
0.5th percentile 3.252 5.073 7.852 13.038 9.189 
1st percentile 3.277 5.079 7.894 13.089 9.220 

2.5th percentile 3.321 5.150 7.959 13.125 9.300 
5th percentile 3.354 5.199 8.024 13.250 9.386 

10th percentile 3.399 5.254 8.118 13.341 9.469 
20th percentile 3.448 5.330 8.194 13.444 9.594 
30th percentile 3.482 5.370 8.251 13.507 9.665 
40th percentile 3.516 5.409 8.298 13.578 9.730 
50th percentile 3.549 5.445 8.348 13.644 9.797 
60th percentile 3.579 5.485 8.408 13.714 9.864 
70th percentile 3.607 5.538 8.472 13.763 9.920 
80th percentile 3.645 5.586 8.534 13.844 10.008 
90th percentile 3.700 5.653 8.613 13.941 10.111 
95th percentile 3.748 5.706 8.687 14.043 10.178 
97.5th percentile 3.774 5.763 8.762 14.085 10.264 
99th percentile 3.795 5.803 8.818 14.162 10.355 

99.5th percentile 3.823 5.834 8.866 14.205 10.380 
 

Table 5.14 � Means, standard deviations and key percentiles of the empirical distributions of 
deferred/immediate annuity values for E&W female data under the high improvement 

assumption and the LifeMetrics extrapolation method � level single life annuity of 1 p.a. 
payable annually in advance from age 65 and valued using 4.5% p.a. interest � 500 scenarios 

 
Quantity Age 35 in 

2005 
(Deferred) 

Age 45 in 
2005 

(Deferred) 

Age 55 in 
2005 

(Deferred) 

Age 65 in 
2005 

(Immediate) 

Age 75 in 
2005 

(Immediate) 
Mean 3.580 5.490 8.398 13.682 9.834 

St. dev. 0.133 0.173 0.220 0.261 0.265 
St. dev. / Mean 3.7% 3.2% 2.6% 1.9% 2.7% 
0.5th percentile 3.257 5.078 7.861 13.042 9.191 
1st percentile 3.282 5.096 7.908 13.102 9.215 

2.5th percentile 3.333 5.164 7.970 13.143 9.306 
5th percentile 3.366 5.216 8.051 13.259 9.397 

10th percentile 3.416 5.279 8.137 13.369 9.486 
20th percentile 3.466 5.350 8.218 13.463 9.623 
30th percentile 3.504 5.395 8.279 13.539 9.689 
40th percentile 3.543 5.441 8.327 13.617 9.758 
50th percentile 3.583 5.480 8.378 13.683 9.838 
60th percentile 3.612 5.526 8.447 13.753 9.905 
70th percentile 3.643 5.579 8.523 13.812 9.962 
80th percentile 3.688 5.636 8.592 13.904 10.053 
90th percentile 3.753 5.710 8.671 14.012 10.178 
95th percentile 3.810 5.783 8.750 14.130 10.255 
97.5th percentile 3.855 5.844 8.843 14.185 10.357 
99th percentile 3.875 5.888 8.929 14.263 10.466 

99.5th percentile 3.902 5.926 8.955 14.375 10.493 
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Table 5.15 � Deferred/immediate annuity values based on previously published projections 
applied to the 2005 CMI mortality curve fitted in this thesis, using the log-linear extrapolation 

method � level single life annuity of 1 p.a. payable annually in advance from age 65 and 
valued using 4.5% p.a. interest 

 
Age in 2005 Medium Cohort Medium Cohort 

subject to 1% 
underpin 

Long Cohort 

35 (Deferred) 3.717 3.820 3.836 
45 (Deferred) 5.673 5.780 5.857 
55 (Deferred) 8.608 8.706 8.892 

65 (Immediate) 13.723 13.808 14.182 
75 (Immediate) 10.130 10.189 10.642 

 
Table 5.16 � Deferred/immediate annuity values based on GAD projections applied to the 

2005 England and Wales male mortality curve fitted in this thesis, using the log-linear 
extrapolation method � level single life annuity of 1 p.a. payable annually in advance from age 

65 and valued using 4.5% p.a. interest 
 

Age in 2005 LLE Principal HLE 
35 (Deferred) 2.984 3.298 3.625 
45 (Deferred) 4.705 5.034 5.384 
55 (Deferred) 7.515 7.812 8.132 

65 (Immediate) 12.633 12.850 13.085 
75 (Immediate) 8.817 8.930 9.050 

 
Table 5.17 � Deferred/immediate annuity values based on GAD projections applied to the 

2005 England and Wales female mortality curve fitted in this thesis, using the log-linear 
extrapolation method � level single life annuity of 1 p.a. payable annually in advance from age 

65 and valued using 4.5% p.a. interest 
 

Age in 2005 LLE Principal HLE 
35 (Deferred) 3.429 3.672 3.924 
45 (Deferred) 5.393 5.641 5.904 
55 (Deferred) 8.444 8.661 8.893 

65 (Immediate) 13.873 14.026 14.191 
75 (Immediate) 9.820 9.894 9.971 
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Table 5.18 � ICA capital calculations for deferred/immediate annuities and comparisons with 
the annuity value distributions obtained in Section 5.5, as shown in Table 5.3 for CMI data, 

Table 5.5 for England and Wales male data and Table 5.7 for England and Wales female data 
 

Data set Age in 
2005 

Mean 
annuity 

value from 
Section 5.5

ICA capital Mean 
annuity 
value + 

ICA capital 

Percentile 
of 

distribution 
in Section 

5.5 

95th 

percentile 

CMI 35 4.209 0.047 4.256 64% 4.431 
E&W Male 35 3.374 0.055 3.430 69% 3.595 

E&W Female 35 3.566 0.057 3.623 69% 3.783 
CMI 45 6.249 0.075 6.323 67% 6.542 

E&W Male 45 5.055 0.084 5.140 69% 5.332 
E&W Female 45 5.473 0.083 5.557 69% 5.749 

CMI 55 9.224 0.125 9.349 69% 9.652 
E&W Male 55 7.669 0.128 7.797 73% 8.016 

E&W Female 55 8.379 0.126 8.505 71% 8.722 
CMI 65 14.305 0.218 14.523 73% 14.845 

E&W Male 65 12.591 0.184 12.775 80% 12.956 
E&W Female 65 13.656 0.185 13.841 76% 14.089 

CMI 75 10.458 0.336 10.794 80% 11.109 
E&W Male 75 8.842 0.234 9.076 85% 9.219 

E&W Female 75 9.805 0.246 10.051 83% 10.212 
 

Table 5.19 � Coefficients of the )(
2006

iZ , for i = 0,3,4,5, in the expressions for C(x) for each age 
x and each data set 

 
Data set Age in 

2005, x 
Coefficient of 

)0(
2006Z  

Coefficient of 
)3(

2006Z  
Coefficient of 

)4(
2006Z  

Coefficient of 
)5(

2006Z  
CMI 35 -0.00127 -0.02316 -0.00689 0.00097 

E&W Male 35 -0.00280 -0.02603 -0.00282 0.00213 
E&W Female 35 -0.00490 -0.02883 -0.00427 0.00136 

CMI 45 -0.00189 -0.03861 -0.01728 0.00377 
E&W Male 45 -0.00381 -0.04098 -0.00768 0.00589 

E&W Female 45 -0.00664 -0.04391 -0.01196 0.00373 
CMI 55 -0.00285 -0.06245 -0.04386 0.00924 

E&W Male 55 -0.00478 -0.06209 -0.02050 0.01149 
E&W Female 55 -0.00849 -0.06567 -0.03047 0.00632 

CMI 65 -0.00331 -0.08950 -0.10241 -0.00180 
E&W Male 65 -0.00422 -0.08154 -0.04728 0.00479 

E&W Female 65 -0.00744 -0.08528 -0.06634 -0.00197 
CMI 75 -0.00219 -0.10451 -0.18576 -0.06768 

E&W Male 75 -0.00233 -0.08440 -0.07882 -0.03246 
E&W Female 75 -0.00433 -0.09226 -0.11122 -0.03176 

 
Table 5.20 � Diversification benefits from a portfolio of deferred/immediate annuities with 

equal numbers of annuitants aged 35, 45, 55, 65 and 75 in 2005, compared with each age 
separately  

 
Data set Undiversified ICA capital Diversified ICA capital Diversification benefit 

CMI 0.8016 0.7526 0.0490 
E&W Male 0.6852 0.6670 0.0182 

E&W Female 0.6975 0.6746 0.0229 
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Table 5.21 � Correlation coefficients between C(x) and C(y) for different ages x and y, for 
CMI data  

 
x/y 35 45 55 65 75 
35 1     
45 0.8056 1    
55 0.4206 0.6667 1   
65 0.0477 0.2615 0.6021 1  
75 -0.0482 0.0421 0.2237 0.5722 1 

 
Table 5.22 � Correlation coefficients between C(x) and C(y) for different ages x and y, for 

England and Wales male data  
 

x/y 35 45 55 65 75 
35 1     
45 0.9012 1    
55 0.7474 0.8620 1   
65 0.6395 0.7398 0.8734 1  
75 0.6867 0.7296 0.7905 0.8953 1 

 
Table 5.23 � Correlation coefficients between C(x) and C(y) for different ages x and y, for 

England and Wales female data  
 

x/y 35 45 55 65 75 
35 1     
45 0.8557 1    
55 0.6339 0.8016 1   
65 0.4216 0.5751 0.7796 1  
75 0.3505 0.4513 0.5999 0.8025 1 
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Table 5.24 � Investigation of the accuracy of Approximation 1 for CMI data � age in 2005 (i) 
35, (ii) 45, (iii) 55 � column (1) = �deterministic� probability of surviving 2006, (2) = linear 

approximation to conditional probability of surviving 2006, (3) = actual conditional probability 
of surviving 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute error in approximation of (3) by 

(2), (7) = percentage error in approximation of (3) by (2) 
 
(i) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9994846 0.9994813 0.9994807 -0.0000033 -0.0000040 0.0000007 0.00007% 
2 0.9994846 0.9994822 0.9994806 -0.0000024 -0.0000040 0.0000016 0.00016% 
3 0.9994846 0.9995019 0.9995019 0.0000173 0.0000173 0.0000000 0.00000% 
4 0.9994846 0.9994488 0.9994484 -0.0000358 -0.0000362 0.0000004 0.00004% 
5 0.9994846 0.9995180 0.9995179 0.0000333 0.0000332 0.0000001 0.00001% 
6 0.9994846 0.9993800 0.9993797 -0.0001046 -0.0001049 0.0000003 0.00003% 
7 0.9994846 0.9994415 0.9994404 -0.0000431 -0.0000442 0.0000011 0.00011% 
8 0.9994846 0.9994569 0.9994568 -0.0000278 -0.0000278 0.0000000 0.00000% 
9 0.9994846 0.9996093 0.9996009 0.0001247 0.0001162 0.0000085 0.00085% 
10 0.9994846 0.9994455 0.9994455 -0.0000391 -0.0000391 0.0000000 0.00000% 
11 0.9994846 0.9994770 0.9994770 -0.0000076 -0.0000076 0.0000000 0.00000% 
12 0.9994846 0.9994840 0.9994840 -0.0000006 -0.0000006 0.0000000 0.00000% 
13 0.9994846 0.9994856 0.9994856 0.0000010 0.0000009 0.0000000 0.00000% 
14 0.9994846 0.9994841 0.9994841 -0.0000005 -0.0000005 0.0000000 0.00000% 

 
(ii) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9990114 0.9989917 0.9989910 -0.0000197 -0.0000204 0.0000007 0.00007% 
2 0.9990114 0.9989708 0.9989679 -0.0000406 -0.0000435 0.0000029 0.00029% 
3 0.9990114 0.9990130 0.9990129 0.0000016 0.0000014 0.0000002 0.00002% 
4 0.9990114 0.9989603 0.9989597 -0.0000511 -0.0000517 0.0000005 0.00005% 
5 0.9990114 0.9990417 0.9990417 0.0000303 0.0000303 0.0000000 0.00000% 
6 0.9990114 0.9988982 0.9988980 -0.0001132 -0.0001134 0.0000002 0.00002% 
7 0.9990114 0.9989439 0.9989424 -0.0000675 -0.0000690 0.0000015 0.00015% 
8 0.9990114 0.9990068 0.9990063 -0.0000046 -0.0000051 0.0000005 0.00005% 
9 0.9990114 0.9990779 0.9990686 0.0000665 0.0000572 0.0000094 0.00094% 

10 0.9990114 0.9989819 0.9989818 -0.0000295 -0.0000296 0.0000001 0.00001% 
11 0.9990114 0.9990038 0.9990038 -0.0000076 -0.0000076 0.0000000 0.00000% 
12 0.9990114 0.9990089 0.9990089 -0.0000025 -0.0000025 0.0000000 0.00000% 
13 0.9990114 0.9990139 0.9990139 0.0000025 0.0000025 0.0000000 0.00000% 
14 0.9990114 0.9990120 0.9990120 0.0000006 0.0000006 0.0000000 0.00000% 

 
(iii) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9970823 0.9970386 0.9970381 -0.0000436 -0.0000442 0.0000006 0.00006% 
2 0.9970823 0.9969422 0.9969371 -0.0001400 -0.0001451 0.0000051 0.00051% 
3 0.9970823 0.9969787 0.9969758 -0.0001036 -0.0001064 0.0000029 0.00029% 
4 0.9970823 0.9970164 0.9970161 -0.0000659 -0.0000662 0.0000003 0.00003% 
5 0.9970823 0.9970599 0.9970594 -0.0000223 -0.0000229 0.0000005 0.00005% 
6 0.9970823 0.9969642 0.9969641 -0.0001181 -0.0001181 0.0000001 0.00001% 
7 0.9970823 0.9969905 0.9969896 -0.0000918 -0.0000926 0.0000008 0.00008% 
8 0.9970823 0.9971752 0.9971722 0.0000930 0.0000899 0.0000030 0.00030% 
9 0.9970823 0.9971156 0.9971114 0.0000333 0.0000292 0.0000041 0.00041% 

10 0.9970823 0.9970901 0.9970896 0.0000079 0.0000074 0.0000005 0.00005% 
11 0.9970823 0.9970745 0.9970745 -0.0000078 -0.0000078 0.0000000 0.00000% 
12 0.9970823 0.9970719 0.9970718 -0.0000104 -0.0000104 0.0000000 0.00000% 
13 0.9970823 0.9970857 0.9970857 0.0000035 0.0000034 0.0000000 0.00000% 
14 0.9970823 0.9970904 0.9970904 0.0000082 0.0000082 0.0000000 0.00000% 
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Table 5.24 (continued) � Investigation of the accuracy of Approximation 1 for CMI data � age 
in 2005 (iv) 65, (v) 75 � column (1) = �deterministic� probability of surviving 2006, (2) = linear 
approximation to conditional probability of surviving 2006, (3) = actual conditional probability 

of surviving 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute error in approximation of (3) by 
(2), (7) = percentage error in approximation of (3) by (2) 

  
(iv) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9908489 0.9907333 0.9907324 -0.0001156 -0.0001165 0.0000009 0.00009% 
2 0.9908489 0.9904451 0.9904348 -0.0004039 -0.0004141 0.0000103 0.00104% 
3 0.9908489 0.9903276 0.9903109 -0.0005213 -0.0005380 0.0000167 0.00168% 
4 0.9908489 0.9908671 0.9908670 0.0000182 0.0000181 0.0000001 0.00001% 
5 0.9908489 0.9905800 0.9905750 -0.0002689 -0.0002740 0.0000051 0.00051% 
6 0.9908489 0.9907531 0.9907531 -0.0000958 -0.0000958 0.0000000 0.00000% 
7 0.9908489 0.9908468 0.9908468 -0.0000021 -0.0000022 0.0000000 0.00000% 
8 0.9908489 0.9911812 0.9911738 0.0003322 0.0003248 0.0000074 0.00074% 
9 0.9908489 0.9911045 0.9911041 0.0002555 0.0002551 0.0000004 0.00004% 
10 0.9908489 0.9909558 0.9909546 0.0001069 0.0001057 0.0000012 0.00012% 
11 0.9908489 0.9908415 0.9908415 -0.0000075 -0.0000075 0.0000000 0.00000% 
12 0.9908489 0.9908130 0.9908129 -0.0000360 -0.0000361 0.0000001 0.00001% 
13 0.9908489 0.9908370 0.9908370 -0.0000119 -0.0000120 0.0000000 0.00000% 
14 0.9908489 0.9908772 0.9908772 0.0000283 0.0000282 0.0000000 0.00000% 

 
(v) 

 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9713826 0.9706270 0.9706167 -0.0007555 -0.0007658 0.0000103 0.00106% 
2 0.9713826 0.9699484 0.9699110 -0.0014342 -0.0014716 0.0000374 0.00385% 
3 0.9713826 0.9695911 0.9695330 -0.0017915 -0.0018496 0.0000581 0.00599% 
4 0.9713826 0.9719137 0.9719083 0.0005311 0.0005257 0.0000054 0.00055% 
5 0.9713826 0.9703751 0.9703562 -0.0010075 -0.0010264 0.0000189 0.00195% 
6 0.9713826 0.9711205 0.9711200 -0.0002621 -0.0002625 0.0000005 0.00005% 
7 0.9713826 0.9718347 0.9718308 0.0004522 0.0004482 0.0000040 0.00041% 
8 0.9713826 0.9718817 0.9718769 0.0004992 0.0004943 0.0000049 0.00050% 
9 0.9713826 0.9723751 0.9723634 0.0009925 0.0009808 0.0000117 0.00120% 

10 0.9713826 0.9716112 0.9716099 0.0002286 0.0002274 0.0000013 0.00013% 
11 0.9713826 0.9713753 0.9713753 -0.0000073 -0.0000073 0.0000000 0.00000% 
12 0.9713826 0.9712679 0.9712676 -0.0001147 -0.0001149 0.0000002 0.00002% 
13 0.9713826 0.9712684 0.9712681 -0.0001142 -0.0001144 0.0000002 0.00002% 
14 0.9713826 0.9714095 0.9714094 0.0000269 0.0000269 0.0000000 0.00000% 
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Table 5.25 � Investigation of the accuracy of Approximation 1 for England and Wales male 
data � age in 2005 (i) 35, (ii) 45, (iii) 55 � column (1) = �deterministic� probability of surviving 

2006, (2) = linear approximation to conditional probability of surviving 2006, (3) = actual 
conditional probability of surviving 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute error in 

approximation of (3) by (2), (7) = percentage error in approximation of (3) by (2) 
 
(i) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9989185 0.9989045 0.9989042 -0.0000140 -0.0000144 0.0000003 0.00003% 
2 0.9989185 0.9989009 0.9989002 -0.0000176 -0.0000184 0.0000007 0.00007% 
3 0.9989185 0.9989362 0.9989361 0.0000176 0.0000176 0.0000000 0.00000% 
4 0.9989185 0.9988888 0.9988887 -0.0000297 -0.0000298 0.0000001 0.00001% 
5 0.9989185 0.9989448 0.9989448 0.0000263 0.0000262 0.0000000 0.00000% 
6 0.9989185 0.9988576 0.9988575 -0.0000610 -0.0000610 0.0000000 0.00000% 
7 0.9989185 0.9988778 0.9988774 -0.0000408 -0.0000412 0.0000004 0.00004% 
8 0.9989185 0.9989038 0.9989038 -0.0000147 -0.0000148 0.0000000 0.00000% 
9 0.9989185 0.9989290 0.9989190 0.0000105 0.0000005 0.0000100 0.00100% 
10 0.9989185 0.9988994 0.9988993 -0.0000191 -0.0000192 0.0000001 0.00001% 
11 0.9989185 0.9989131 0.9989131 -0.0000054 -0.0000054 0.0000000 0.00000% 
12 0.9989185 0.9989167 0.9989167 -0.0000018 -0.0000018 0.0000000 0.00000% 
13 0.9989185 0.9989205 0.9989205 0.0000020 0.0000020 0.0000000 0.00000% 
14 0.9989185 0.9989173 0.9989173 -0.0000012 -0.0000012 0.0000000 0.00000% 

 
(ii) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9977385 0.9977071 0.9977066 -0.0000315 -0.0000319 0.0000004 0.00004% 
2 0.9977385 0.9976738 0.9976721 -0.0000648 -0.0000664 0.0000017 0.00017% 
3 0.9977385 0.9977301 0.9977300 -0.0000084 -0.0000085 0.0000001 0.00001% 
4 0.9977385 0.9976909 0.9976906 -0.0000476 -0.0000479 0.0000002 0.00002% 
5 0.9977385 0.9977569 0.9977569 0.0000184 0.0000184 0.0000000 0.00000% 
6 0.9977385 0.9976667 0.9976667 -0.0000718 -0.0000718 0.0000000 0.00000% 
7 0.9977385 0.9976700 0.9976693 -0.0000685 -0.0000692 0.0000007 0.00007% 
8 0.9977385 0.9977574 0.9977569 0.0000188 0.0000184 0.0000004 0.00004% 
9 0.9977385 0.9976922 0.9976843 -0.0000463 -0.0000542 0.0000079 0.00079% 

10 0.9977385 0.9977321 0.9977320 -0.0000064 -0.0000065 0.0000001 0.00001% 
11 0.9977385 0.9977331 0.9977331 -0.0000054 -0.0000054 0.0000000 0.00000% 
12 0.9977385 0.9977334 0.9977334 -0.0000051 -0.0000051 0.0000000 0.00000% 
13 0.9977385 0.9977417 0.9977417 0.0000032 0.0000032 0.0000000 0.00000% 
14 0.9977385 0.9977395 0.9977395 0.0000010 0.0000010 0.0000000 0.00000% 

 
(iii) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9943192 0.9942376 0.9942369 -0.0000816 -0.0000824 0.0000008 0.00008% 
2 0.9943192 0.9941118 0.9941071 -0.0002074 -0.0002121 0.0000047 0.00047% 
3 0.9943192 0.9941936 0.9941918 -0.0001256 -0.0001274 0.0000018 0.00018% 
4 0.9943192 0.9942373 0.9942369 -0.0000819 -0.0000823 0.0000004 0.00004% 
5 0.9943192 0.9942916 0.9942914 -0.0000276 -0.0000279 0.0000002 0.00002% 
6 0.9943192 0.9941949 0.9941946 -0.0001243 -0.0001246 0.0000003 0.00003% 
7 0.9943192 0.9941944 0.9941933 -0.0001248 -0.0001259 0.0000011 0.00011% 
8 0.9943192 0.9944371 0.9944353 0.0001179 0.0001161 0.0000018 0.00019% 
9 0.9943192 0.9942305 0.9942261 -0.0000888 -0.0000931 0.0000044 0.00044% 

10 0.9943192 0.9943429 0.9943426 0.0000237 0.0000234 0.0000003 0.00003% 
11 0.9943192 0.9943137 0.9943137 -0.0000055 -0.0000055 0.0000000 0.00000% 
12 0.9943192 0.9943046 0.9943046 -0.0000146 -0.0000146 0.0000000 0.00000% 
13 0.9943192 0.9943221 0.9943221 0.0000028 0.0000028 0.0000000 0.00000% 
14 0.9943192 0.9943282 0.9943282 0.0000090 0.0000090 0.0000000 0.00000% 
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Table 5.25 (continued) � Investigation of the accuracy of Approximation 1 for England and 
Wales male data � age in 2005 (iv) 65, (v) 75 � column (1) = �deterministic� probability of 

surviving 2006, (2) = linear approximation to conditional probability of surviving 2006, (3) = 
actual conditional probability of surviving 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute 

error in approximation of (3) by (2), (7) = percentage error in approximation of (3) by (2) 
  
(iv) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9854343 0.9851603 0.9851575 -0.0002739 -0.0002767 0.0000028 0.00028% 
2 0.9854343 0.9848010 0.9847861 -0.0006333 -0.0006481 0.0000148 0.00151% 
3 0.9854343 0.9849282 0.9849187 -0.0005061 -0.0005156 0.0000095 0.00096% 
4 0.9854343 0.9853371 0.9853369 -0.0000971 -0.0000974 0.0000002 0.00002% 
5 0.9854343 0.9852346 0.9852329 -0.0001996 -0.0002013 0.0000017 0.00017% 
6 0.9854343 0.9851685 0.9851671 -0.0002658 -0.0002672 0.0000014 0.00014% 
7 0.9854343 0.9852360 0.9852348 -0.0001983 -0.0001994 0.0000011 0.00012% 
8 0.9854343 0.9857621 0.9857579 0.0003279 0.0003236 0.0000042 0.00043% 
9 0.9854343 0.9853184 0.9853165 -0.0001158 -0.0001178 0.0000019 0.00020% 
10 0.9854343 0.9855286 0.9855281 0.0000944 0.0000938 0.0000005 0.00005% 
11 0.9854343 0.9854290 0.9854290 -0.0000052 -0.0000052 0.0000000 0.00000% 
12 0.9854343 0.9853952 0.9853951 -0.0000391 -0.0000391 0.0000001 0.00001% 
13 0.9854343 0.9854250 0.9854250 -0.0000093 -0.0000093 0.0000000 0.00000% 
14 0.9854343 0.9854574 0.9854574 0.0000232 0.0000232 0.0000000 0.00000% 

 
(v) 

 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9592526 0.9580728 0.9580556 -0.0011797 -0.0011970 0.0000173 0.00180% 
2 0.9592526 0.9571410 0.9570853 -0.0021116 -0.0021673 0.0000557 0.00582% 
3 0.9592526 0.9575823 0.9575475 -0.0016703 -0.0017050 0.0000348 0.00363% 
4 0.9592526 0.9593683 0.9593681 0.0001157 0.0001155 0.0000002 0.00002% 
5 0.9592526 0.9584759 0.9584681 -0.0007767 -0.0007845 0.0000078 0.00081% 
6 0.9592526 0.9586729 0.9586698 -0.0005797 -0.0005828 0.0000032 0.00033% 
7 0.9592526 0.9590387 0.9590382 -0.0002139 -0.0002144 0.0000005 0.00005% 
8 0.9592526 0.9598799 0.9598748 0.0006273 0.0006223 0.0000051 0.00053% 
9 0.9592526 0.9585970 0.9585896 -0.0006556 -0.0006630 0.0000074 0.00077% 

10 0.9592526 0.9595428 0.9595416 0.0002902 0.0002890 0.0000012 0.00013% 
11 0.9592526 0.9592474 0.9592474 -0.0000052 -0.0000052 0.0000000 0.00000% 
12 0.9592526 0.9591427 0.9591426 -0.0001099 -0.0001100 0.0000001 0.00002% 
13 0.9592526 0.9591790 0.9591789 -0.0000736 -0.0000737 0.0000001 0.00001% 
14 0.9592526 0.9592670 0.9592670 0.0000144 0.0000144 0.0000000 0.00000% 
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Table 5.26 � Investigation of the accuracy of Approximation 1 for England and Wales female 
data � age in 2005 (i) 35, (ii) 45, (iii) 55 � column (1) = �deterministic� probability of surviving 

2006, (2) = linear approximation to conditional probability of surviving 2006, (3) = actual 
conditional probability of surviving 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute error in 

approximation of (3) by (2), (7) = percentage error in approximation of (3) by (2) 
 
(i) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9994206 0.9994049 0.9994046 -0.0000157 -0.0000160 0.0000004 0.00004% 
2 0.9994206 0.9994011 0.9994004 -0.0000195 -0.0000203 0.0000008 0.00008% 
3 0.9994206 0.9994415 0.9994415 0.0000209 0.0000208 0.0000000 0.00000% 
4 0.9994206 0.9993899 0.9993899 -0.0000307 -0.0000307 0.0000000 0.00000% 
5 0.9994206 0.9994481 0.9994481 0.0000275 0.0000275 0.0000000 0.00000% 
6 0.9994206 0.9993654 0.9993642 -0.0000552 -0.0000565 0.0000012 0.00012% 
7 0.9994206 0.9993778 0.9993776 -0.0000429 -0.0000430 0.0000001 0.00001% 
8 0.9994206 0.9994071 0.9994069 -0.0000136 -0.0000138 0.0000002 0.00002% 
9 0.9994206 0.9994087 0.9993872 -0.0000119 -0.0000334 0.0000214 0.00215% 
10 0.9994206 0.9994041 0.9994037 -0.0000165 -0.0000169 0.0000004 0.00004% 
11 0.9994206 0.9994123 0.9994123 -0.0000083 -0.0000083 0.0000000 0.00000% 
12 0.9994206 0.9994178 0.9994178 -0.0000028 -0.0000028 0.0000000 0.00000% 
13 0.9994206 0.9994249 0.9994249 0.0000043 0.0000043 0.0000000 0.00000% 
14 0.9994206 0.9994190 0.9994190 -0.0000016 -0.0000016 0.0000000 0.00000% 

 
(ii) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9985563 0.9985340 0.9985337 -0.0000223 -0.0000226 0.0000003 0.00003% 
2 0.9985563 0.9985094 0.9985082 -0.0000469 -0.0000481 0.0000012 0.00012% 
3 0.9985563 0.9985548 0.9985547 -0.0000015 -0.0000016 0.0000001 0.00001% 
4 0.9985563 0.9985154 0.9985154 -0.0000409 -0.0000409 0.0000000 0.00000% 
5 0.9985563 0.9985749 0.9985749 0.0000187 0.0000186 0.0000000 0.00000% 
6 0.9985563 0.9984948 0.9984944 -0.0000614 -0.0000619 0.0000005 0.00005% 
7 0.9985563 0.9984991 0.9984988 -0.0000572 -0.0000574 0.0000002 0.00002% 
8 0.9985563 0.9985689 0.9985684 0.0000127 0.0000121 0.0000006 0.00006% 
9 0.9985563 0.9985260 0.9985131 -0.0000303 -0.0000431 0.0000128 0.00128% 

10 0.9985563 0.9985486 0.9985483 -0.0000077 -0.0000080 0.0000004 0.00004% 
11 0.9985563 0.9985482 0.9985482 -0.0000081 -0.0000081 0.0000000 0.00000% 
12 0.9985563 0.9985510 0.9985510 -0.0000053 -0.0000053 0.0000000 0.00000% 
13 0.9985563 0.9985610 0.9985610 0.0000047 0.0000047 0.0000000 0.00000% 
14 0.9985563 0.9985571 0.9985571 0.0000009 0.0000009 0.0000000 0.00000% 

 
(iii) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9962834 0.9962303 0.9962298 -0.0000530 -0.0000535 0.0000005 0.00005% 
2 0.9962834 0.9961500 0.9961471 -0.0001334 -0.0001363 0.0000029 0.00029% 
3 0.9962834 0.9962115 0.9962105 -0.0000719 -0.0000729 0.0000010 0.00010% 
4 0.9962834 0.9962185 0.9962183 -0.0000649 -0.0000651 0.0000002 0.00002% 
5 0.9962834 0.9962773 0.9962771 -0.0000061 -0.0000063 0.0000002 0.00002% 
6 0.9962834 0.9961764 0.9961764 -0.0001070 -0.0001070 0.0000000 0.00000% 
7 0.9962834 0.9961883 0.9961877 -0.0000951 -0.0000957 0.0000005 0.00005% 
8 0.9962834 0.9963521 0.9963508 0.0000687 0.0000674 0.0000013 0.00013% 
9 0.9962834 0.9962487 0.9962425 -0.0000347 -0.0000409 0.0000062 0.00062% 

10 0.9962834 0.9962886 0.9962883 0.0000052 0.0000049 0.0000003 0.00003% 
11 0.9962834 0.9962750 0.9962750 -0.0000084 -0.0000084 0.0000000 0.00000% 
12 0.9962834 0.9962715 0.9962715 -0.0000119 -0.0000119 0.0000000 0.00000% 
13 0.9962834 0.9962867 0.9962867 0.0000033 0.0000033 0.0000000 0.00000% 
14 0.9962834 0.9962895 0.9962895 0.0000062 0.0000062 0.0000000 0.00000% 
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Table 5.26 (continued) � Investigation of the accuracy of Approximation 1 for England and 
Wales female data � age in 2005 (iv) 65, (v) 75 � column (1) = �deterministic� probability of 
surviving 2006, (2) = linear approximation to conditional probability of surviving 2006, (3) = 
actual conditional probability of surviving 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute 

error in approximation of (3) by (2), (7) = percentage error in approximation of (3) by (2) 
  
(iv) 
 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9908891 0.9907113 0.9907095 -0.0001778 -0.0001797 0.0000019 0.00019% 
2 0.9908891 0.9904959 0.9904869 -0.0003932 -0.0004022 0.0000090 0.00091% 
3 0.9908891 0.9906073 0.9906026 -0.0002818 -0.0002865 0.0000047 0.00047% 
4 0.9908891 0.9907928 0.9907925 -0.0000963 -0.0000966 0.0000003 0.00003% 
5 0.9908891 0.9908061 0.9908055 -0.0000830 -0.0000837 0.0000007 0.00007% 
6 0.9908891 0.9906266 0.9906253 -0.0002625 -0.0002639 0.0000014 0.00014% 
7 0.9908891 0.9907205 0.9907194 -0.0001686 -0.0001697 0.0000011 0.00011% 
8 0.9908891 0.9910552 0.9910531 0.0001660 0.0001640 0.0000020 0.00021% 
9 0.9908891 0.9909036 0.9909022 0.0000145 0.0000131 0.0000014 0.00014% 
10 0.9908891 0.9909085 0.9909083 0.0000194 0.0000192 0.0000002 0.00002% 
11 0.9908891 0.9908813 0.9908813 -0.0000078 -0.0000078 0.0000000 0.00000% 
12 0.9908891 0.9908620 0.9908619 -0.0000272 -0.0000272 0.0000000 0.00000% 
13 0.9908891 0.9908800 0.9908800 -0.0000092 -0.0000092 0.0000000 0.00000% 
14 0.9908891 0.9909027 0.9909027 0.0000136 0.0000136 0.0000000 0.00000% 

 
(v) 

 
Test (1) (2) (3) (4) (5) (6) (7) 

1 0.9730089 0.9721838 0.9721711 -0.0008252 -0.0008379 0.0000127 0.00131% 
2 0.9730089 0.9715429 0.9715025 -0.0014660 -0.0015064 0.0000404 0.00416% 
3 0.9730089 0.9719583 0.9719375 -0.0010506 -0.0010714 0.0000208 0.00214% 
4 0.9730089 0.9729045 0.9729044 -0.0001044 -0.0001046 0.0000001 0.00001% 
5 0.9730089 0.9726424 0.9726396 -0.0003665 -0.0003694 0.0000029 0.00029% 
6 0.9730089 0.9721282 0.9721173 -0.0008807 -0.0008917 0.0000109 0.00112% 
7 0.9730089 0.9726394 0.9726373 -0.0003696 -0.0003717 0.0000021 0.00022% 
8 0.9730089 0.9733210 0.9733189 0.0003121 0.0003099 0.0000021 0.00022% 
9 0.9730089 0.9730742 0.9730740 0.0000653 0.0000650 0.0000002 0.00003% 

10 0.9730089 0.9730318 0.9730317 0.0000228 0.0000227 0.0000001 0.00001% 
11 0.9730089 0.9730009 0.9730009 -0.0000081 -0.0000081 0.0000000 0.00000% 
12 0.9730089 0.9729313 0.9729312 -0.0000776 -0.0000778 0.0000001 0.00001% 
13 0.9730089 0.9729352 0.9729351 -0.0000738 -0.0000739 0.0000001 0.00001% 
14 0.9730089 0.9730175 0.9730175 0.0000086 0.0000086 0.0000000 0.00000% 
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Table 5.27 � Investigation of the accuracy of Approximation 2 for CMI data � age in 2005 (i) 
35, (ii) 45, (iii) 55 � column (1) = �deterministic� mean annuity value at end of 2006, (2) = linear 
approximation to conditional mean annuity value at end of 2006, (3) = actual conditional mean 

annuity value at end of 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute error in 
approximation of (3) by (2), (7) = percentage error in approximation of (3) by (2) 

 
(i) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 4.38954 4.36616 4.36608 -0.02338 -0.02346 0.00008 0.0017% 
2 4.38954 4.34827 4.34797 -0.04127 -0.04157 0.00029 0.0067% 
3 4.38954 4.36363 4.36346 -0.02591 -0.02608 0.00017 0.0039% 
4 4.38954 4.38721 4.38719 -0.00233 -0.00235 0.00002 0.0004% 
5 4.38954 4.37909 4.37905 -0.01045 -0.01049 0.00004 0.0010% 
6 4.38954 4.37794 4.37793 -0.01160 -0.01161 0.00001 0.0003% 
7 4.38954 4.37931 4.37926 -0.01023 -0.01028 0.00005 0.0011% 
8 4.38954 4.40163 4.40155 0.01209 0.01201 0.00008 0.0018% 
9 4.38954 4.36003 4.35970 -0.02951 -0.02984 0.00033 0.0077% 

10 4.38954 4.39538 4.39537 0.00584 0.00583 0.00002 0.0003% 
11 4.38954 4.38945 4.38945 -0.00009 -0.00009 0.00000 0.0000% 
12 4.38954 4.38723 4.38722 -0.00231 -0.00232 0.00000 0.0000% 
13 4.38954 4.38885 4.38885 -0.00069 -0.00069 0.00000 0.0000% 
14 4.38954 4.38964 4.38964 0.00010 0.00010 0.00000 0.0000% 

 
(ii) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 6.51325 6.47773 6.47768 -0.03552 -0.03556 0.00004 0.0007% 
2 6.51325 6.44945 6.44918 -0.06379 -0.06406 0.00027 0.0042% 
3 6.51325 6.46611 6.46579 -0.04714 -0.04745 0.00032 0.0049% 
4 6.51325 6.51441 6.51439 0.00116 0.00114 0.00002 0.0003% 
5 6.51325 6.49189 6.49180 -0.02135 -0.02144 0.00009 0.0014% 
6 6.51325 6.49701 6.49701 -0.01623 -0.01623 0.00000 0.0000% 
7 6.51325 6.50376 6.50374 -0.00948 -0.00951 0.00003 0.0004% 
8 6.51325 6.53304 6.53286 0.01979 0.01961 0.00018 0.0027% 
9 6.51325 6.48255 6.48243 -0.03070 -0.03082 0.00012 0.0019% 

10 6.51325 6.52278 6.52276 0.00954 0.00951 0.00003 0.0004% 
11 6.51325 6.51311 6.51311 -0.00014 -0.00014 0.00000 0.0000% 
12 6.51325 6.50940 6.50940 -0.00385 -0.00385 0.00000 0.0000% 
13 6.51325 6.51150 6.51150 -0.00175 -0.00175 0.00000 0.0000% 
14 6.51325 6.51362 6.51362 0.00037 0.00037 0.00000 0.0000% 

 
(iii) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 9.63762 9.58712 9.58716 -0.05049 -0.05046 -0.00003 -0.0003% 
2 9.63762 9.54618 9.54609 -0.09144 -0.09153 0.00009 0.0009% 
3 9.63762 9.55252 9.55191 -0.08509 -0.08571 0.00062 0.0065% 
4 9.63762 9.65246 9.65242 0.01484 0.01481 0.00003 0.0004% 
5 9.63762 9.59406 9.59384 -0.04356 -0.04378 0.00022 0.0023% 
6 9.63762 9.61768 9.61769 -0.01993 -0.01992 -0.00001 -0.0001% 
7 9.63762 9.64107 9.64105 0.00346 0.00343 0.00002 0.0003% 
8 9.63762 9.66625 9.66591 0.02863 0.02830 0.00034 0.0035% 
9 9.63762 9.63313 9.63305 -0.00448 -0.00456 0.00008 0.0008% 

10 9.63762 9.65163 9.65158 0.01402 0.01397 0.00005 0.0005% 
11 9.63762 9.63741 9.63741 -0.00021 -0.00021 0.00000 0.0000% 
12 9.63762 9.63145 9.63145 -0.00616 -0.00617 0.00000 0.0000% 
13 9.63762 9.63318 9.63318 -0.00443 -0.00443 0.00000 0.0000% 
14 9.63762 9.63846 9.63846 0.00085 0.00085 0.00000 0.0000% 
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Table 5.27 (continued) � Investigation of the accuracy of Approximation 2 for CMI data � age 
in 2005 (iv) 65, (v) 75 � column (1) = �deterministic� mean annuity value at end of 2006, (2) = 

linear approximation to conditional mean annuity value at end of 2006, (3) = actual conditional 
mean annuity value at end of 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = absolute error in 

approximation of (3) by (2), (7) = percentage error in approximation of (3) by (2) 
 
(iv) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 14.01838 13.94327 13.94344 -0.07510 -0.07493 -0.00017 -0.0012% 
2 14.01838 13.89906 13.89931 -0.11931 -0.11906 -0.00025 -0.0018% 
3 14.01838 13.88801 13.88709 -0.13037 -0.13128 0.00092 0.0066% 
4 14.01838 14.06519 14.06506 0.04681 0.04668 0.00013 0.0009% 
5 14.01838 13.94582 13.94541 -0.07255 -0.07297 0.00042 0.0030% 
6 14.01838 13.99219 13.99221 -0.02618 -0.02616 -0.00002 -0.0001% 
7 14.01838 14.05461 14.05440 0.03623 0.03603 0.00021 0.0015% 
8 14.01838 14.03529 14.03498 0.01691 0.01661 0.00030 0.0022% 
9 14.01838 14.07293 14.07174 0.05455 0.05337 0.00118 0.0084% 

10 14.01838 14.03039 14.03035 0.01202 0.01197 0.00005 0.0003% 
11 14.01838 14.01815 14.01815 -0.00023 -0.00023 0.00000 0.0000% 
12 14.01838 14.00985 14.00985 -0.00852 -0.00853 0.00000 0.0000% 
13 14.01838 14.00821 14.00821 -0.01017 -0.01017 0.00000 0.0000% 
14 14.01838 14.01779 14.01779 -0.00058 -0.00059 0.00000 0.0000% 

 
(v) 

 
Test (1) (2) (3) (4) (5) (6) (7) 

1 10.17410 10.04807 10.04868 -0.12603 -0.12542 -0.00061 -0.0061% 
2 10.17410 10.02132 10.02215 -0.15277 -0.15195 -0.00083 -0.0082% 
3 10.17410 10.02491 10.02438 -0.14919 -0.14972 0.00053 0.0053% 
4 10.17410 10.25984 10.25963 0.08574 0.08554 0.00020 0.0020% 
5 10.17410 10.09007 10.08975 -0.08402 -0.08435 0.00032 0.0032% 
6 10.17410 10.12492 10.12505 -0.04918 -0.04904 -0.00014 -0.0014% 
7 10.17410 10.24239 10.24200 0.06829 0.06791 0.00038 0.0037% 
8 10.17410 10.13223 10.13226 -0.04187 -0.04184 -0.00003 -0.0003% 
9 10.17410 10.25606 10.25430 0.08196 0.08020 0.00176 0.0171% 

10 10.17410 10.16868 10.16867 -0.00542 -0.00543 0.00001 0.0001% 
11 10.17410 10.17395 10.17395 -0.00015 -0.00015 0.00000 0.0000% 
12 10.17410 10.16454 10.16454 -0.00956 -0.00956 0.00000 0.0000% 
13 10.17410 10.15617 10.15617 -0.01793 -0.01793 0.00000 0.0000% 
14 10.17410 10.16685 10.16685 -0.00725 -0.00725 0.00000 0.0000% 
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Table 5.28 � Investigation of the accuracy of Approximation 2 for England and Wales male 
data � age in 2005 (i) 35, (ii) 45, (iii) 55 � column (1) = �deterministic� mean annuity value at 
end of 2006, (2) = linear approximation to conditional mean annuity value at end of 2006, (3) 
= actual conditional mean annuity value at end of 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = 

absolute error in approximation of (3) by (2), (7) = percentage error in approximation of (3) by 
(2) 

 
(i) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 3.52276 3.49756 3.49751 -0.02521 -0.02525 0.00005 0.0013% 
2 3.52276 3.47717 3.47697 -0.04559 -0.04580 0.00021 0.0060% 
3 3.52276 3.49719 3.49710 -0.02558 -0.02567 0.00009 0.0025% 
4 3.52276 3.51767 3.51766 -0.00509 -0.00510 0.00001 0.0003% 
5 3.52276 3.51297 3.51296 -0.00979 -0.00981 0.00002 0.0005% 
6 3.52276 3.51260 3.51260 -0.01016 -0.01016 0.00000 0.0001% 
7 3.52276 3.50835 3.50832 -0.01441 -0.01445 0.00003 0.0009% 
8 3.52276 3.53829 3.53823 0.01552 0.01547 0.00006 0.0016% 
9 3.52276 3.47718 3.47681 -0.04558 -0.04596 0.00037 0.0107% 

10 3.52276 3.53076 3.53074 0.00799 0.00798 0.00001 0.0004% 
11 3.52276 3.52250 3.52250 -0.00026 -0.00026 0.00000 0.0000% 
12 3.52276 3.52016 3.52016 -0.00260 -0.00260 0.00000 0.0000% 
13 3.52276 3.52247 3.52247 -0.00029 -0.00029 0.00000 0.0000% 
14 3.52276 3.52298 3.52298 0.00022 0.00022 0.00000 0.0000% 

 
(ii) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 5.27308 5.23410 5.23407 -0.03897 -0.03901 0.00003 0.0006% 
2 5.27308 5.20116 5.20091 -0.07191 -0.07216 0.00025 0.0048% 
3 5.27308 5.22883 5.22868 -0.04425 -0.04439 0.00014 0.0027% 
4 5.27308 5.26651 5.26649 -0.00657 -0.00658 0.00002 0.0003% 
5 5.27308 5.25532 5.25529 -0.01775 -0.01778 0.00003 0.0005% 
6 5.27308 5.25576 5.25575 -0.01731 -0.01732 0.00001 0.0002% 
7 5.27308 5.25260 5.25256 -0.02047 -0.02052 0.00004 0.0008% 
8 5.27308 5.29854 5.29843 0.02546 0.02535 0.00011 0.0020% 
9 5.27308 5.21260 5.21242 -0.06048 -0.06065 0.00018 0.0034% 

10 5.27308 5.28536 5.28534 0.01229 0.01227 0.00002 0.0003% 
11 5.27308 5.27272 5.27272 -0.00035 -0.00035 0.00000 0.0000% 
12 5.27308 5.26900 5.26899 -0.00408 -0.00408 0.00000 0.0000% 
13 5.27308 5.27229 5.27229 -0.00079 -0.00079 0.00000 0.0000% 
14 5.27308 5.27366 5.27366 0.00059 0.00058 0.00000 0.0000% 

 
(iii) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 8.02286 7.96338 7.96339 -0.05949 -0.05948 -0.00001 -0.0001% 
2 8.02286 7.91255 7.91229 -0.11032 -0.11057 0.00026 0.0032% 
3 8.02286 7.94724 7.94699 -0.07563 -0.07588 0.00025 0.0032% 
4 8.02286 8.01762 8.01760 -0.00524 -0.00526 0.00002 0.0002% 
5 8.02286 7.99065 7.99060 -0.03222 -0.03226 0.00005 0.0006% 
6 8.02286 7.99425 7.99422 -0.02862 -0.02865 0.00003 0.0004% 
7 8.02286 7.99790 7.99786 -0.02496 -0.02500 0.00004 0.0005% 
8 8.02286 8.06138 8.06121 0.03852 0.03834 0.00018 0.0022% 
9 8.02286 7.95332 7.95346 -0.06954 -0.06940 -0.00014 -0.0017% 

10 8.02286 8.04057 8.04056 0.01771 0.01769 0.00002 0.0002% 
11 8.02286 8.02243 8.02243 -0.00044 -0.00044 0.00000 0.0000% 
12 8.02286 8.01674 8.01674 -0.00613 -0.00613 0.00000 0.0000% 
13 8.02286 8.02078 8.02078 -0.00208 -0.00208 0.00000 0.0000% 
14 8.02286 8.02395 8.02395 0.00108 0.00108 0.00000 0.0000% 
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Table 5.28 (continued) � Investigation of the accuracy of Approximation 2 for England and 
Wales male data � age in 2005 (iv) 65, (v) 75 � column (1) = �deterministic� mean annuity 

value at end of 2006, (2) = linear approximation to conditional mean annuity value at end of 
2006, (3) = actual conditional mean annuity value at end of 2006, (4) = (2) � (1), (5) = (3) � 

(1), (6) = absolute error in approximation of (3) by (2), (7) = percentage error in approximation 
of (3) by (2) 

 
(iv) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 12.24807 12.16089 12.16101 -0.08718 -0.08706 -0.00012 -0.0010% 
2 12.24807 12.09734 12.09727 -0.15073 -0.15080 0.00007 0.0006% 
3 12.24807 12.13780 12.13748 -0.11027 -0.11059 0.00032 0.0026% 
4 12.24807 12.25522 12.25522 0.00715 0.00715 0.00000 0.0000% 
5 12.24807 12.19716 12.19710 -0.05091 -0.05097 0.00006 0.0005% 
6 12.24807 12.21214 12.21209 -0.03593 -0.03598 0.00005 0.0004% 
7 12.24807 12.22993 12.22992 -0.01814 -0.01816 0.00002 0.0001% 
8 12.24807 12.28888 12.28871 0.04081 0.04063 0.00017 0.0014% 
9 12.24807 12.17213 12.17255 -0.07594 -0.07552 -0.00042 -0.0035% 

10 12.24807 12.26986 12.26986 0.02179 0.02178 0.00001 0.0001% 
11 12.24807 12.24771 12.24771 -0.00036 -0.00036 0.00000 0.0000% 
12 12.24807 12.24028 12.24028 -0.00779 -0.00779 0.00000 0.0000% 
13 12.24807 12.24339 12.24339 -0.00468 -0.00468 0.00000 0.0000% 
14 12.24807 12.24827 12.24827 0.00020 0.00020 0.00000 0.0000% 

 
(v) 

 
Test (1) (2) (3) (4) (5) (6) (7) 

1 8.49986 8.38437 8.38479 -0.11549 -0.11507 -0.00042 -0.0050% 
2 8.49986 8.32729 8.32791 -0.17258 -0.17196 -0.00062 -0.0075% 
3 8.49986 8.37758 8.37758 -0.12228 -0.12229 0.00000 0.0000% 
4 8.49986 8.53047 8.53050 0.03061 0.03063 -0.00003 -0.0003% 
5 8.49986 8.43822 8.43823 -0.06164 -0.06164 0.00000 0.0000% 
6 8.49986 8.47137 8.47135 -0.02849 -0.02852 0.00002 0.0003% 
7 8.49986 8.50118 8.50118 0.00132 0.00131 0.00000 0.0000% 
8 8.49986 8.51804 8.51798 0.01817 0.01812 0.00005 0.0006% 
9 8.49986 8.39840 8.39925 -0.10147 -0.10062 -0.00085 -0.0101% 

10 8.49986 8.52151 8.52151 0.02164 0.02165 -0.00001 -0.0001% 
11 8.49986 8.49967 8.49967 -0.00020 -0.00020 0.00000 0.0000% 
12 8.49986 8.49204 8.49204 -0.00783 -0.00782 0.00000 0.0000% 
13 8.49986 8.49230 8.49230 -0.00756 -0.00756 0.00000 0.0000% 
14 8.49986 8.49635 8.49635 -0.00351 -0.00351 0.00000 0.0000% 
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Table 5.29 � Investigation of the accuracy of Approximation 2 for England and Wales female 
data � age in 2005 (i) 35, (ii) 45, (iii) 55 � column (1) = �deterministic� mean annuity value at 
end of 2006, (2) = linear approximation to conditional mean annuity value at end of 2006, (3) 
= actual conditional mean annuity value at end of 2006, (4) = (2) � (1), (5) = (3) � (1), (6) = 

absolute error in approximation of (3) by (2), (7) = percentage error in approximation of (3) by 
(2) 

 
(i) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 3.71396 3.68773 3.68766 -0.02623 -0.02630 0.00006 0.0017% 
2 3.71396 3.66715 3.66689 -0.04681 -0.04707 0.00026 0.0070% 
3 3.71396 3.68868 3.68859 -0.02528 -0.02537 0.00009 0.0025% 
4 3.71396 3.70832 3.70832 -0.00563 -0.00564 0.00000 0.0001% 
5 3.71396 3.70467 3.70466 -0.00929 -0.00930 0.00002 0.0005% 
6 3.71396 3.70277 3.70275 -0.01119 -0.01121 0.00002 0.0007% 
7 3.71396 3.69852 3.69850 -0.01544 -0.01546 0.00003 0.0007% 
8 3.71396 3.72908 3.72901 0.01512 0.01505 0.00007 0.0019% 
9 3.71396 3.66623 3.66538 -0.04773 -0.04858 0.00085 0.0233% 

10 3.71396 3.72176 3.72173 0.00780 0.00777 0.00003 0.0008% 
11 3.71396 3.71350 3.71350 -0.00046 -0.00046 0.00000 0.0000% 
12 3.71396 3.71108 3.71108 -0.00287 -0.00288 0.00000 0.0000% 
13 3.71396 3.71352 3.71352 -0.00044 -0.00044 0.00000 0.0000% 
14 3.71396 3.71410 3.71410 0.00014 0.00014 0.00000 0.0000% 

 
(ii) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 5.70037 5.66011 5.66004 -0.04027 -0.04034 0.00007 0.0012% 
2 5.70037 5.62787 5.62752 -0.07251 -0.07285 0.00034 0.0061% 
3 5.70037 5.65840 5.65825 -0.04197 -0.04212 0.00015 0.0027% 
4 5.70037 5.69207 5.69206 -0.00831 -0.00832 0.00001 0.0002% 
5 5.70037 5.68508 5.68505 -0.01529 -0.01532 0.00003 0.0005% 
6 5.70037 5.67817 5.67816 -0.02221 -0.02222 0.00001 0.0002% 
7 5.70037 5.67736 5.67732 -0.02302 -0.02305 0.00004 0.0007% 
8 5.70037 5.72308 5.72297 0.02271 0.02259 0.00011 0.0020% 
9 5.70037 5.64150 5.64091 -0.05888 -0.05947 0.00059 0.0105% 

10 5.70037 5.71060 5.71057 0.01023 0.01020 0.00003 0.0005% 
11 5.70037 5.69976 5.69976 -0.00062 -0.00062 0.00000 0.0000% 
12 5.70037 5.69601 5.69601 -0.00437 -0.00437 0.00000 0.0000% 
13 5.70037 5.69915 5.69915 -0.00122 -0.00122 0.00000 0.0000% 
14 5.70037 5.70074 5.70074 0.00037 0.00037 0.00000 0.0000% 

 
(iii) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 8.75036 8.68769 8.68763 -0.06268 -0.06273 0.00006 0.0007% 
2 8.75036 8.63810 8.63768 -0.11226 -0.11268 0.00042 0.0049% 
3 8.75036 8.68048 8.68023 -0.06988 -0.07013 0.00025 0.0029% 
4 8.75036 8.73936 8.73934 -0.01101 -0.01102 0.00002 0.0002% 
5 8.75036 8.72508 8.72504 -0.02528 -0.02532 0.00004 0.0005% 
6 8.75036 8.70649 8.70647 -0.04388 -0.04389 0.00002 0.0002% 
7 8.75036 8.71739 8.71734 -0.03297 -0.03302 0.00005 0.0006% 
8 8.75036 8.78207 8.78192 0.03171 0.03155 0.00016 0.0018% 
9 8.75036 8.68809 8.68791 -0.06227 -0.06245 0.00018 0.0021% 

10 8.75036 8.76208 8.76205 0.01171 0.01169 0.00002 0.0003% 
11 8.75036 8.74958 8.74958 -0.00078 -0.00078 0.00000 0.0000% 
12 8.75036 8.74388 8.74387 -0.00649 -0.00649 0.00000 0.0000% 
13 8.75036 8.74728 8.74728 -0.00309 -0.00309 0.00000 0.0000% 
14 8.75036 8.75094 8.75094 0.00058 0.00058 0.00000 0.0000% 
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Table 5.29 (continued) � Investigation of the accuracy of Approximation 2 for England and 
Wales female data � age in 2005 (iv) 65, (v) 75 � column (1) = �deterministic� mean annuity 
value at end of 2006, (2) = linear approximation to conditional mean annuity value at end of 
2006, (3) = actual conditional mean annuity value at end of 2006, (4) = (2) � (1), (5) = (3) � 

(1), (6) = absolute error in approximation of (3) by (2), (7) = percentage error in approximation 
of (3) by (2) 

 
(iv) 
 

Test (1) (2) (3) (4) (5) (6) (7) 
1 13.30001 13.20689 13.20689 -0.09312 -0.09312 0.00000 0.0000% 
2 13.30001 13.14210 13.14176 -0.15790 -0.15825 0.00035 0.0026% 
3 13.30001 13.19748 13.19717 -0.10252 -0.10284 0.00032 0.0024% 
4 13.30001 13.29238 13.29236 -0.00763 -0.00764 0.00001 0.0001% 
5 13.30001 13.26237 13.26232 -0.03764 -0.03769 0.00005 0.0004% 
6 13.30001 13.22828 13.22818 -0.07173 -0.07183 0.00010 0.0008% 
7 13.30001 13.26219 13.26214 -0.03782 -0.03786 0.00005 0.0003% 
8 13.30001 13.33162 13.33149 0.03161 0.03148 0.00013 0.0010% 
9 13.30001 13.24541 13.24558 -0.05459 -0.05442 -0.00017 -0.0013% 

10 13.30001 13.30972 13.30972 0.00972 0.00971 0.00001 0.0001% 
11 13.30001 13.29936 13.29936 -0.00065 -0.00065 0.00000 0.0000% 
12 13.30001 13.29176 13.29176 -0.00824 -0.00824 0.00000 0.0000% 
13 13.30001 13.29343 13.29343 -0.00657 -0.00657 0.00000 0.0000% 
14 13.30001 13.29962 13.29962 -0.00038 -0.00038 0.00000 0.0000% 

 
(v) 

 
Test (1) (2) (3) (4) (5) (6) (7) 

1 9.40787 9.28182 9.28209 -0.12606 -0.12579 -0.00027 -0.0029% 
2 9.40787 9.21288 9.21324 -0.19499 -0.19463 -0.00036 -0.0039% 
3 9.40787 9.28254 9.28248 -0.12533 -0.12540 0.00006 0.0007% 
4 9.40787 9.41208 9.41208 0.00421 0.00421 0.00000 0.0000% 
5 9.40787 9.36082 9.36081 -0.04706 -0.04706 0.00001 0.0001% 
6 9.40787 9.31408 9.31402 -0.09379 -0.09385 0.00006 0.0007% 
7 9.40787 9.37452 9.37452 -0.03335 -0.03336 0.00000 0.0000% 
8 9.40787 9.42309 9.42305 0.01522 0.01518 0.00004 0.0004% 
9 9.40787 9.35774 9.35802 -0.05013 -0.04985 -0.00028 -0.0030% 

10 9.40787 9.41204 9.41204 0.00417 0.00417 0.00000 0.0000% 
11 9.40787 9.40751 9.40751 -0.00037 -0.00037 0.00000 0.0000% 
12 9.40787 9.39914 9.39914 -0.00873 -0.00873 0.00000 0.0000% 
13 9.40787 9.39715 9.39715 -0.01072 -0.01072 0.00000 0.0000% 
14 9.40787 9.40452 9.40452 -0.00335 -0.00335 0.00000 0.0000% 
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Figure 5.1 � Projection of the future κ(0) parameters � solid curve = median, dashed curves = 
95% prediction limits (2.5th and 97.5th percentiles) � (i) CMI data, (ii) England and Wales male 

data, (iii) England and Wales female data 
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Figure 5.2 � Projection of the future κ(3) parameters � solid curve = median, dashed curves = 
95% prediction limits (2.5th and 97.5th percentiles) � (i) CMI data, (ii) England and Wales male 

data, (iii) England and Wales female data 
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Figure 5.3 � Projection of the future κ(4) parameters � solid curve = median, dashed curves = 
95% prediction limits (2.5th and 97.5th percentiles) � (i) CMI data, (ii) England and Wales male 

data, (iii) England and Wales female data 
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Figure 5.4 � Projection of the future κ(5) parameters � solid curve = median, dashed curves = 
95% prediction limits (2.5th and 97.5th percentiles) � (i) CMI data, (ii) England and Wales male 

data, (iii) England and Wales female data 
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Figure 5.5 � Projection of the future γ parameters � solid curve = median, dashed curves = 
95% prediction limits (2.5th and 97.5th percentiles) � (i) CMI data, (ii) England and Wales male 

data, (iii) England and Wales female data 
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Figure 5.6 � Extensions of the graphs in Figure 1.2 to future years, using a deterministic 
projection with all the future innovation terms set to zero � (i) CMI data, (ii) England and 

Wales male data, (iii) England and Wales female data 
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Figure 5.7 � Projected forces of mortality for CMI data compared with previously published 
projection bases � age (i) 30, (ii) 50, (iii) 70, (iv) 90. Black solid curve = median, black dashed 
curves = 2.5th and 97.5th percentiles, blue solid curve = Medium Cohort, green solid curve = 

Medium Cohort subject to a 1% underpin, red solid curve = Long Cohort. 
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Figure 5.8 � Projected forces of mortality for England and Wales male data compared with 
GAD projection bases � age (i) 30, (ii) 50, (iii) 70, (iv) 89. Black solid curve = median, black 

dashed curves = 2.5th and 97.5th percentiles, blue solid curve = LLE, green solid curve = 
Principal, red solid curve = HLE. 
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Figure 5.9 � Projected forces of mortality for England and Wales female data compared with 
GAD projection bases � age (i) 30, (ii) 50, (iii) 70, (iv) 89. Black solid curve = median, black 

dashed curves = 2.5th and 97.5th percentiles, blue solid curve = LLE, green solid curve = 
Principal, red solid curve = HLE. 
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Figure 5.10 � Extrapolation of historical mortality to ages above 90 (89 for England and 
Wales data) using the log-linear extrapolation method, before the introduction of gamma 

parameters � (i) CMI data, (ii) England and Wales male data, (iii) England and Wales female 
data 
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Figure 5.11 � Extrapolation of historical mortality to ages above 90 (89 for England and 
Wales data) using the LifeMetrics extrapolation method, before the introduction of gamma 

parameters � (i) CMI data, (ii) England and Wales male data, (iii) England and Wales female 
data 
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Figure 5.12 � Comparison of methods of extrapolating the 2005 mortality curve to ages 
above 90 (89 for England and Wales data), before the introduction of gamma parameters � 

solid curve = log-linear extrapolation method, dashed curve = LifeMetrics extrapolation 
method � (i) CMI data, (ii) England and Wales male data, (iii) England and Wales female data 
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Figure 5.13 � Projected forces of mortality for CMI data under the low improvement 
assumption compared with previously published projection bases � age in 2005 (i) 35, (ii) 45, 

(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = Medium Cohort, green solid curve = Medium Cohort subject to 

a 1% underpin, red solid curve = Long Cohort. 
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Figure 5.14 � Projected forces of mortality for CMI data under the high improvement 
assumption compared with previously published projection bases � age in 2005 (i) 35, (ii) 45, 

(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = Medium Cohort, green solid curve = Medium Cohort subject to 

a 1% underpin, red solid curve = Long Cohort. 
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Figure 5.15 � Projected forces of mortality for England and Wales male data under the low 
improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 45, 
(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.16 � Projected forces of mortality for England and Wales male data under the high 
improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 45, 
(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.17 � Projected forces of mortality for England and Wales female data under the low 
improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 45, 
(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.18 � Projected forces of mortality for England and Wales female data under the high 
improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 45, 
(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.19 � Projected probabilities of survival for CMI data under the low improvement 
assumption compared with previously published projection bases � age in 2005 (i) 35, (ii) 45, 

(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = Medium Cohort, green solid curve = Medium Cohort subject to 

a 1% underpin, red solid curve = Long Cohort. 
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Figure 5.20 � Projected probabilities of survival for CMI data under the high improvement 
assumption compared with previously published projection bases � age in 2005 (i) 35, (ii) 45, 

(iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 
percentiles, blue solid curve = Medium Cohort, green solid curve = Medium Cohort subject to 

a 1% underpin, red solid curve = Long Cohort. 
 

(i) 

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

 

(ii) 

60 80 100 120
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Age

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

 
(iii) 

60 70 80 90 100 110 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

 

(iv) 

70 80 90 100 110 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

 
(v) 

80 90 100 110 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

P
ro

ba
bi

lit
y 

of
 s

ur
vi

va
l

 

 



 171

Figure 5.21 � Projected probabilities of survival for England and Wales male data under the 
low improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 
45, (iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 

percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.22 � Projected probabilities of survival for England and Wales male data under the 
high improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 
45, (iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 

percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.23 � Projected probabilities of survival for England and Wales female data under the 
low improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 
45, (iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 

percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.24 � Projected probabilities of survival for England and Wales female data under the 
high improvement assumption compared with GAD projection bases � age in 2005 (i) 35, (ii) 
45, (iii) 55, (iv) 65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th 

percentiles, blue solid curve = LLE, green solid curve = Principal, red solid curve = HLE. 
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Figure 5.25 � Projected future sizes of a fund set up in 2005 equal to the mean annuity value 
plus ICA capital for CMI data � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 75. Black solid 
curve = median, black dashed curves = 2.5th and 97.5th percentiles, red solid curve = 1 - 

percentile specified in Table 5.18. 
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Figure 5.26 � Projected future sizes of a fund set up in 2005 equal to the mean annuity value 
plus ICA capital for England and Wales male data � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, 

(v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th percentiles, red 
solid curve = 1 - percentile specified in Table 5.18. 
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Figure 5.27 � Projected future sizes of a fund set up in 2005 equal to the mean annuity value 
plus ICA capital for England and Wales female data � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 

65, (v) 75. Black solid curve = median, black dashed curves = 2.5th and 97.5th percentiles, red 
solid curve = 1 - percentile specified in Table 5.18. 
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Figure 5.28 � Scatter diagrams to illustrate the correlation between the values of C(x) at 
different ages x in 2005 for CMI data � (i) 35 v 45, (ii) 35 v 55, (iii) 35 v 65, (iv) 35 v 75 
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Figure 5.28 (continued) � Scatter diagrams to illustrate the correlation between the values of 
C(x) at different ages x in 2005 for CMI data � (v) 45 v 55, (vi) 45 v 65, (vii) 45 v 75, (viii) 55 v 

65, (ix) 55 v 75, (x) 65 v 75 
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Figure 5.29 � Scatter diagrams to illustrate the correlation between the values of C(x) at 
different ages x in 2005 for England and Wales male data � (i) 35 v 45, (ii) 35 v 55, (iii) 35 v 

65, (iv) 35 v 75 
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Figure 5.29 (continued) � Scatter diagrams to illustrate the correlation between the values of 
C(x) at different ages x in 2005 for England and Wales male data � (v) 45 v 55, (vi) 45 v 65, 

(vii) 45 v 75, (viii) 55 v 65, (ix) 55 v 75, (x) 65 v 75 
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Figure 5.30 � Scatter diagrams to illustrate the correlation between the values of C(x) at 
different ages x in 2005 for England and Wales female data � (i) 35 v 45, (ii) 35 v 55, (iii) 35 v 

65, (iv) 35 v 75 
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Figure 5.30 (continued) � Scatter diagrams to illustrate the correlation between the values of 
C(x) at different ages x in 2005 for England and Wales female data � (v) 45 v 55, (vi) 45 v 65, 

(vii) 45 v 75, (viii) 55 v 65, (ix) 55 v 75, (x) 65 v 75 
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Figure 5.31 � Illustration of the accuracy of Approximation 1 for CMI data � columns (4) and 
(5) are as in Table 5.24 � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 75 
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Figure 5.32 � Illustration of the accuracy of Approximation 1 for England and Wales male 
data � columns (4) and (5) are as in Table 5.25 � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 

75 
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Figure 5.33 � Illustration of the accuracy of Approximation 1 for England and Wales female 
data � columns (4) and (5) are as in Table 5.26 � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 

75 
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Figure 5.34 � Illustration of the accuracy of Approximation 2 for CMI data � columns (4) and 
(5) are as in Table 5.27 � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 75 
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Figure 5.35 � Illustration of the accuracy of Approximation 2 for England and Wales male 
data � columns (4) and (5) are as in Table 5.28 � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 

75 
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Figure 5.36 � Illustration of the accuracy of Approximation 2 for England and Wales female 
data � columns (4) and (5) are as in Table 5.29 � age in 2005 (i) 35, (ii) 45, (iii) 55, (iv) 65, (v) 

75 
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6: Conclusions 
 

In Chapter 2, after fitting a number of Gompertz-Makeham models with time-dependent 
coefficients, the kappa parameters, to CMI data, England and Wales male data and England 
and Wales female data, we concluded that the GM(1,3) model gave a satisfactory fit to all 
three data sets and that satisfactory explanations could be given for the shapes of the 
resulting parameter graphs. However, some of the explanations depended upon cohort 
effects, and there were also cohort effects visible in the residuals, particularly for the England 
and Wales data sets. As a result, it was decided to introduce a further parameter γc 
depending on year of birth c into the model, applied to the force of mortality under the 
GM(1,3) model as a multiplicative factor. 
 
Chapter 3 estimated γc, for each year of birth c, as the ratio of the actual number of deaths for 
year of birth c to the expected number of deaths under the model not including gamma 
parameters. For England and Wales data, the improvement in fit achieved by introducing the 
gamma parameters was found to be very significant. For CMI data, the improvement was 
more marginal � it appeared that this was because most of the cohort effects had already 
been captured implicitly via the shapes of the kappa parameter graphs and also because the 
smaller volume of the CMI data made any remaining cohort effects less statistically 
significant. Nevertheless, the similarities between the shapes of the gamma parameter graphs 
obtained for CMI data and for England and Wales data provided justification for introducing 
the gamma parameters for CMI data as well. Further improvement in fit to all three data sets, 
in a pure maximum likelihood sense, could have been achieved by re-estimating the kappa 
parameters following the estimation of the gamma parameters, but this was not implemented 
because it was found that the gamma parameters then reflected effects that were clearly not 
genuine cohort effects. 
 
Chapter 4 fitted univariate time series models to the estimates of both the kappa and the 
gamma parameters. For the κ(3) parameters, representing the general level of mortality in 
each calendar year, there was found to be a significant downward trend, which was greatest 
for CMI data and least for England and Wales female data, and an ARIMA(0,1,1) model was 
used. For the other parameters, an AR(1) model was used. In the case of the κ(0) parameters, 
it was considered appropriate to use standard techniques to estimate the parameters of this 
AR(1) model. In the case of the κ(4) and κ(5) parameters, consideration of the impact of cohort 
effects was used to suggest a long-term mean value which was not necessarily similar to 
what would have been obtained using standard techniques. As the procedure we used to 
estimate the γ parameters was such that their logarithms could be away from zero only over a 
limited period, an AR(1) model with a zero mean value was fitted to the logarithms. The 
reason for fitting a time series model to the logarithms, rather than to the γ parameters 
themselves, was to eliminate the possibility of negative γ parameters. 
 
In Chapter 5, we generated 500 scenarios for future values of the parameters for each data 
set, allowing for the observed correlations between the different kappa series. These 
scenarios were then used to calculate distributions of deferred and immediate annuity values 
for various values of the age in 2005 (the latest year in the data), using a deterministic interest 
rate. The annuity values were highest for CMI data and lowest for England and Wales male 
data, confirming that the mortality differential between assured lives and the general 
population is greater than that between males and females. It was necessary to extrapolate 
the 2005 mortality curve above the highest age in the data, and two different methods of 
doing this were considered. It was also necessary to make an assumption about future 
mortality improvements at ages above the highest age in the data, and two different 
assumptions were again considered to give an indication of the range of potential outcomes. 
Some comparisons were presented of the annuity values against previously published 
projections, starting from the 2005 mortality curves we fitted. In most scenarios, the model of 
this thesis gave higher annuity values than the previously published projections for lives aged 
65 and 75 in 2005 in CMI data, but lower values for England and Wales data for both males 
and females. The model of this thesis generally gave higher future mortality improvements for 
each generation than the previously published projections at ages below the highest age of 
the data, as evidenced by the trend for the annuity values from the model of this thesis to 
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increase relative to the values from the previously published projections as the age in 2005 
decreased below 65. 
 
In Chapter 5 we also applied the model to ICA capital calculations for deferred and immediate 
annuities. The ICA capital values we arrived at were significantly lower than those given by 
the �rule of thumb� of taking the 95th percentile of the distribution of the annuity values over the 
full outstanding lifetime of the annuitants, particularly for groups of annuitants with a long 
future life expectancy. This possibly justifies the use of a lower percentile than the 95th 
percentile, but we listed three factors an insurance company should consider before deciding 
to use a lower percentile. We also calculated diversification benefits in terms of ICA capital for 
an insurer with a portfolio of annuitants of different ages rather than a single age, and we 
found that the benefits were most significant for CMI data and least significant for England 
and Wales male data. 
 
A number of possible topics for further research can be identified: 
 
� Further investigation into the cause of the 1919-20 discontinuity in the gamma 

parameters would be beneficial. We followed Renshaw and Haberman (2006) in 
attributing it to the 1919 influenza epidemic but it is not clear that this would have led 
to reduced mortality for lives born in 1919 and to increased mortality for lives born in 
1920, rather than affecting mortality in some other way. 

 
� It would be valuable to develop mortality models which place cohort effects on an 

equal footing with period effects and which therefore provide an unbiased 
assessment of whether particular features of the data are consequences of period or 
cohort effects. Once such a model has been developed, the problems referred to in 
Chapter 3 with estimating both the period and cohort parameters in a single iterative 
procedure can be expected to be resolved. In developing such a model, it would be 
necessary to avoid the convergence and robustness issues that have been identified 
with the Renshaw and Haberman (2006) model. One possible line of investigation 
would be to impose smoothness of the age, period and/or cohort parameters of the 
Renshaw and Haberman model using P-splines, to avoid differences between 
successive parameter estimates which the data do not provide statistically significant 
evidence to justify. It could be argued that the age parameters are the ones for which 
the use of P-splines is most appropriate, because of the strong prior belief that 
mortality should be an increasing function of age rather than fluctuating from age to 
age and because time series methods are then still available for forecasting future 
period and cohort effects. 

 
� It would be valuable to calculate stochastic projections of future mortality rates taking 

account of both stochastic fluctuations and parameter risk, and hence to quantify the 
likely financial impact of parameter estimation errors. Only stochastic fluctuations 
have been considered in this thesis. 

 
� It would be valuable to develop mortality models incorporating shocks that occur in a 

particular year or for lives born in a particular year, in order to allow for features such 
as the 1919 influenza epidemic without large residuals being required. 
 

� Developing a Bayesian procedure whereby the estimates of the gamma parameters, 
and of the parameters governing both the kappa and gamma time series processes, 
are updated as new data become available would be of value. Simulation from the 
joint posterior distribution would be carried out by Markov chain Monte Carlo, as in 
Czado et al. (2005). 
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Appendix A: Iterative scheme for estimating the parameters of 
Gompertz-Makeham models 

 
We shall describe the iterative scheme by reference to the GM(2,2) case. No new principles 
are involved in fitting the GM(r,s) model for any other values of r and s. 
 
The log-likelihood function is: 
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where c is a constant. 
 
The relevant partial derivatives of the log-likelihood are: 
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Suppose that 4(n-1) iterations have been completed, where n is a positive integer, and that 
the estimates of the kappa parameters so obtained are )()( i

t
i

t ακ = . Note that the )(i
tα  

depend on n. The revised estimates of the kappa parameters after the (4n-3)th iteration, 
)()( i

t
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t βκ = , are then defined as follows, the partial derivatives being evaluated at 
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The revised estimates of the kappa parameters after the (4n-2)th iteration, )()( i
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defined as follows, the partial derivatives being evaluated at )()( i
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The revised estimates of the kappa parameters after the (4n-1)th iteration, )()( i

t
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t δκ = , are 

defined as follows, the partial derivatives being evaluated at )()( i
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The revised estimates of the kappa parameters after the (4n)th iteration, )()( i
t

i
t εκ = , are 

defined as follows, the partial derivatives being evaluated at )()( i
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i
t δκ = : 
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The criteria used to determine when to stop the iterations are described in the main text. 
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Appendix B: Investigations into estimating both the kappa 
and gamma parameters by a single iterative procedure  

 
Under the model we are considering, he force of mortality at age x in calendar year t is: 
 

)]}�)(()(exp[{ 22)5()4()3()0(
xttttxtxt xxxx σκκκκγµ −−+−++= − . 

 
The log-likelihood function is: 
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where a is a constant. 
 
We shall consider two different iterative procedures for maximising this log-likelihood function, 
which we shall refer to as Methods A and B. In both procedures, the starting values of the 
kappa parameters were those estimated from the GM(1,3) model before introducing gamma 
parameters and the starting values of the gamma parameters were all set to 1. We shall show 
the results of applying Methods A and B to England and Wales male data only � similar 
conclusions were reached for the other two data sets. In the England and Wales male data 
set we consider, years of birth observed for less than five years in the data have been 
excluded, as was done in Chapter 3. 
 
In both Method A and Method B, each time the gamma parameters were updated, it was 
done by the Newton-Raphson method, leaving the kappa parameters constant. Similarly, 
each time one of the series of kappa parameters was updated, it was done by the Newton-
Raphson method, leaving the other series of kappa parameters and the gamma parameters 
constant. Thus the procedure was analogous to that described in Appendix A. The difference 
between Methods A and B was in the order in which the different series were updated. In 
Method A, between each update of the gamma parameters, all the kappa series were 
updated once. In Method B, the kappa series were updated repeatedly until a complete loop 
of updating the kappa series, from one step of updating the κ(0) parameters to another, 
changed none of the kappa parameters by more than 10-6. Method A was stopped when a 
complete loop from one step of updating the gamma parameters to another changed none of 
the kappa or gamma parameters by more than 10-6. Method B was found to be slower to 
converge and was stopped when such a loop changed none of the kappa or gamma 
parameters by more than 10-4. Thus it is questionable whether the iterations have been 
allowed to run for long enough in the implementation of Method B. However, we know that we 
started the iterations with reasonable values of the parameters, as the starting values were 
the parameter estimates under the GM(1,3) model before introducing gamma parameters. 
Therefore, if we find that Method B fails to produce sensible parameter values by the time 
none of the kappa or gamma parameters change by more than 10-4, then it is unlikely that it 
will produce sensible parameter values if the iterations are continued any further. 
 
Figures B.1 and B.2 show graphs of the parameter estimates under Methods A and B 
respectively. These figures should be compared with Figure 3.2 for the kappa parameters and 
with Figure 3.7(ii) for the gamma parameters. We see that there are issues with the fitted 
gamma parameters in that, in both Figure B.1(v) and Figure B.2(v), the gamma parameters at 
the extremities of the range of years of birth are over three times greater than at the centre of 
the range. It does not seem plausible that such variations in the gamma parameters result 
from genuine cohort effects. Instead it appears that the gamma parameters are serving to 
widen the range of shapes of the mortality curve as a function of age available in each 
calendar year, which was previously restricted by the GM(1,3) structure. 
 
At the earliest years of birth, the lives concerned only appear in the data towards the top of 
the age range and in the earliest calendar years of the data set. Both Figure B.1 and B.2 
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show low values of the κ(4) and κ(5) parameters in these early years. Thus the high values of 
the gamma parameters are being compensated for by these low κ(4) and κ(5) parameters to 
give mortality rates of the correct magnitude. 
 
At the latest years of birth, the lives concerned only appear in the data towards the bottom of 
the age range and in the latest calendar years of the data set. Both Figure B.1 and Figure B.2 
show low values of the κ(0) and κ(3) parameters in these later years. Thus the high values of 
the gamma parameters are being compensated for by these low κ(0) and κ(3) parameters to 
give mortality rates of the correct magnitude. 
 
For intermediate years of birth, the gamma parameters are significantly less than 1. Mortality 
of the correct magnitude is achieved via high values of the κ(0) and κ(3) parameters in the early 
years, when these lives are towards the bottom of the age range, and via high values of the 
κ(4) and κ(5) parameters in the later years, when these lives are towards the top of the age 
range. 
 
Thus the reasons for the shapes of the graphs in Figures B.1 and B.2 have little to do with the 
underlying factors affecting mortality and naïve extrapolation of these graphs to produce 
future projections is unlikely to give sensible results. We would be more likely to obtain 
sensible results if we were adding a cohort effect to a model that already allowed for a wider 
range of shapes of the mortality curve as a function of age, as introducing the cohort effect 
would then no longer be indirectly performing the function of extending this range. 
 
We should comment on the differences between Figures B.1 and B.2. We might have 
expected that both figures would be identical because both iterations should have converged 
to the same solution. However, we mentioned earlier that the iterations for Method B were 
stopped as soon as none of the parameters moved by more than 10-4, which may have been 
too early to obtain an accurate solution from Method B. An alternative possibility is that the 
likelihood function has multiple maxima, but we do not have sufficient evidence to reach this 
conclusion. There is no reason to doubt the conclusion that it is not appropriate to calculate 
future projections by extrapolating parameter graphs obtained by either Method A or Method 
B. 
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Figure B.1 � Maximum likelihood parameter estimates for the GM(1,3) model extended to 
incorporate a cohort effect with the kappa parameters re-estimated by Method A � England 
and Wales male data � )]}�)(()(exp[{ 22)5()4()3()0(

xttttxtxt xxxx σκκκκγµ −−+−++= −  � 
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Figure B.2 � Maximum likelihood parameter estimates for the GM(1,3) model extended to 
incorporate a cohort effect with the kappa parameters re-estimated by Method B � England 

and Wales male data � )]}�)(()(exp[{ 22)5()4()3()0(
xttttxtxt xxxx σκκκκγµ −−+−++= −  � 
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Appendix C: Time series analysis 
 
C.1 First-order autoregressive and moving average processes 
 
A time series process {Xt} is defined to be stationary if the distribution of Xt is independent of t. 
 
The autocorrelation at lag k of a stationary time series process {Xt} is the coefficient of 
correlation between Xt and Xt-k a s t varies, ),( ktt XX −ρ . 
 
As stated in Section 4.1, a first-order autoregressive process, or AR(1) process, {Xt} is 
defined by: 
 

Xt = µ + α(Xt-1 � µ) + et, 
 

where the et are independent N(0,σ2) random variables and α, µ and σ2 are parameters to be 
estimated, with |α| < 1. The condition |α| < 1 is imposed to ensure that the process is 
stationary. If this condition is not imposed, then the absolute values of the Xt will in general 
increase without limit as t increases. 
 
Let {Xt} be an AR(1) process, and let k be a positive integer. Then for each t, by repeated 
substitution of the defining equation into itself: 
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Taking covariances of both sides with Xt-k and observing that the eu for u > t � k are 
uncorrelated with Xt-k,,we see that the covariance between Xt and Xt-k is: 
 

cov(Xt,,Xt-k) = αk  var(Xt-k). 
 

The autocorrelation of {Xt} at lag k is: 
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However, as the process {Xt} is stationary, var(Xt-k) is independent of k. We therefore 
conclude that: 
 

.),( k
ktt XX αρ =−  

 
Thus if 0 < α < 1, then the autocorrelation function of {Xt} is positive at all lags and decays 
exponentially. This is consistent with the remark we made in Section 4.2 that a positive 
decaying autocorrelation function is characteristic of an AR(1) process. If -1 < α < 0, then the 
autocorrelation function of {Xt} alternates between positive and negative values, with the 
magnitude of the values decaying exponentially. 
 
We also stated in Section 4.1 that a first-order moving average process, or MA(1) process, 
{Xt} is defined by:  
 

Xt = µ + et + βet-1, 
 

where the et are independent N(0,σ2) random variables and β, µ and σ2 are parameters to be 
estimated. It is clear from the definition that {Xt} is stationary. 
 
Let {Xt} be an MA(1) process. The variance of Xt is: 
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var(Xt) = var(µ + et + βet-1) 
 = var(et) + β2 var(et-1), since the et are independent 
 = (1 + β2)σ2. 
 
The covariance between Xt and Xt-1 is: 
 

cov(Xt,Xt-1) = cov(µ + et + βet-1,µ + et-1 + βet-2) 
 = β var(et-1), since the et are independent 
 = βσ2. 
 
The autocorrelation of {Xt} at lag 1 is therefore: 
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For k > 1, the covariance between Xt and Xt-k is: 
 

cov(Xt,Xt-k) = cov(µ + et + βet-1,µ + et-k + βet-k-1) 
 = 0, since the et are independent. 
 
The autocorrelation of {Xt} at lag k is therefore also zero. 
 
These autocorrelations are consistent with the remark we made in Section 4.3 that a 
characteristic feature of an MA(1) process is an autocorrelation at lag 1 which does not 
persist at subsequent lags. 
 
C.2 Sample autocorrelation coefficient 
 
Suppose we have N ordered observations, x1,�,xN, from a time series process {Xt}. Let: 
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For j = 1,�,N � 1, the sample autocorrelation coefficient at lag j, rj, is defined as: 
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It can be shown that if {Xt} is a pure white noise process, i.e. the Xt are independent 
identically distributed normal random variables, then rj is approximately normally distributed 
with mean 0 and variance 1 / N, for all j. We use this result to assess the significance of 
autocorrelations when fitting time series models in Chapter 4. 
 
C.3 Prediction intervals 
 
Suppose that the values Xu = xu for u ≤   t of an AR(1) process {Xt} are known. We shall 
construct a prediction interval for the values Xt+k for k > 0. This prediction interval is used in 
Section 5.2. 
 
We have: 
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Thus Xt+k is normally distributed with mean µ + αk(xt � µ) and variance: 
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A 95% prediction interval for Xt+k, based on the 2.5th and 97.5th percentiles of the distribution 
of Xt+k, is therefore: 
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where Φ is the N(0,1) distribution function. 
 
In Chapter 5 we also use a prediction interval for future values of an ARIMA(0,1,1) process, 
i.e. a process {Xt} such that {Xt  � Xt-1} is an MA(1) process. To this end, let {Xt} be an 
ARIMA(0,1,1) process and suppose the values Xu = xu for u ≤  t are known. For each positive 
integer n, we have: 
 

Xt+n � Xt+n-1 = µ + et+n + βet+n-1, 
 
where the eu are independent N(0,σ2) random variables and β, µ and σ2 are parameters. The 
value of et is assumed to be known. 
 
If k is a fixed positive integer, then summing the above equations for n ≤  k gives: 
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Thus Xt+k is normally distributed with mean xt + kµ + βet and variance: 
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A 95% prediction interval for Xt+k, based on the 2.5th and 97.5th percentiles of the distribution 
of Xt+k, is therefore: 
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Appendix D: The value of an annuity after one year 
 

As per Section 5.6, consider an annuitant who had just attained the age label x at the start of 
calendar year t, where calendar year t � 1 is the last year of the data, and has now survived to 
the end of calendar year t. The (random) value of the liabilities in respect of this annuitant,  
L(t + 1), is: 
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from the high improvement assumption, where v = 1 / 1.045 and a is the maximum age of the 
data set. x1 is the age label at which the annuity commences for a deferred annuity, and is 
equal to x + 1 for an immediate annuity. 
 

Under the log-linear extrapolation method, for j > a � x, ))(exp(0
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λ is determined so as to make 0
1, −txµ  a differentiable function of x at x = a. Therefore: 
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Now by repeated application of the defining equations of the time series models fitted in 
Chapter 4, we have that for j > 0: 
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Note that a small letter z has been used for the innovations for year t as well as for year t � 1 
here as these are assumed to be known by the end of year t. 
 
Thus for j < a � x, 
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Equivalent definitions are: 
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where we define, for xaj −≥ , 
 

{ }.)�)(()(exp))(exp(),( 22)5()4()3(
exp xjtjtjt xaxaajxjtjx σκκκλµ −−+−+−+=++ +++  

 
Thus: 
 

).,(

)]�)(()()()()1([
)())(exp(

),())(exp(),(

exp

22)5()5()5()4()4()4()3()3()3(

)0()0()0(

exp
)0(

jtjx
xazxazz

zajx

jtjxajxjtjxA

xt
j

t
j

t

t
j

jt

++

−−+−+++

−++

+++−+=++ +

µ
σασασβσ

ασλ

µκλ

 

 
Substituting these expressions for A(x + j,t + j) into our formula for L(t + 1) gives L(t + 1) as: 
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after linearisation in the )(l
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Note that the summation terms over the index i are all independent of the )(l

tz  and have the 
form of annuity values. Some of the annuities have payments that vary over time, and others 
are valued at revised interest rates. We now introduce the following notation for the 
summation terms over the index i: 
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