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Abstract

Insurers hope to make profit through pooling policies from a large number of

individuals. Unless the risk in question is similar for all potential customers,

an insurer is exposed to the possibility of adverse selection by attracting only

high-risk individuals. To counter this, insurers have traditionally employed

underwriting principles, identifying suitable risk factors to subdivide their po-

tential customers into homogeneous risk groups, based on which risk-related

premiums can be charged.

In reality, however, insurers may not have all the information reflecting

individuals’ risks due to information asymmetry or restrictions on using cer-

tain risk factors by regulators. In either case, conventional wisdom suggests

that the absence of risk classification in an insurance market is likely to lead

to a vicious circle: increasing premium with the prime aim to recover losses

from over-subscription by high risks would lead to more low risks dropping

out of the market; and eventually leading to a collapse of the whole insurance

system, i.e. an adverse selection spiral. However, this concept is difficult to

reconcile with the successful operation of many insurance markets, even in

the presence of some restrictions on risk classification by regulators.

Theoretical analysis of polices under asymmetric information began in the

1960s and 1970s (Arrow (1963), Pauly (1974), Rothschild & Stiglitz (1976)),

by which time the adverse consequences of information asymmetry had al-
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ready been widely accepted. However, empirical test results of its presence

are mixed and varied by markets.

Arguably from society’s viewpoint, the high risks are those who most need

insurance. That is, if the social purpose of insurance is to compensate the

population’s losses, then insuring high risks contributes more to this purpose

than insuring low risks. In this case, restriction on risk classification may

be reasonable, otherwise premium for high risks would be too high to be

affordable. Thus, the traditional insurers’ risk classification practices might

be considered as contrary to this social purpose.

To highlight this issue, “loss coverage” was introduced in Thomas (2008)

as the expected population losses compensated by insurance. A higher loss cov-

erage indicates that a higher proportion of the population’s expected losses

can be compensated by insurance. This might be a good result for the pop-

ulation as a whole. A corollary of this concept is that, from a public policy

perspective, adverse selection might not always be a bad thing. The author

argued that a moderate degree of adverse selection could be negated by the

positive influence of loss coverage. Therefore, when analysing the impact of

restricting insurance risk classification, loss coverage might be a better mea-

sure than adverse selection.

In this thesis, we model the outcome in an insurance market where a

pooled premium is charged as a result of an absence of risk-classification. The

outcome is characterised by four quantities: equilibrium premium, adverse

selection, loss coverage and social welfare. Social welfare is defined as the

total expected utility of individuals (including those who buy insurance and

those who do not buy insurance) at a given premium. Using a general family

of demand functions (of which iso-elastic demand and negative-exponential
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demand are examples) with a non-decreasing demand elasticity function with

respect to premium, we first analyse the case when low and high risk-groups

have the same constant demand elasticity. Then we generalise the results to

the case where demand elasticities could be different.

In general, equilibrium premium and adverse selection increase mono-

tonically with demand elasticity, but loss coverage first increases and then

decreases. The results are consistent with the ideas proposed by Thomas

(2008, 2009) that loss coverage will be increased if a moderate degree of

adverse selection is tolerated. Furthermore, we are able to show that, for

iso-elastic demand with equal demand elasticities for high and low risks, so-

cial welfare moves in the same direction as loss coverage, i.e. social welfare

at pooled premium is higher than at risk-differentiated premiums, when de-

mand elasticity is less than 1. Therefore, we argue that loss coverage may

be a better measure than adverse selection to quantify the impact of risk

classification scheme being restricted. Moreover, (observable) loss coverage

could also be a useful proxy for social welfare, which depends on unobserv-

able utility functions. Therefore, adverse election is not always a bad thing,

if demand elasticity is sufficiently low.

The research findings should add to the wider public policy debate on

these issues and provide necessary research insights for informed decision

making by regulators, insurers, actuaries and other stakeholders.

For regulators, we suggest that loss coverage can be an appropriate metric

for the efficacy of insurance in meeting its social purpose, i.e. compensation

of the population’s losses. One way to increase loss coverage is to make in-

surance compulsory (e.g. healthcare provided by social insurance, and third-

party liability insurance for motorists and employers in the UK). However,
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for markets such as life insurance, the potential loss depends on the personal

circumstances of the insured. Therefore in these markets, it might be wise

to leave purchasing decisions to individuals, and increase loss coverage by

limiting risk classification to a certain extent. Extant examples include the

European Court of Justice’s ban on gender specific insurance premiums, and

restrictions on the use of genetic tests in underwriting in the UK. The met-

ric of loss coverage could also be used when evaluating any possible future

restrictions on other risk factors, such as age, disability or postal address.

Another approach to increase loss coverage is for regulators to provide some

incentives for insurance purchase, such as tax relief on insurance premiums.

The findings of this research could also benefit insurers, by helping to

build a more thorough understanding of the impact on the insurance mar-

ket of restricting risk classification. Even though restrictions may seem su-

perficially unwelcome, increasing loss coverage is equivalent to increasing

aggregate risk premiums. If profit loadings are proportional to premiums,

increasing loss coverage then also implies higher profits. Therefore, some de-

gree of restrictions on risk classification could be beneficial to insurers. The

research also demonstrates that if demand elasticities are too high or risk

classification is restricted too much, restrictions on risk classification may

reduce loss coverage. This finding can support insurers in explaining to reg-

ulators and policyholders that whilst some restrictions on risk classification

are sometimes beneficial, this does not mean that all restrictions are always

beneficial.

This research could also make an original contribution to the develop-

ment of the actuarial profession. Conventional actuarial wisdom suggests

that restricting risk classification could lead to an adverse selection spiral,

which is detrimental to insurance markets. Therefore, in actuarial education,

4



emphasis has been placed on the importance of full risk classification through

thorough underwriting, and the danger of information asymmetry between

insurers and policyholders. However, this research provides an alternative

perspective on adverse selection through analysing loss coverage, and praises

the effect of higher loss coverage because of adverse selection. It inspires

future actuaries and actuarial researchers to analyse problems from different

angles and not take conventional wisdom for granted. Finally, this research

could help the actuarial profession to develop its role as a thought leader on

the public policy aspects of insurance.

5



Contents

Abstract 1

Motivating Examples 11

Introduction 17

1 Literature Review on Adverse Selection 26

1.1 Approaches to Model Adverse Selection . . . . . . . . . . . . . 26

1.1.1 Economic Models . . . . . . . . . . . . . . . . . . . . . 26

1.1.2 Actuarial Models . . . . . . . . . . . . . . . . . . . . . 31

1.2 Empirical Evidence on Adverse Selection . . . . . . . . . . . . 37

1.2.1 Approaches to Econometric Testing . . . . . . . . . . . 37

1.2.2 Automobile Insurance . . . . . . . . . . . . . . . . . . 40

1.2.3 Annuities . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2.4 Life Insurance . . . . . . . . . . . . . . . . . . . . . . . 42

1.2.5 Long-Term Care (LTC) Insurance . . . . . . . . . . . . 44

1.2.6 Health Insurance . . . . . . . . . . . . . . . . . . . . . 45

1.2.7 Critical Illness (CI) Insurance . . . . . . . . . . . . . . 45

1.2.8 Explanation of the Absence of Adverse Selection . . . . 49

2 Demand for Insurance 63

6



2.1 Insurance Demand for a Single Risk-group . . . . . . . . . . . 64

2.1.1 Utility of Wealth and Certainty Equivalence . . . . . . 64

2.1.2 Heterogeneity in Insurance Purchasing Behaviour . . . 66

2.2 Iso-elastic Demand . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3 Negative-exponential Demand . . . . . . . . . . . . . . . . . . 76

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Risk Classification and Equilibrium in Insurance Markets 82

3.1 Framework for Insurance Risk Classification . . . . . . . . . . 83

3.2 Equilibrium in the Insurance Market . . . . . . . . . . . . . . 86

3.2.1 Full Risk Classification . . . . . . . . . . . . . . . . . . 87

3.2.2 No Risk Classification . . . . . . . . . . . . . . . . . . 88

3.2.3 Partial Risk Classification . . . . . . . . . . . . . . . . 89

3.3 Iso-elastic Demand . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Two Risk-groups: Equal Demand Elasticity . . . . . . 90

3.3.2 More Risk-groups: Equal Demand Elasticity . . . . . . 94

3.3.3 Two Risk-groups: Different Demand Elasticities . . . . 96

3.4 Negative-exponential Demand . . . . . . . . . . . . . . . . . . 99

3.4.1 Two Risk-groups: Equal Demand Elasticity . . . . . . 100

3.4.2 More Risk-groups: Equal Demand Elasticity . . . . . . 104

3.5 General Demand . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.6 Multiple Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 107

3.6.1 Iso-elastic Demand . . . . . . . . . . . . . . . . . . . . 108

3.6.2 Negative-exponential Demand . . . . . . . . . . . . . . 115

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Adverse Selection 121

7



5 Loss Coverage 125

5.1 Framework for Loss Coverage . . . . . . . . . . . . . . . . . . 126

5.2 Iso-elastic Demand . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Two Risk-groups: Equal Demand Elasticity . . . . . . 128

5.2.2 More Risk-groups: Equal Demand Elasticity . . . . . . 130

5.2.3 Two Risk-groups: Different Demand Elasticities . . . . 131

5.2.4 More Risk-groups: Different Demand Elasticities . . . . 135

5.2.5 Summary for Iso-elastic Demand . . . . . . . . . . . . 139

5.3 General Demand . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.1 Negative-exponential Demand Example . . . . . . . . . 143

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6 Social Welfare and Loss Coverage 151

6.1 Iso-elastic Demand Example: Equal Demand Elasticity . . . . 155

6.2 Iso-elastic Demand Example: Different Demand Elasticities . . 160

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Partial Risk Classification 165

7.1 Two Risk-groups . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1.1 Equal Demand Elasticity . . . . . . . . . . . . . . . . . 168

7.1.2 Different Demand Elasticities . . . . . . . . . . . . . . 169

7.2 Three Risk-groups . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2.1 Equal Demand Elasticity . . . . . . . . . . . . . . . . . 172

7.3 Maximising Social Welfare: Two Risk-groups . . . . . . . . . . 174

7.3.1 Equal Demand Elasticity . . . . . . . . . . . . . . . . . 175

7.3.2 Different Demand Elasticities . . . . . . . . . . . . . . 176

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8



8 Conclusions 179

8.1 Equilibrium Premium . . . . . . . . . . . . . . . . . . . . . . . 180

8.2 Adverse Selection . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.3 Loss Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.4 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.5 Partial Risk Classification . . . . . . . . . . . . . . . . . . . . 183

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

References 186

Appendix A Probabilistic Model of Heterogeneous Insurance

Purchasers 197

A.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . 197

A.2 General Demand: Case of Iso-elastic Demand . . . . . . . . . 201

A.3 Probabilistic Model of Social Welfare . . . . . . . . . . . . . . 202

Appendix B Equilibrium 205

B.1 Iso-elastic Demand . . . . . . . . . . . . . . . . . . . . . . . . 205

B.1.1 Notations and Assumptions . . . . . . . . . . . . . . . 205

B.1.2 Theorems and Proofs . . . . . . . . . . . . . . . . . . . 206

B.2 Negative-exponential Demand . . . . . . . . . . . . . . . . . . 211

B.2.1 Notations and Assumptions . . . . . . . . . . . . . . . 211

B.2.2 Theorems and Proofs . . . . . . . . . . . . . . . . . . . 213

Appendix C Loss Coverage: Iso-elastic Demand 220

C.1 Case of Two Risk-groups . . . . . . . . . . . . . . . . . . . . . 220

C.1.1 Notations and Assumptions . . . . . . . . . . . . . . . 220

C.1.2 Theorems and Proofs . . . . . . . . . . . . . . . . . . . 221

C.2 Case of More Risk-groups . . . . . . . . . . . . . . . . . . . . 228

9



Appendix D Loss Coverage: Negative-exponential Demand 232

D.1 Notations and Assumptions . . . . . . . . . . . . . . . . . . . 232

D.2 Theorems and Proofs . . . . . . . . . . . . . . . . . . . . . . . 233

Appendix E Social Welfare: Iso-elastic Demand 242

E.1 Notations and Assumptions . . . . . . . . . . . . . . . . . . . 242

E.2 Theorems and Proofs . . . . . . . . . . . . . . . . . . . . . . . 244

Appendix F Partial Risk Classification on Loss Coverage 263

F.1 Notations and Proofs for Two Risk-groups . . . . . . . . . . . 263

F.1.1 Notations and Assumptions . . . . . . . . . . . . . . . 263

F.1.2 Theorems and Proofs . . . . . . . . . . . . . . . . . . . 264

F.2 Notations and Proofs for Three Risk-groups . . . . . . . . . . 287

F.2.1 Notations and Assumptions . . . . . . . . . . . . . . . 287

F.2.2 Additional Observations . . . . . . . . . . . . . . . . . 288

F.2.3 Theorems and Proofs . . . . . . . . . . . . . . . . . . . 292

10



Motivating Examples

Many studies have been done over the past decades analysing the existence

and the level of severity of adverse selection. However, this debate is still

inconclusive. To make a contribution to the discussion, we introduce an

alternative approach–“loss coverage”, i.e. the proportion of the expected

population losses which can be covered by insurance, to measure the impact

of risk classification scheme being restricted. A more rigorous introduction

to loss coverage is given in Chapter 5.

In this chapter, we will briefly explain our motivation using a series of

heuristic examples. We will show that loss coverage can increase under re-

stricted risk classification by contrasting two alternative risk classification

schemes: the full risk classification (under which actuarially fair premiums

are charged) and the no risk classification (under which pooled premiums

are charged).

Assume that in a population of 1000 risks, 16 losses are expected every

year. There are two risk-groups. Each individual in the high risk-group of

200 individuals has a probability of loss four times higher than that of an

individual in the low risk-group. All losses are assumed to be of unit size,

and insurance coverage, if purchased, are also of unit size. We further assume

that probability of loss is not altered by the purchase of insurance, i.e. there
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is no moral hazard. An individual’s risk-group is fully observable to insurers

and all insurers are required to use the same risk classification scheme. The

equilibrium premium of insurance is determined as the premium at which

insurers make zero expected profit.

Adverse selection in this thesis is defined as the ratio between expected

claim per policy and expected loss per risk, which is similar to its definition in

economic literature as the correlation between risk experience and insurance

coverage. So when this ratio is greater than 1, we say there is adverse selec-

tion. Since at equilibrium the insurer makes neither profits nor losses, and

competition between insurers in risk classification is not permitted, adverse

selection does not imply insurer losses. A more rigorous definition of adverse

selection is given in Chapter 4.

In the first scenario where insurers use the full risk classification, they

charge actuarially fair premiums to members of each risk-group. We assume

that the proportion of each risk-group which buys insurance under these

conditions, i.e. the ‘fair-premium demand’, is 50%, in line with industry

statistics1. Table 1 shows the outcome, which can be summarised as follows:

There is no adverse selection because premium charged for each group

equals their corresponding level of risk. This is interpreted as the ratio of

expected claim per policy (8/500) and expected loss per risk (0.016) being

1. The differentiated premiums in this example are also the break-even pre-

miums which ensure insurers have a zero expected profit. As a result, half

(8/16) of the population’s expected losses can be compensated by insurance

in this case. In this case, we say that the loss coverage is 0.5.

1Please see Footnote 2 on page 30.
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Table 1: Full risk classification with no adverse selection.

Low risk-group High risk-group Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.01 0.04 0.016(differentiated)
Expected numbers insured 400 100 500
Expected insured losses 4 4 8
Loss coverage 0.5
Adverse selection 1

In the second scenario, suppose there is a restriction imposed on using

risk classification scheme. Consequently, all insurers have to charge the same

premium for both risk-groups. Table 2 shows one of the possible outcomes,

which can be summarised as follows:

Table 2: No risk classification leading to adverse selection but higher loss

coverage.

Low risk-group High risk-group Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02 0.02 0.02(pooled)
Expected numbers insured 300 150 450
Expected insured losses 3 6 9
Loss coverage 0.5625
Adverse selection 1.25

The pooled premium of 0.02 at which insurers achieve zero expected prof-

its in this example is calculated as the demand-weighted average of the risk

premium: (300 x 0.01 + 150 x 0.04)/450=0.02. This pooled premium will

be higher than the actuarially fair premium for the low risk-group as shown
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in Table 1 (0.02, compared with 0.01 before). So fewer of the low risks are

expected to buy insurance (300, compared with 400 before). The pooled

premium is cheaper for the high risks (0.02, compared with 0.04 before), so

more of them are expected to buy insurance (150, compared with 100 be-

fore). In this example, because there are 4 times as many low risks as high

risks in the population (800 compared with 200), and the reduction in the

expected number of insured in the low risk-group (100) is greater than the

increase in the expected number of insured in the high risk-group (50), the

total expected number of insured reduces slightly (450, compared with 500

before). There is some adverse selection because the ratio of expected claim

per policy (9/450) and expected loss per risk (0.016) is 1.25, which is greater

than 1. This can also be explained by the fact that pooling premium (0.02) is

higher than the population-weighted average risk (0.016), and the expected

number of insured falls.

The loss coverage (0.5625), is calculated as the ratio of expected insured

losses (9) to the expected population losses (16). This value is higher than

the loss coverage in the case when there is no restriction on risk classification

(0.5, as shown in Table 1), which indicates a higher proportion of the popu-

lation’s expected losses is being compensated by insurance. This is because

the shift in coverage towards high risks more than outweighs the fall in the

number of policies sold.

We now consider a third scenario in which the pooled premium is higher

than that in the second scenario. In this time, as a result, there is heavier

adverse selection. This scenario is illustrated in Table 3.

In this scenario, the pooled premium of 0.02154, is calculated as the

demand-weighted average of the risk premiums: (200 x 0.01 + 125 x 0.04)/325
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Table 3: No risk classification leading to adverse selection and lower loss

coverage.

Low risk-group High risk-group Aggregate
Risk 0.01 0.04 0.016
Total population 800 200 1000
Expected population losses 8 8 16
Break-even premiums 0.02154 0.02154 0.02154(pooled)
Expected numbers insured 200 125 325
Expected insured losses 2 5 7
Loss coverage 0.4375
Adverse selection 1.35

= 0.02154, which is higher than the pooled premium in the previous scenario

(0.02, in Table 2). There is heavier adverse selection because the ratio of

expected claim per policy (7/325) and expected loss per risk (0.016) is 1.35,

which is greater greater than 1.25 as in the second scenario. This can also be

explained by the fact that pooling premium (0.02154) is much higher than

the population-weighted average risk (0.016), and there is a larger reduc-

tion in the total expected number insured (325, compared with 450 in the

second scenario). The resulting loss coverage of 0.4375 (expected insured

loss/expected population losses=7/16) is lower than 0.5 as observed in the

first scenario (in Table 1). This indicates that a lower proportion of popu-

lation’s expected losses are compensated by insurance because the shift in

coverage towards high risks is insufficient to outweigh the expected fall in the

number of policies sold.

The above three examples show that charging risk differentiated premi-

ums does not lead to adverse selection (Table 1). Charging a pooled premium

leads to adverse selection, but can either increase or decrease loss coverage.

A moderate degree of adverse selection can benefit the society by increasing
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the proportion of the population’s expected losses that are compensated by

insurance, i.e. higher loss coverage (Table 2). However, heavier adverse se-

lection could reduce loss coverage and disadvantage the society (Table 3).

Note that these examples are neither derived from a particular demand

function, nor rely on unrealistic assumptions. This indicates that we may be

able to generalise some of these features. So in this thesis, we will develop a

suitable framework to analyse these features.
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Introduction

In this thesis, we mainly focus on informational adverse selection, i.e. ad-

verse selection to insurers as a result of customers possessing more informa-

tion about their own risks than the insurers. This information can be related

to their probability of incurring losses and/or amounts of losses, which insur-

ance buyers can withhold for their benefit. Many studies on adverse selection

have been based on this asymmetry in information between insurers and their

customers. There are also other interpretation of adverse selection, such as

competitive adverse selection, which is adverse selection as a result of compe-

tition between insurers. Different insurers using different risk classification

schemes to classify their potential customers is an example. In the context of

our research, we assume all insurers offer the same insurance product and ap-

ply the same risk classification scheme, i.e. there is no competition between

insurers in terms of risk classification practices. Therefore, we only look at

potential adverse selection because of information asymmetry between insur-

ers and their customers, i.e. informational adverse selection. In the rest of

this thesis, I will refer to this simply as “adverse selection”.

The initial “adverse selection” concept can be traced back to 1706 when

Charles Povey set up the Trader’s Exchange in London. This mutual life

insurance society collected no information at all on the lives insured. For a
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variety of reasons, including a tendency to attract only high risk lives, this

mutual life insurance society was dissolved a few years later. This illustrates

some potential problems that can arise from asymmetric information. As

a result, Mr Povey introduced the idea of “giving a reasonable account of

the health of the person whose life they intend to subscribe upon” (Dickson

(1960)).

This idea of “adverse selection” is also potentially present in other lines of

insurance. The following statement appears in an insurance textbook written

at the Wharton School (Akerlof (1970)):

“There is potential adverse selection in the fact that healthy term insur-

ance policyholders may decide to terminate their coverage when they become

older and premiums mount. This action could leave an insurer with an undue

proportion of above average risks and claims might be higher than anticipated.

Adverse selection appears (or at least is possible) whenever the individual or

group insured has freedom to buy or not to buy, to choose the amount or plan

of insurance, and to persist or to discontinue as a policyholder.”

Due to the failure of Trader’s Exchange, by 1725, other life insurance

offices started to classify risks, i.e. identify high-risk applicants and charge

differential premium rates. In other words, underwriting appeared as a nec-

essary step in writing insurance policies.

In a competitive insurance market, if insurers can accurately classify indi-

viduals’ risks and charge premiums accordingly, the insurers’ expected profit

on each policy is (approximately) zero, i.e. there is no adverse selection

from individuals as the premiums fully reflect their risks. This can also be

expressed as an “actuarially fair system”, as suggested by actuaries in Amer-

ican Academy of Actuaries Committee (1980):

“Differences in prices among classes reflect differences in expected costs
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with no intended redistribution or subsidy among classes.”

Over the past 300 years, insurers have been collecting and pooling data

in order to identify and assess risks. However, risk classification has often

attracted controversy for a number of reasons, some of which are discussed

below:

1. The general public might consider risk classification to be unfair, par-

ticularly when risk classification is based on factors which are out of

the control of the individuals (Chuffart (1995)).

Skipper & Black (2000) cited figures indicating 67% of people believe it

is fair to charge higher premiums to those who smoke but only 14% be-

lieve it is fair to charge higher premiums to those with a predisposition

to cancer. There have also been several fierce debates about risk clas-

sification systems which discriminate against people who are already

disadvantaged (Hellman (1997), Wright et al. (2002), Leigh (1996)).

Differentiation on gender is one example. In the Manhart case in the

USA (Doeer (1984)), the court decided that gender-based pension fund

rules were a contravention of the Equal Employment Opportunity Act.

This argument was used by the advocates of unisex pension benefits

in the UK (Curry & O’Connell (2004)) and it has also influenced the

application of European Gender Directive. Test-Achats, the Belgian

Consumer Association, brought a case arguing that Article 5(2) of the

Gender Directive 2004/113/EC2 was contrary to the principle of gender

equality in Primary Community Law. As a result, from 21st December

2012, The European Court of Justice (ECJ)’s gender ruling came into
2This Article allows member states to permit differentiated premium rating and benefit

payment based on gender.
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force, which decided that insurers would no longer be allowed to charge

gender specific insurance premiums.

2. Some questions asked in the underwriting process can be considered to

be violating privacy, for example, questions on sexual preferences and

practices for AIDS investigation; and the use of genetic test data in

insurance (Harper (1992)).

3. There might also be undesirable consequences of risk classification. For

example, in the UK in the 1980s, some doctors began to warn patients

against taking HIV test because it might damage their chances of get-

ting insurance (even if the result turned out to be negative). This

approach was having negative public health consequences, as it dis-

couraged people from taking HIV tests, and hence missing out oppor-

tunities on vital medical treatment (Leigh (1996), Hopegood (2000),

Worsfold (1991), Hall (1991), Papworth (1991), Jones (1991), Sullivan

(1991), Harris (1994)). A similar debate has affected genetic testing as

well (Lapham et al. (1996)).

There are also situations where insurers voluntarily do not charge risk-

differentiated premiums. This would happen when insurers do not make the

full use of information,

1. even if it is publicly available to them, e.g. the place of residence, as

such information might not be quantitatively important in improving

the prediction of loss outcomes. Another reason is that the credibility of

such characteristics may be limited by the extent to which such char-

acteristics are subject to change in response to characteristics-based

pricing differentials (Finkelstein & Poterba (2006)).
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2. Information may be inaccessible to both individuals and insurers with-

out incurring some cost e.g. hesitation in obtaining genetic information

due to privacy and cost concerns (De Jong & Ferris (2006)).

When insurers cannot charge risk-differentiated premiums, they will charge

a pooled premium calculated as a population-weighted average risk premiums

which will be higher for the low-risk individuals, but lower for the high-risk

individuals. This will create a cross-subsidy of funds from low risks to high

risks.

As a result, more insurance is bought by higher risks and less insurance is

bought by lower risks. Thus insurers end up with more high risks (in percent-

age terms) than implied by the pooled premium, i.e. the marginal premium

cannot cover marginal costs which would give rise to adverse selection.

Initially, losses from adverse selection can be met by charging higher

premiums. However, problems can arise if different risk groups react dif-

ferently to premium rate changes. Normally we would expect that as price

rises, demand will fall. If the demand for insurance falls uniformly across all

risk groups, then the average premium rate for the group will remain sta-

ble. However, if low-risk individuals are relatively more sensitive to premium

increases, then any change in premium rates might lead to an increase in

adverse selection. Then the previously-calculated extra premium would be

inadequate to cover expected claims. A further increase in premium rate

is possible, followed by an adverse selection spiral and a breakdown of the

whole insurance system (De Jong & Ferris (2006)).

Also, in most markets the number of higher risks is smaller than the

number of lower risks, so the total number of risks insured falls. The usual

efficiency argument focuses on this reduction in coverage, e.g. “This reduced

pool of insured individuals reflects a decrease in the efficiency of the insurance

21



market” (Dionne & Rothschild (2014)).

However, it is possible that the risk of an adverse selection spiral has been

overstated. This spiral is only likely to occur under specific circumstances,

e.g. when the elasticity of demand for insurance products is high. In prac-

tice, the elimination of rating factors does not always lead to disruption of

the insurance market. In some cases, the elimination of a rating factor might

only lead to a relatively small increase in premium rates, which can be ab-

sorbed by the market (De Jong & Ferris (2006)). Moreover, empirical test

results also show that adverse selection may appear in some markets but not

in others. We will discuss some empirical test results in Chapter 1.

In this thesis, we suggest that in some circumstances, there is a counter-

argument to this perception of reduced efficiency. The rise in equilibrium

price under pooling reflects a shift in coverage towards higher risks. If the

shift in coverage is large enough, it can more than outweigh the fall in num-

bers insured. In these circumstances, despite fewer risks being insured under

pooling, expected losses compensated by insurance – a quantity we term

“loss coverage”, as introduced in Thomas (2008) – can be higher. More risks

being voluntarily transferred and more losses being compensated, should not

be regarded as inefficient.

In Thomas (2008), using examples of two risk-groups, i.e. a low risk-

group and a high risk-group, with an insurance demand function inspired

by De Jong & Ferris (2006), along with realistic values for price elasticity

of demand, the author demonstrated that, from a public policy perspective,

adverse selection as a result of restrictions on risk classification might not

always be adverse. Some degree of adverse selection may be desirable in

some insurance markets, when switch in insurance coverage towards high
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risks, i.e. those who most need insurance, outweighs the reductions in the

number of insurance sold. The author suggested the idea of loss coverage as

a possible criterion for a desirable level of adverse selection. In particular,

there is an increase in loss coverage if the price elasticity of demand in the

low risk group is sufficiently low, compared to that of the high risk-group.

Thomas (2009) extended the model in Thomas (2008) by exploring the

conditions that lead to multiple solutions to the pooled equilibrium premium

and the collapse in insurance coverage, when there are restrictions on risk

classification. The author found that the pooled equilibrium is related to a

parameter for the elasticity of demand for insurance at an actuarially fair

premium, i.e. the “fair-premium demand elasticity”. The demand elasticity

parameters which are required to generate a collapse in coverage in the model

are higher than those values of demand elasticity which have been estimated

in many empirical studies. This finding offered some explanation to why a

collapse in insurance coverage has not been detected in some insurance mar-

kets under restricted risk classification.

The above loss coverage literature contrasts with economic literature on

insurance risk classification, as summarised in surveys such as Hoy (2006),

Einav & Finkelstein (2011) and Dionne & Rothschild (2014). Economic

literature typically takes a utility-based approach: representative agents from

each risk-group make purchasing decisions which maximise their expected

utilities, and the outcomes of different risk classification schemes are then

evaluated by a social welfare function which is a (possibly weighted) sum

of expected utilities over the whole population. For example Hoy (2006)

uses a utilitarian social welfare function which assigns equal weights to the

utilities of all individuals. Einav & Finkelstein (2011) use a deadweight-loss
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concept which appears equivalent to a social welfare function with utilities

cardinalized so as to weight willingness-to-pay equally across all individuals.

Our model in this thesis connects the previous loss coverage literature

(Thomas (2008, 2009)) with the utility-based approach found in the economic

literature (Hoy (2006), Einav & Finkelstein (2011) and Dionne & Rothschild

(2014)) on insurance risk classification in three ways:

Firstly, we provide a utility-based micro-foundation for the proportional

insurance demand function used in the loss coverage literature, driven by

variations between individuals in their utility functions, which can explain

why only a proportion of the individuals in each risk-group buy insurance at

each price.

Secondly, we will define the concept of loss coverage rigorously within the

utility-based framework.

Thirdly, we reconcile loss coverage to the utilitarian concept of social

welfare used in the economic literature. We will show that, under certain

conditions (e.g. using iso-elastic demand), if insurance premiums are small

relative to wealth, maximising loss coverage maximises social welfare.

The rest of this thesis is organised as follows:

In Chapter 1, we summarise some of the existing approaches in modelling

adverse selection and empirical evidence in detecting its existence in

different insurance markets. In the cases when adverse selection have

not been detected, we provide a brief discussion on some of the possible

reasons.

In Chapter 2, we set up the model for demand for insurance along with

the underlying utility-based micro-foundation.

In Chapter 3, using certain demand functions, equilibrium in the market
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is analysed for different risk classification schemes.

In Chapter 4, we look at adverse selection that may arise due to restric-

tions on the use of risk classification.

In Chapter 5, we introduce loss coverage, and analyse its features when

the insurance market is in equilibrium using various demand functions

under different risk classification schemes.

In Chapter 6, loss coverage is then linked to social welfare, and we present

results that connect these two measures.

In Chapter 7, we discuss conditions under which loss coverage and social

welfare are maximised under different risk classification schemes.

In Chapter 8, we summarise our findings in this thesis.
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Chapter 1

Literature Review on Adverse

Selection

In this chapter, we review some of the approaches in modelling (informa-

tional) adverse selection in literatures along with some empirical evidence on

the presence of adverse selection.

1.1 Approaches to Model Adverse Selection

This section reviews some of the approaches used to model adverse selection.

Since 1970s, many studies have been carried out on testing the existence

of adverse selection and its implications in various insurance markets. We

summarise these into two main categories: economic models and actuarial

models, and we analyse them in the context of our research.

1.1.1 Economic Models

Models of adverse selection in economics tend to take a utility-based approach

(e.g. Akerlof (1970), Wilson (1977, 1979), Rothschild & Stiglitz (1976)). In-
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dividuals are assumed to make decisions which maximise their expected util-

ities according to some assumed utility functions.

Akerlof (1970) built a model in the auto-mobile market, where there were

four types of cars (good/bad/new/used) being traded. Individuals’ demand

is assumed to depend on two variables: price and quality of used cars. A

linear utility function was proposed:

Utility = consumption of goods other than automobiles

+ qualities of all automobiles,

assuming addition of an extra car adds the same amount of utility as the

first. The author argued that because there is asymmetric information on the

condition of cars between buyers and sellers, i.e. buyers could not decipher

the difference but sellers could, the uninformed buyers’ price would create an

adverse selection problem that drives the high-quality cars out of the market.

Wilson (1979) extended Akerlof (1970) model by taking into account

the marginal rate of substitution of used car quality for consumption when

analysing utility.

Although these models were simple and were focused on markets in gen-

eral, their appearance drew attention from researchers on the possible con-

sequences of adverse selection because of asymmetric information.

The consequences in insurance market due to adverse selection have also

been studied in the esteemed Rothschild & Stiglitz (1976), in which the

authors proved that in a competitive insurance market, there cannot be a

pooling equilibrium when only insurance buyers know their probabilities of
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loss.

The Rothschild-Stigltiz model assumes individuals belong to two risk-

groups (a high risk-group and a low risk-group) where individuals know their

risk status, and each individual faces a possible loss of the same amount. All

individuals are assumed to be risk-averse and having the same utility func-

tion. Insurers are assumed to only know the proportions of the population

being low risks and high risks, but they are unable to allocate individuals into

different risk-groups. Moreover, each individual can only buy one contract

from one insurer, i.e. insurance contracts are assumed to be exclusive.

The authors looked at price and quantity equilibrium in this study, i.e.

a particular amount of insurance that an individual can buy at a given pre-

mium. If insurers charge a “pooling equilibrium premium”, i.e. a demand-

weighted average premium of the low and high risk-groups to both risk-

groups, the market might not be stable if one insurer tries to attract only

the low risks by offering a new contract with full coverage at a premium

closed to the fair premium of the low risks. This is because the high risks

would also prefer this new contract as it offers the full coverage at a lower

price than the pooling equilibrium. Thus the presence of high risks ‘distort’

the pooling equilibrium in a way that both risk-groups would purchase this

new contract which is offered at a premium that is insufficient to cover the

amount of risks the insurer attracts.

In response to this instability, the authors suggested that insurers can offer

products with different deductibles, e.g. high deductibles for low risks and

low deductibles for high risks, so that the products can be designed in a way

to separate the market by attracting their targeted risk-groups. Specifically,

if high risks value insurance more than low risks, and so are more willing to

‘pay more’ for full coverage (or zero deductibles), individuals from both risk
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groups should buy their ‘tailored’ products accordingly. However, individuals

from the low risk groups cannot buy a product with zero deductibles at

their low-risk price, therefore, they can only be partially insured, while the

high risks can be fully covered. This ‘rationing’ of cover is considered to be

an inefficiency as a result of adverse selection. Moreover, this “separating

equilibrium” might not exist as well if the proportion of high risks in the

market falls below some critical level.

In conclusion, the authors referred to the existence of high risks when

there is asymmetric information as “a negative externality on the low risks”.

Thus, only when the high risks reveal their high probability of loss, both risk-

groups can insure at separate contracts at fair premiums and full coverage.

Wilson (1977) generalised the Rothschild & Stiglitz (1976) model by sug-

gesting that the “no stationary equilibrium” conclusion was due to insurers’

“static expectations” about the response of other firms to changes in its own

policy offer, i.e. every insurer expects other insurers will not change their

policy offers in response to any changes which it may make in its own pol-

icy offer. However, responses from other insurers in the market might alter

the market demand so that the profits to an insurer can change from non-

negative to strictly negative. In response to this argument, the author then

introduced an alternative equilibrium concept which is built upon a “non-

static expectation rule”. This new rule says that insurers will adjust their

anticipation about responses from other insurers by assuming that any pol-

icy that becomes unprofitable as a consequence of any changes in its own

offer will be immediately withdrawn from the market. So insurers only offer

policies which will earn non-negative profits after other firms have responded

by withdrawing their unprofitable policies. Under certain assumptions, this

new equilibrium which allows cross-subsidization between low and high risks
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is proved to exist, and there might be multiple equilibria.

Our model of insurance markets in this thesis differs from the canonical

model of Rothschild & Stiglitz (1976) in two main ways.

First, in our model insurers compete only on price; they do not induce

separation of risk-groups by menus of contracts offering different levels of

cover priced at different rates. In this respect, our model is more in the

spirit of Akerlof (1970). We justify this approach by noting that some im-

portant markets, such as life insurance, have non-exclusive contracting, and

so separation via contract menus is not feasible. Furthermore, as far as we

are aware, the concept of separation via contract menus is also not salient to

practitioners in other markets where restrictions on risk classification apply,

for example auto insurance in the European Union.1

Second, in our model individuals with identical probabilities of loss can

have different utility functions, and so unlike the representative individuals

from each risk-group in Rothschild-Stiglitz type models, they do not all make

the same purchasing decision. This leads to an equilibrium where not all

individuals are insured; this corresponds to the empirical reality of most

voluntary insurance markets.2

1As regards life insurance, Rothschild-Stiglitz type models are inconsistent in important
ways with empirical data (e.g. Cawley & Philipson (1999a)). As regards practice in
other insurance markets, most recent actuarial pricing textbooks make no reference to the
concept of menus of contracts as screening devices (e.g. Gray & Pitts (2012), Friedland
(2013), Parodi (2014)). Other textbooks specifically recommend against using the level of
deductible as a pricing factor (e.g. Ohlsson & Johansson (2010)).

2For example, in life insurance, the Life Insurance Market Research Organisation
(LIMRA) states that 44% of US households have some individual life insurance (LIMRA
(2013)). The American Council of Life Insurers states that 144m individual policies were
in force in 2013 (American Council of Life Insurers (2014, p72)); the US adult population
(aged 18 years and over) at 1 July 2013 as estimated by the US Census Bureau was 244m.
In health insurance, only 14.6% of the US population has individually purchased private
cover (US Census Bureau, 2015), albeit substantially more have employer group cover or
Medicare or Medicaid government cover.
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1.1.2 Actuarial Models

There are two main approaches in the actuarial literature. One approach,

“Markov Model”, initiated by Macdonald (1997), uses Markov processes (dis-

crete and continuous) to model individual’s transitions between states. The

main idea is to assume a high degree of adverse selection in the sense that a

small proportion of the population acquires private information, e.g. genetic

test result, indicating much higher risks and this can lead to much higher

transition intensities into the insured state, or a tendency to buy much higher

amount of insurance. The effect of this adverse selection is then measured by

the increase in pooled insurance price compared with the price if the private

information did not exist.

The other approach, “Demand Model”, is to assume an insurance demand

function and investigate what happens under different demand elasticities for

lower and higher risks. This approach was introduced by De Jong & Ferris

(2006).

We look at each of these approaches in turn.

Markov Model

In Macdonald (1997), the author used a multiple-state Markov model which

models the history of a single life in the context of genetic test results and

insurance purchases, who is assumed to start at age x, from an original state

with neither genetic test taken nor life insurance purchased. The individ-

ual can move between states (get tested and/or purchase insurance) with

probabilities determined by the transition intensities.

A population is then divided into M subgroups, within each of which

everyone has the same mortality as a proportion of the average. Insurers are

assumed to be able to estimate the number of individuals in each subgroup
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but cannot identify which subgroup an individual belongs to. By observing

transitions into tested and/or insured state, the expected present value of

future benefit payments (or cost of adverse selection as a proportion of benefit

payments without adverse selection) is calculated. Figure 1.1 shows the basic

structure in this case with µijkx+t as the transition intensity of a life from

subgroup i, in state j at time age x+ t, moves to state k.

Figure 1.1: A Markov model for the ith of M subgroups from Macdonald

(1997)

Using this method, potential costs of adverse selection in life insurance

market due to restriction on using results from genetic tests are analysed.

The author found that if life insurers could not use any result from genetic

test in underwriting, additional mortality cost will be increased. However,
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the increase is likely to be moderate as long as adverse selection does not

lead to large sums assured. To circumvent this, an imposition of upper limit

on the sum assured is suggested.

Later on, the model was extended to long-term care (LTC) insurance

market. In Macdonald & Pritchard (2001), using the model of Alzheimer’s

disease (AD) introduced in Macdonald & Pritchard (2000), the authors anal-

ysed adverse selection in LTC insurance through DNA tests for variants of

the ApoE gene, the ε4 allele, which is an indicator of early onset of AD. By

computing the expected present value of LTC benefits with respect to AD

with and without adverse selection, the authors concluded that the cost of

adverse selection is insignificant unless certain conditions are met.

This Markov Model approach was also extended to Critical Illness (CI)

insurance market in Macdonald et al. (2003a) and Macdonald et al. (2003b).

The authors focused on genes related to breast cancer (BC) and ovarian

cancer (OC). Using UK population data, the probabilities that an applicant

for insurance has a BRCA1 or BRCA2 mutation, i.e. the main causes of these

diseases, are estimated through a series of applications of Bayes’ Theorem.

The costs of CI insurance in the presence of a family history of BC and

OC are then estimated using a continuous-time, discrete-state model called

“This Applicant’s Model”. The cost of adverse selection is measured by any

premium increase needed to absorb the potential loss. Adverse selection was

found to be significant in small CI insurance markets, if the penetrance was

higher than that observed in high-risk families, or if higher than average sum

assured could be obtained.
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Demand Model

Another type of model in the actuarial literature is to model insurance de-

mand from lower and higher risk-groups as a function of the pooled price

and investigate insurance market outcome under different demand elastici-

ties. This approach was used in De Jong & Ferris (2006), and our research

in this thesis is based on this approach.

In De Jong & Ferris (2006), to make the analysis simple, the authors

ignore relevant expenses, capital costs and the insurers’ profit loadings, etc.

The basic model is:

• Insurers classify risks using a classification scheme g.

• An individual with risk g buys r units of insurance with rg = E(r|g).

• X is the claim cost per unit of insurance, with µg = E(X|g) where µg
is the premium per unit sum insured.

Then, if insurers can fully use risk classification scheme and charge premium

accordingly, insurers’ expected profit should be

E(rX − rµg|g) = 0,

with assumption that: given classified risk g, the units of insurance purchased

r is independent to claim cost per unit of insurance X.

If insurers cannot charge premium based on risk g, instead, they use

expected claim cost per unit sum assured for the population. That is µ =

E(X). Then, the expected losses to insurers are:

E(rX − rµ) = cov(r,X) = cov(rg, µg),
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i.e. there will be losses if and only if there is adverse selection, and adverse

selection exists if and only if rg is positively correlated with µg.

As a result, if adverse selection occurs, insurers will decide to increase

premium to a level where they can maintain a zero expected profit, i.e. the

break even premium:

ε(X) = E(rX)
E(r) = E(rgµg)

E(rg)
.

The increased premium is the expected value of claims cost, weighted by

demand for insurance.

In a simple case with two risk-groups, the authors showed that losses to

insurers as a result of adverse selection would be severe if the high risk-group

is small but their demand for insurance is high. The problem may become

worse if different risk-groups react differently to premium changes. If the low

risk-group is more sensitive to premium changes, premium increase will make

them leave the market quickly and lead to an increase in adverse selection

(and even an adverse selection spiral).

To thoroughly understand this issue, the authors explored what would

happen to the market when a single premium is charged. Equilibrium will

be achieved when the premium is equal to the average claims cost per unit

sum insured, averaged over all insured. Let rg(π) be the demand given a

premium π and risk level g. Then the market will be in equilibrium when

π = π∗, where

π∗ = E[µgrg(π∗)]
E[rg(π∗)]

= ε[µg(π∗)].

To ascertain π∗, the following assumptions about demand functions for

insurance rg are made:
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• Demand falls when the premium increases.

• At a given premium, people with a higher risk will buy more insurance

than people with a lower risk.

• The demand is a function of the premium loading, defined as the ratio

of the actual premium charged to the actuarially fair premium, i.e. π
µg

.

A specific demand function which satisfies these assumptions was introduced

as:

rg(π) = E(r|g, π) = dge
1−( π

µg
)γ
,

with γ, π > 0. When the premium rate is set equal to the expected claims

cost, i.e. π = µg, then the demand is dg, and it is named as “fair premium

demand”. And the parameter γ controls the responsiveness of demand to

changes in premium, i.e. the demand elasticity parameter.

Using this demand function, the authors showed the existence of equilib-

rium, and also the possibility of multiple equilibria.

In Thomas (2008) and Thomas (2009), this demand function was also

used to analyse loss coverage. In this thesis, we will follow the demand

approach as in De Jong & Ferris (2006) to analyse equilibrium, adverse se-

lection, loss coverage and social welfare.

The rationale behind modelling demand function instead of utility-based

framework is as follows.

In economics literatures, utility functions are often used (e.g. Akerlof

(1970), Wilson (1979), Rothschild & Stiglitz (1976)), in which individuals

are assumed to choose the level of insurance with the aim to maximise their

36



expected utilities. However, utility functions are not directly observable. Re-

searchers can only observe how much insurance individuals buy at a given

premium, and how much demand changes when premium changes (i.e. de-

mand elasticity), and so empirically validate assumptions about demand. On

the other hand, utility is an individual’s subjective perception of how much

insurance is worth. This is much more difficult to establish. Therefore, it is

more convenient to use demand functions while analysing adverse selection.

1.2 Empirical Evidence on Adverse Selection

In this section, we will review some of the empirical evidence on the presence

of adverse selection. Although theoretical work on asymmetric information

began in 1970s, empirical testing of the models began only in the mid-1980s.

Even though we can precisely describe the problems that may arise from

the presence of adverse selection in a competitive market and even apply

detailed policy recommendations for mitigating these problems, empirical

results on its presence is mixed and varied by markets.

Econometric tests have been widely used to analyse adverse selection,

which are typically based on quantifying the positive correlation between

the level of insurance coverage and realistic risk experience. For the rest of

this section, we will firstly explain a few approaches to econometric testing,

and then look at some empirical evidence on adverse selection for different

insurance markets in turn, i.e. “Automobile Insurance”, “Annuities”, “Life

Insurance”, “Long-Term Care” , “Health Insurance” and “Critical Illness”.

1.2.1 Approaches to Econometric Testing

Finkelstein & Poterba (2004) used a regression with a single dependent vari-
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able to test the relationship between policy pricing and annuity product

choice:

Riski = α + βCoveragei + γXi + εi,

where Riski represents policyholder i’s ex post realisation of risk, which can

be the total cost to the insurer in the event of a claim. Coveragei presents

policyholder i’s quantity of insurance coverage; and Xi is a vector contains

all characteristics of policyholder i known to insurers. β > 0 indicates there

is a positive correlation between policyholder i’s ex post risk and insurance

coverage, i.e. presence of adverse selection. And a large β indicates a high

correlation which could lead to severe adverse selection.

Another approach is the “Positive Correlation Test” introduced in Chiap-

pori & Salanie (1997) which used a bivariate regression model for insurance

coverage and risk for policyholder i with

Coveragei = f(Xi) + εi,

Riski = g(Xi) + µi,

where Xi is defined as before. f and g are regressions. Using this model, a

positive correlation between the two residuals εi and µi indicates a coverage-

risk correlation, i.e. presence of adverse selection.

Later on, Chiappori & Salanie (2000) proposed non-parametric χ2 tests

for independence. The authors created 2m cells for m explanatory 0 − 1

variables used in risk classification. For each cell they compute a 2 × 2

table to count the number of individuals having combinations of two dummy

variables-coverage: 1 if high and 0 if low, and risk: 1 if the policyholder
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had at least one accident and 0 otherwise. The conditional independence

between coverage and risk is then tested for each cell. The assumption of

conditional independence for a given cell is rejected if the test statistic of χ2

test is greater than certain critical value. If independence is not rejected in

any one cell, then there is no adverse selection.

Finkelstein & Poterba (2004) also used regressions to test the relationship

between policy pricing and annuity product choice. A large and positive

correlation indicate severe adverse selection.

As a result, using the above models, adverse selection is identified in some

markets while not in others. This led to the consideration that there might

be other factors which can influence the presence of adverse selection, one of

which is the buyers’ risk aversion.

Chiappori et al. (2006) extended the model from Chiappori & Salanie

(2000) and highlighted the key role of risk aversion: if it is public information,

then the positive correlation test could indeed prove that the relationship is

between insurance coverage and risk experience; if it is private information,

this need not necessarily to be true. However, as it is an intrinsic property

of preferences, it cannot easily be observed by insurers.

Some other models (De Meza & Webb (2001), Pauly et al. (2003), Finkel-

stein & Poterba (2006), Finkelsein & McGarry (2006), Fang et al. (2008))

also took risk aversion into account: let Z1 indicate the risk type; and Z2

indicate risk aversion, then set the error terms from the “Positive correlation

test” as:

εi = Z1,i ∗ π1 + Z2,i ∗ π2 + ηi,

µi = Z1,i ∗ ρ1 + Z2,i ∗ ρ2 + νi.
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The positive correlation test is based on the idea that Z1 is positively

correlated with both coverage and risk, i.e. π1 > 0 and ρ1 > 0. But if Z2 is

positively correlated with coverage while negatively correlated with risk, i.e.

π2 > 0 and ρ2 < 0, correlation between εi and µi may be zero or negative. If

this is the case, then the standard positive correlation tests (e.g. Chiappori

& Salanie (1997), Chiappori & Salanie (2000), Finkelstein & Poterba (2004))

might fail to reject the null hypothesis of symmetric information even in the

presence of asymmetric information about risk type.

1.2.2 Automobile Insurance

Based on 1986 data from a representative insurer in Georgia, U.S., Puelz

& Snow (1994) found evidence of adverse selection and market signalling in

automobile collision insurance. They found that individuals with lower risks

would choose contracts with higher deductibles, and contracts with higher

deductibles are associated with lower average prices for coverage. However,

their evidence rejects the hypothesis that high risks receive contracts sub-

sidized by low risks. Dionne et al. (2001) criticised Puelz & Snow (1994)

for failing to take non-linear effects into account. They concluded that once

non-linearity is taken into account, insurers’ risk classification scheme could

be sufficient enough to eliminate adverse selection within each risk class.

Chiappori & Salanie (2000) found no evidence on the presence of risk-

related adverse selection in the French automobile insurance market using

various parametric and non-parametric methods. This result was reflected

in the finding that accident rates for young French drivers who chose com-

prehensive auto-mobile insurance were not statistically different from the

accident rates of those opting for the legal minimum coverage, after control-

ling for observable characteristics known to automobile insurers. Moreover,
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they also concluded that although unobserved heterogeneity of risk could

probably be very important, there was no correlation between unobserved

riskiness and contract choice. And many variables that one might believe to

be correlated with risk appeared to be irrelevant.

Using a dataset on car insurance from an association of large French in-

surers, Chiappori et al. (2006) extended the positive correlation property to

more general set-ups, in both competitive and imperfectly competitive insur-

ance markets. In competitive markets, they showed that relevant asymmet-

ric information did imply a positive correlation between insurance coverage

and risk. In imperfectly competitive markets, the result depended on the

observability of agents’ risk aversion. If the agents’ risk aversion was pub-

lic information, then some form of positive correlation held; otherwise, the

property did not necessarily hold.

1.2.3 Annuities

Finkelstein & Poterba (2004) found evidence of adverse selection between ex

post mortality rates and annuity characteristics in UK annuity market, such

as the timing of payments and the possibility of payments to the annuitant’s

estate. But they did not find evidence of substantive mortality differences by

annuity size. Their results showed that not only individuals having private

mortality information, but they also use this information in making annuity

purchase decisions.

Later on, in Finkelstein & Poterba (2006), the authors again confirmed

the presence of adverse selection in this market through the “Unused Observ-

ables Test” by setting the place of residence as the unused observable factor.

Their result showed that social-economic characteristics of an annuitant’s

geographical location were correlated with both his/her survival probability
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and the amount of annuity he/she purchased on average.

1.2.4 Life Insurance

Various studies in the life insurance market found no material impact of

adverse selection. Macdonald (1997) and Macdonald (1999) used Markov

models to analyse the costs of adverse selection when insurance companies

are restrained from using any genetic tests’ results. The main finding was

that even though restriction on using results from any genetic tests could

lead to additional mortality costs, the increased demand for insurance on

getting positive genetic tests’ result would not have a major impact. Any

costs due to adverse selection would be greatly reduced if the sum assured

did not increase hugely. Thus if there were regulations to restrict the use

of genetic information, a cap on sum assured would help in controlling the

extent of adverse selection.

Cawley & Philipson (1999b) also found no evidence of adverse selection

in the US life insurance market. However, they did identify a negative co-

variance between risk and quantity of insurance coverage.

Pauly et al. (2003) provided an empirical estimate of price elasticities of

demand for term life insurance. The authors found that the elasticity, in the

range of -0.3 to -0.5 was sufficiently low such that adverse selection in term

life insurance was unlikely to lead to a death spiral and might not even lead

to measured effects of adverse selection on total purchases.

McCarthy & Mitchell (2003) used data from insurance markets in U.S.,

UK and Japan, to show that life insurance buyers have lower mortality than

non-insured. This might show that insurers’ underwriting is very effective in

helping eliminate adverse selection as a result of asymmetric information.
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Viswanathan et al. (2007) concluded that potential adverse selection due

to BRCA1/23 testing would not result in a significant cost to term life insur-

ers, because their estimate of the cumulative effect of adverse selection was

very small.

The lack of empirical evidence on adverse selection in life insurance mar-

ket might be because of the overall decrease in mortality rates due to the

fast development in pharmaceutical industry and people taking better pre-

vention, detection and treatments on certain diseases.

However, Howard (2014) provided a different perspective. The author

set up a model to analyse the actuarial implications on the individual life

insurance market. Insurers are prohibited from using results of genetic tests

in Canada with thirteen conditions (or genetic-lead illnesses) being included

in the model. In particular, the author looked at the impact on mortality

cost. The conclusion was that, the impact on insurers could be substantial.

In the case when the threshold for prohibiting access to the results of genetic

tests was $1 million of insurance (set by Canadian legislations), the present

value of claim costs from those who tested positive in the year could be

12% of total claims. The overall mortality experience for attained ages 20-

60 would increase by 36% for male and 58% for female. These potential

consequences were much more than insurers could be able to absorb in the

short term. However, the author also found that if the threshold was reduced

to $100,000, the impact would be small enough to be negligible. Although

this study was built upon various assumptions for simplification, its striking

results cannot be ignored.
3BECA1/2 mutations are the main causes of breast cancer and ovarian cancer (Mac-

donald et al. (2003b)).
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1.2.5 Long-Term Care (LTC) Insurance

In Macdonald & Pritchard (2001), the authors suggested that the cost of

adverse selection in the LTC insurance due to AD (Alzheimer’s disease) was

insignificant unless

• the level of relative risks of the ApoE geneotypes4 in the population

was higher than observed to date;

• the LTC insurance market was small;

• ε4 allele carriers were more than four times likely to buy insurance; and

• a higher proportion of the population were tested for the ApoE gene.

The insignificance of adverse selection in LTC insurance market has also

been confirmed by another study. Using data from a sample of Americans

born before 1923, Finkelsein & McGarry (2006) found no statistically signif-

icant correlation between LTC coverage in 1995 and the use of nursing home

care in the period between 1995 and 2000, even after controlling for insurers’

assessment of a person’s risk type.

These results may depend on the level of maturity of different mar-

kets. Compared to life insurance market, LTC market is relatively under-

developed, so the adverse selection test results might depend on the popu-

lation size, which makes the results more uncertain. Moreover, research in

insurance risk in this area also depends on the development in genetic tests.

The more the information available on human genetics, the more accurately

research can be done on their impact on LTC insurance.
4i.e. ε4 allele which is an indicator of early onset of Alzheimer’s disease.
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1.2.6 Health Insurance

Similar to LTC market, there is no significant evidence suggesting the pres-

ence of adverse selection in health insurance markets. Cardon & Hendel

(2001) found no evidence of asymmetric information using health insurance

data from National Medical Expenditure Survey (NMES) in the U.S.. They

argued that demand could be mostly explained by observables with only

small and insignificant space for unobservables. Thus adverse selection was

immaterial.

From another perspective, Fang et al. (2008), however, provided strong

evidence of “Advantageous Selection” in the Medigap insurance market in the

US by showing that people with better health are more likely to purchase

supplemental coverage. But, the authors failed to find evidence to suggest

variation in risk preferences, which was the primary focus of the theoretical

literature on advantageous selection. The authors proposed that cognitive

ability (e.g. precaution actions, planning horizons) and financial numeracy

(e.g. income) which standard economic models did not accommodate could

be important sources of advantageous selection.

1.2.7 Critical Illness (CI) Insurance

In CI market, information on disease-relevant genotypes is crucial in deter-

mining the impact of adverse selection. In Macdonald et al. (2003a), the

authors used a Markov model on breast cancer (BC) and ovarian cancer

(OC) with the transition intensities between different states. Using UK pop-

ulation data, the costs of CI insurance in the presence of BC and OC were

estimated. The authors concluded that assuming BRCA1 or BRCA2 muta-

tion was known, the extra premium in purchasing CI insurance would be as
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high as +1000% with the amount depending on family history, family struc-

ture, penetrance and mutation frequency. The authors argued that adverse

selection was not a serious problem in UK unless:

• the CI insurance market was much smaller than the current scale in

UK (could be the case in the U.S.);

• penetrance was much higher than being observed in current market;

and

• higher sum assured could be obtained without disclosing family history

or genetic test results.

Using similar models, Macdonald & Gutierrez (2003) analysed the impact

of Adult Polycystic Kidney Disease (APKD) on CI insurance costs. The au-

thors found that, if an individual was found out to be a APKD mutation

carrier, the premium charged could be as high as 250% of the ordinary rate

(i.e. the premium for those without APKD mutation). However, because

APKD is rare, the aggregate cost of adverse selection would be low.

Howard (2016) also studied the impact on CI market in Canada of re-

stricted information from the results of genetic tests. Compared to his earlier

studies in life insurance market (Howard (2014)), the conclusion was: the im-

pact on insurers could be material, but it would not be as serious as that in

life insurance market. Using six conditions (or genetic-lead illnesses), pro-

hibiting information from genetic tests could increase CI claims rates by 26%

overall, with 16% for males and 41% for females5. And the impact on pre-

mium rates was less severe than on claim rates. The author also mentioned
5The reason is that only females are exposed to BRCA, the genes lead to breast cancer,

which is the most significant condition. And the experiment groups contains proportionally
more females.
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the differences between this study on CI market and his earlier study in life

insurance market (Howard (2014)): genes with the main impact on life in-

surance were most likely lead to death but unlikely to result in a CI claim.

Thus there were fewer conditions (or trigger for claims in this case) included

in this study. Another difference was although in Canada, the threshold

amounts of insurance beyond which underwriters could have access to the

results of genetic tests was the same for both life insurance and CI, i.e. $1

million6, CI is much more expensive than life insurance, applicants might

not apply for the maximum amount. Therefore, in this study, the amount of

CI purchased was realistically assumed to be at $250,000. These two main

distinctions contributed to the different degrees of severity in life insurance

and CI market as a result of genetic tests results being restricted. Moreover,

if the threshold for CI was further reduced (from $250,000), the impact could

become even smaller.

Another interesting example to be considered is the “over-diagnosis issue

of thyroid cancer in South Korea”. In 1999, the government of the Republic of

Korea initiated a national screening program for cancer and other common

diseases (including cancers for breast, cervix, liver, colon, etc). Thyroid-

cancer screening was later on offered as an inexpensive fee-for-service add-on

by hospitals and GPs. Thanks to the advanced development in medical

technology and residences’ increasing awareness of well-being, early cancer

detection, especially thyroid-caner screening, has become part of the essential

health checkup. As a result, thyroid cancer is now the most common type

of cancer diagnosed in South Korea. However, in recent years, some physi-

cians and researchers have raised the concern about over-diagnosis of thyroid
6In the UK, according to the moratorium, life insurance is capped at £500,000, and CI

was capped at £300,000.
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cancer and suggest that screening should be banned. Their arguments were

based on the statistical evidence that the rate of thyroid-cancer diagnosis

was 15 times as high in 2011 as the rate in 1993. However, this increase was

mainly due to the detection of papillary thyroid cancer7. And, there was a

great disparity between the rising incidence and the stable and low mortal-

ity rate of thyroid-cancer8 (Ahn et al. (2014)). Moreover, this overdiagnosis

could lead to overtreatment. The majority of patients given diagnosis of thy-

roid cancer would receive treatments e.g. radical thyroidectomy, which has

substantial consequences and might also have lifelong complications (e.g. hy-

poparathyroidism and vocal-cord paralysis (Notional Evidence-based Health-

care Collaborating Agency (2013))). And the majority of tumours detected

this way are ‘microcarcinomas’, i.e. below one centimetre in size, which is un-

likely to develop or to threaten life (Ahn et al. (2014)). Therefore, increased

screening has not saved more lives.

Simultaneously, the disease-specific medical costs for thyroid cancer has

also been increasing. Hyun et al. (2014) reported that the cost-of-illness (in-

cluding direct costs e.g. medical costs, and indirect costs e.g. loss of potential

income and/or productivity) for thyroid disease has increased significantly

from 2002 to 2010 (2242 hundred million won to 7622 hundred million won, a

3.4-fold increase)9. And the medical costs incurred by patients with thyroid

disease had increased remarkably more than those incurred by patients with

other endocrine diseases. Although the medical cost per patient with thyroid

cancer was not very high, its high incidence and prevalence could potentially
7It has been estimated that at least one third of adults have small papillary thyroid

cancers, the vast majority of which will never produce evident symptoms during a person’s
life (Harach et al. (1985)).

8Data on incidence are from the Cancer Incidence Database, Korean Central Cancer
Registry; data on mortality are from the Cause of Death Database, Statistics Korea.

9Although in this paper, the author mentioned the exact health care costs associated
with the increased diagnosis of thyroid cancer were difficult to define.
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lead to significant economic complications.

Automatically, these cancer claims are payable under CI policy conditions

regardless of any such threat. This has clear implications for CI claims

because according to CI definitions, there is no stage zero or pre-invasive

stage in the accepted staging systems of thyroid cancer (Campbell (2014)).

This means that tissue is either described as “benign” or “malignant” with no

pre-malignant category in the historical classification. This is considered as

a big threat to CI market. To address this problem, the CI definitions should

recognize the advances in medical screening and adopt exclusions to maintain

the relevance and affordability of the product going forward. Alternatively,

improved therapeutic guidelines and risk stratification strategies should be

developed to ensure CI insurers are able to cope with the risks undertaken.

1.2.8 Explanation of the Absence of Adverse Selection

As discussed earlier, adverse selection has been identified in some insurance

markets (or sections of insurance markets) but not in others. In this section,

we discuss some possible explanations for its absence in some markets.

Policyholders’ Lack of Private Information

In the literature, policyholders (i.e. insurance buyers) are usually assumed

to have an information advantage of insurers, and they use this information

in their purchasing decisions. What if these assumptions are not true? Some

possible scenarios are discussed below:

1. Absence of useful private information.

Individual’s expected loss can be divided into two factors: the amount

of loss and the probability of incurring the loss.
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(a) Policyholders may not know some of the information included in

both factors.

(b) Even if they can accurately estimate some of the features, they

may lack the ability to transfer this information into probabilistic

interpretations that can be used in analysis.

For example, a major determinant in automobile-accident risk is

the total miles driven in a given year (Butler (1996)). It seems like

policyholders will have more advantage as they do know their own

mileage better than the insurers. However, some policyholders

may not realise the importance of this factor as they do not know

how to interpret accident risk in terms of the information they

have.

(c) Another possibility is that there are factors which are unknown

to anyone, e.g. luck.

It is the presence of these factors which make policyholders less ad-

vantaged than researchers usually assume. This leads to less adverse

selection as a result.

2. Not all policyholders withhold private information.

If insurers only target certain markets where people do have private

information, this might result in identification of adverse selection in

some cases and vice versa.

3. Policyholders might fail to adjust their purchasing behaviours based

on accurate private information that can theoretically be used to their

advantage.

4. Another reason is that insurers may be able to assess policyholders’
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risks more accurately than the policyholders themselves. This might

be due to the complex risk classification scheme insurers use based on

extensive historical data and superior knowledge compared to individ-

uals.

The above four factors could provide some reasonable explanations to the

presence of coverage-risk correlation in some markets while not in others (or

subsets of a market).

Negative Correlation Between Coverage and Risk

Now we consider the case when policyholders do hold some private informa-

tion and are able to use it. We focus on those factors which would favour a

negative correlation between coverage and risk, which might offset the pos-

itive effect. We distinguish between the cases of risks which are negatively

correlated with risk aversion, and risks which are correlated with other fea-

tures.

1. Negative correlation between risk and risk aversion.

Hemenway (1990) first proposed the concept “Propitious Selection”

which describes the negative correlation between insurance coverage

and riskiness. The theory is that the absence of adverse selection in

some markets is due to the fact that high risks are also less risk averse,

i.e. high risks would not demand high level of coverage as expected by

insurers. On the contrary, low risks are relatively more risk averse and

would still buy insurance even at a higher premium (to some extent).

Thus the situation is advantageous to insurers. This negative correla-

tion between risk and risk aversion are considered as the main factor

contributing to the absence of adverse selection.
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The author’s idea was supported by several examples using U.S. data:

for car drivers, a positive correlation between purchase of noncompul-

sory liability insurance and a range of health-related risk avoidance

activities; also for car drivers, a positive correlation between purchase

of noncompulsory liability insurance and not driving after drinking al-

cohol; and for motorcyclists, a positive correlation between wearing a

helmet and holding medical insurance (Hemenway (1990, 1992)).

Similarly, Finkelsein & McGarry (2006) showed that those who are

most cautious about their health are most likely to purchase long-term

care insurance. And they are the least likely to enter nursing homes.

Empirical studies on other markets where a negative correlation be-

tween insurance coverage and losses has been identified include medi-

gap insurance (drugs coverage in the U.S.) (Fang et al. (2008)), health

insurance in Australia (Doiron et al. (2007)) and commercial fire insur-

ance (?).

Built on similar assumptions as Hemenway (1990), De Meza & Webb

(2001) provided a more detailed analysis on the presence of propitious

selection, which they named “Advantageous Selection”. The idea is that

as premium increases, it is the least risk-averse individuals who drop

out of the market; the existence of equilibrium in the market contra-

dicts the non-existence of pooling equilibria from the standard model

in Rothschild & Stiglitz (1976). Some empirical evidence also appeared

to conflict with the major implications of the standard economic model

of insurance. For example, De Meza & Webb (2001) provided evidence

that 4.8% of U.K. credit cards has been estimated to be reported lost

or stolen each year, whereas for insured cards the corresponding figure
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has only been 2.7%.

In a similar vein, Cawley & Philipson (1999b) found that the mortal-

ity rates of U.S. males purchasing life insurance were below that of

the uninsured, even after controlling for many factors, such as income

that are correlated with life expectancy. Chiappori et al. (2006) sug-

gested that accident rates were lower for young French drivers choosing

comprehensive insurance than for those opting for the legal minimum

coverage.

Finkelsein & McGarry (2006) and Cutler et al. (2008) explained this ad-

vantage selection by suggesting that heterogeneity among policyholders

is not only restricted to risk, but also risk aversion and other informa-

tion.

2. There may also be correlations between risk and other features.

Fang et al. (2008) proposed the concept of “Cognitive Ability” which

suggests that high cognitive ability is correlated with high demand

for insurance and better health (due to precaution actions e.g. regu-

lar health check with GP). There are also studies (e.g. Finkelstein &

Poterba (2006)) showing insurance coverage could be associated with

wealth, income, education, and socio-economic status. These theories

show that people with higher income usually have lower mortality rates

and are more willing to purchase all kinds of insurance (i.e. more risk

averse). Pauly et al. (2003) gave a reasonable explanation to the differ-

ent results observed in life insurance and annuity markets. For those

with higher income, their demand for life insurance is a mixed result

between risks being negatively correlated with risk aversion but posi-

tively correlated with insurance coverage. The net effect is that mor-
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tality rates of those who purchase life insurance would be very much

the same as the general public. Thus adverse selection is not always

being detected. However, higher income and lower mortality rate both

increase demand for annuities, which leads to annuitants outliving the

population average.

External Factors

Having discussed influences from policyholders themselves, external factors

such as intermediaries, alternative products and regulations should not be

ignored.

1. Intermediaries are considered as the bridge between insurers and poli-

cyholders. The fact that intermediaries have different influences in dif-

ferent markets contributes to the heterogeneity presented in markets.

Similarly, how insurers advertise their products differ from market to

market.

2. The number of alternatives and their accessibilities are also important,

especially for social insurance. If there is less freedom for policyholders

in choosing social insurance, some of them, if necessary, will switch

their attention to private insurance where they may have more choices.

3. Influence from regulations is also crucial. Chiappori (1999) found little

evidence of adverse selection in an automobile insurance market when

risk classification was not regulated. He did point out that government

regulations that prevent insurers from using some information that the

individual has obtained could create significant adverse selection. This

is called “Regulatory Adverse Selection”.
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Questions on the presence of regulatory adverse selection have also

been mentioned in other markets, e.g. health and life insurance mar-

kets. One of the areas which has been under fierce debate is the use of

information from genetic tests. Effects of many genes on the likelihood

of various illnesses and consequently individuals’ life expectancy was

discussed in Rowen et al. (1997). It is likely that new information from

genetic tests would become readily available in the future. There are

currently some regulatory restrictions on the use of genetic informa-

tion for insurance pricing through prohibiting insurers from requesting

and using such data, and capping the total amount of life insurance an

individual can buy without providing genetic information. However,

whether regulatory intervention on risk classification schemes is a good

or bad thing is still inconclusive.

Hoy & Witt (2007) considered how new information on mortality risk

and demand type together could influence insurance holding. By analys-

ing the effects from different forms of regulations, the author showed

that if there were sufficiently few individuals who receive negative re-

ports about their genetic type, then a ban on using genetic information

in pricing in combination with a cap which limits adverse selection

was welfare improving. This result indicates that appropriate level of

regulations on insurance pricing processes may have positive effect on

public welfare.

The above arguments suggest that even if policyholders have accurate private

information about themselves, taking advantage is not always easy due to

both internal and external factors.
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Moral Hazard

Even when a coverage-risk correlation has been identified, this does not nec-

essarily indicate adverse selection, because moral hazard can also lead to this

correlation.

Adverse selection deals with hidden information but moral hazard deals

with hidden action. Coverage-risk correlation due to adverse selection indi-

cates high risks choosing higher coverage (or lower deductibles). However,

in terms of moral hazard, it means purchasing insurance lowers policyhold-

ers’ caution and precautionary actions. Therefore, there will be higher risks

as a result. As it is hard to differentiate adverse selection from moral haz-

ard in empirical tests, some literatures on testing adverse selection remained

unclear whether their models have taken moral hazard into account. Some

approaches to separate adverse selection from moral hazard are:

1. Manning et al. (1987) used a randomized experiment on RAND Health

Insurance data to test how people’s spending changes given a randomly

assigned level of coverage, based on which they detected the presence

of moral hazard. The main initiative behind the experiment is that

when coverage changes due to exogenous reasons, policyholder’s action

changes instead of their risks.

2. Another approach to differentiate these two is based on their distinct

dynamic properties on past and future risks. Abbring et al. (2003)

provided an explanation on how it works: Under bonus-malus sys-

tems, a single claim raises the whole distribution of future premium

upwards. Therefore, under moral hazard, the greater cost of future ac-

cident should lead the insured to take more care, so that the probability

of loss falls. In other words, past losses and future losses are negatively
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correlated. On the other hand, under adverse selection, an insured with

many past losses is likely to be a high risk, who will also have many

future losses. Thus adverse selection would produce a positive correla-

tion between past and future claims. Using similar approaches, some

studies have found evidence of moral hazard (e.g. Israel (2007), Dionne

et al. (2007)) while some others do not (e.g. Abbring et al. (2003)).

3. A third method was introduced in Cohen (2005) by identifying the

interaction of the coverage-risk correlation with policyholder charac-

teristics and behaviours. The author argued that the correlation found

in auto-mobile insurance could be better explained in terms of adverse

selection rather than moral hazard. The same logic can be applied

in other markets to differentiate results from these two sources. How-

ever, compared to the previous two approaches, this is an approximate

approach.

Updated Information

Looking forward into the future, it is likely that both policyholders and in-

surers will have access to updated information on policyholders’ risks. Thus

any analysis on coverage-risk correlation is not a one-off job. It should be

regularly monitored based on the newest data and evidence.

One of the latest developments for insurers is the increasing availability

of “Big Data”, especially with the unstructured data growing 15 times faster

than structured data (Nair & Narayana (n.d.)). Although the insurance in-

dustry is still in the initial stages of embracing the revolution of Big Data, a

research commissioned from censuswide 10 has found that 82% of UK insur-
10by data warehousing company Teradata
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ance companies with more than £500m turnover are prioritising Big Data

strategies in 2016 (?). The increased volume, variety (e.g. from social media)

and velocity of these unstructured data along with the familiar structured

data bring opportunities as well as challenges not only for insures, but also

for regulators.

One example of how the impact of Big Data could affect the judgement

of pooling risk characteristics and individual observation is the application

of Telematics, i.e. the “pay as you drive” model to collect real data on how

policyholders drive, e.g. how and when they drive the car, how many miles

they drive and where they drive the car. This data could potentially allow

for more accurate pricing on an individual level, and might also incentivise

policyholders to improve driving and take precautions to reduce their insur-

ance premiums. This might be counted as a “positive result” for those who

favour personalised offers in insurance, e.g. low-risk policyholders who are

reluctant to pay higher premiums to subsidise high risks.

However, Big Data could also potentially increase risk segmentation and

consequently lead to customers with higher risks being unable to obtain af-

fordable insurance coverage. Moreover, access to Big Data, especially those

from social media and/or comparing websites might also enable insurers to

identify customers whose insurance purchasing behaviours over time show

inertia, e.g. they do not shop around. Insurers could use this information to

differentiate premiums between those customers who shop around and those

who do not. Customers in the latter group could face a higher premium to

subsidise those in the former group.

Regulators, with the main aim to ensure well-functioning markets and

customer protection, need to decide whether such behaviour should be al-

lowed or not as this is closely related to the use of risk classifications. Al-
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lowing the use of such information might be contrary the social purpose of

insurance; prohibiting those information might reinvoke discussions on the

potential result of adverse selection. Moreover, the trend towards person-

alised offers in insurance has raised concern: “Part of the genius of insurance

is that it is based on pooled risk. That has been its social value. There is a

danger of sleepwalking away from that into individual pricing.”11

Furthermore, the increasing availability of Big Data to insurers may also

indicate that the assumed information advantages from policyholders may

become less material in the future. As a result, opinions on the presence of

adverse selection as a result of restriction on risk classifications may change

in terms of empirical evidence.

The ever-changing nature of data and information is also relevant to ge-

netic discrimination in insurance, especially in private sector. With the grow-

ing availability of high-quality genetic testing and the emergence of “personal

medicine”, genetic discrimination is once again moving to the forefront of the

genetics policy debate.

Different options are in place around the world to resolve the genetic and

insurance dilemma with most restricting insurers from introducing genetic

information into their underwriting practice.12 The options vary according
11by David Thomson, director of Policy and Public Affairs at the Chartered Insurance

Institute, at a Teradata organisation discussion event held in the City of London. (?)
12For example, in the US, access to health insurance is mainly sponsored by employers

through group plans, in which case, employers bear a large percentage of the risk of health
care costs. Thus there is an incentive for employers to discriminate against those people
with potential high risks and the employers are mostly likely to oppose those prohibitive
regulations on genetic information. The Genetic Information Nondiscrimination Act 2008
(Public Law 110–233, 122 Stat. 881) (GINA) (Department of Health and Human Services
(HHS) (2008)) and the Health Insurance Portability and Accountability Act 1996 (Public
Law 104–191) (HIPAA) (The United States Congress (1996)) are two of the major pieces
of American federal legislations dealing with genetic discrimination and insurance.

But Europe differs from the US in its social rule of insurance. Most European states
provide some form of universal access to health care. As a result, private health insurance
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to local legal status, the role insurance plays in the society, and the interaction

between private and public health care systems.

Last but not the least, opinions of policyholders (or even people in a

certain country) are also crucial in deciding the role that genetic information

plays in insurance underwriting. There are arguments for and against the

genetic discrimination:

Some of the views of those who support the use of genetic discrimination

in insurance underwriting are as follows:

• Those restrictive regulations might result in “adverse selection” (e.g.

Macdonald (2003), Macdonald et al. (2006), Viswanathan et al. (2007)).

• They draw attention to the private and commercial nature of the ar-

rangement between insurer and the insureds. They emphasize the fair-

ness between a policyholder’s premium and his/her potential benefits,

when insurers spread out the cost of risk over time and over the pool

of insured. Thus insurers require all insureds to disclose their full and

truthful health information in order to protect the integrity of the over-

all risk pooling.

• Difficulties of distinguishing genetic health information from non-genetic

health information, i.e. insurers might treat genetic information in the

is not as significant as that in the US. Considering the social purpose of insurance, there
might be more supporters in the regulators’ actions.

In the UK, a combination of approaches are applied. Insurers are restricted from using
genetic information unless the cover exceeds a predetermined level. The “Concordat and
Moratorium” restricts the ability of British insurers to use genetic information in the
underwriting of life, critical illness, or income protection insurance. However, it makes
exceptions for high-valued policies above a predetermined amount of insurance money
as well as for certain genetic tests that meet prescribed technical, clinical, and actuarial
criteria. Applicants are still allowed to disclose predictive genetic test results in their
favour to override family history information (UK Department of Health and Association
of British Insurers (ABI) (2014)).
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same way as other kinds of health information that predict insurance

risk.

Some of the views of those who opposite the use of genetic discrimination

in insurance underwriting are as follows:

• Risk of irrational discrimination, i.e. the practice of distinguishing

applicants on grounds other than sound actuarial principles.

• Risk of rational, but socially unjust discrimination, i.e. people diag-

nosed with genetic disorder such as Huntington’s disease are those who

most need insurance and also who are most likely to be rejected for

insurance if genetic information is considered (Ashcroft (2007)).

• The lack of reliable empirical data on the impact of the use of genetic

information by insurers (Rothstein & Joly (2009)).

• Introducing extra data and/or parameters into the model also introduc-

ing additional levels of complexity and risk, e.g. data being misused

by insurers and other third parties.

• Confidentiality issues.

• Genetic information is qualitatively different from other forms of med-

ical information and thus requires special treatment and protection.

• The possibility that at-risk individuals knowingly forgoing genetic test-

ing to avoid jeopardizing their coverage.

• The possibility that insurers require getting genetic testing as a condi-

tion for applicants to get coverage.
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• The possibility that genetic information and potential risks being dis-

closed to family members who are unwilling to know in the first place.

This debate will continue with more data and evidence becoming avail-

able over time. It is not possible to provide a concrete conclusion as for now

on the pros and cons of using genetic information for insurance underwriting.

However, we make the following observations. For the private insurance in-

dustry to remain robust and stable, some form of risk classification is needed

and must be tolerated by all stakeholders. Insurers, on the other hand, must

be aware of the limit on the use of genetic information, and recognize how

their practices can create public apprehension and controversy. Insurers must

respond to this challenge by increasing transparency and demonstrating the

true scientific rationale behind their underwriting practices.
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Chapter 2

Demand for Insurance

In this chapter, we will provide a utility-based micro-foundation for the pro-

portional insurance demand function, driven by variations between individ-

uals in their utility functions, which can explain why only a proportion of

the individuals in each risk-group buy insurance at any given price (which

for the case of risk-differentiated premiums in the motivation examples was

defined as the “fair-premium demand”).

The rest of this chapter is organised as follows. Section 2.1 considers a

single risk-group, where all individuals have the same probabilities of loss,

but who have a range of utility functions. This set-up leads to a proportional

demand between 0 and 1, representing the proportion of individuals from the

risk-group who buy insurance at a given premium. Examples and analysis

of two demand functions, i.e. iso-elastic demand and negative-exponential

demand are given in Section 2.2 and 2.3 respectively.
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2.1 Insurance Demand for a Single Risk-group

2.1.1 Utility of Wealth and Certainty Equivalence

Consider an individual with an initial wealth W , who is exposed to the risk

of losing an amount of L with probability µ. Suppose preference for wealth

is driven by the utility function U(w), which is increasing in wealth w, i.e.

U ′(w) > 0.

Individuals are typically also assumed to be risk-averse i.e. U ′′(w) < 0.

This provides the motivation for insurance purchase at an actuarially fair

price, and initially we shall discuss individuals for whom the assumption

holds. But we shall see later that our theory of insurance demand does not

require that all individuals are risk-averse. Figure 2.1 shows an example of

a utility function U(w) with U ′(w) > 0 and U ′′(w) < 0:

Wealth

U
til

ity

W−L W − πcL W − µL W

U(W−L)

U(W − πcL)

U(W − µL)
U(W)

(1 − µ)U(W) + µU(W − L)
Fair premium

µL

πcL
Maximum premium

tolerated

Figure 2.1: Insurance purchasing decision based on an individual’s utility of

wealth.
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If no insurance is bought, occurrence of the risk event will reduce the indi-

vidual’s wealth from W to (W−L) with probability µ. Hence the individual’s

expected utility, without insurance, is given by:

(1− µ)U(W ) + µU(W − L). (2.1)

If, however, the individual has the option to insure against the risk at pre-

mium rate π per unit of loss and chooses to buy insurance for full cover, the

individual’s expected utility is:

U(W − πL), (2.2)

because the individual’s wealth diminishes immediately by the amount of

premium, but there is no further uncertainty as the loss is insured.

An individual will choose to buy insurance if the expected utility is higher

with insurance than without it, i.e.

U(W − πL) > (1− µ)U(W ) + µU(W − L). (2.3)

In particular, individuals with concave utility functions will buy insurance

at the actuarially fair premium π = µ. Furthermore, these individuals will

be prepared to purchase insurance up to the premium level πc, where:

U(W − πcL) = (1− µ)U(W ) + µU(W − L), (2.4)

which is also known as the certainty-equivalence principle. This is depicted

in Figure 2.1.
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2.1.2 Heterogeneity in Insurance Purchasing Behaviour

In the above model, all individuals with the same utility function and prob-

ability of loss either buy insurance or they do not, based on whether or not

the premium being charged, π, exceeds πc. However, in real insurance mar-

kets, we typically observe that not all individuals with the same probability of

loss make the same purchasing decision1. How can this variation in insurance

purchasing decisions be explained?

One plausible explanation suggested by a number of authors (e.g. Finkel-

sein & McGarry (2006), Cutler et al. (2008)) is that risk preferences vary

between individuals2. To formulate this variability, let us assume a popu-

lation of individuals, all with the same risk µ but who may have different

utility functions. Suppose for simplicity that utility functions belong to a

family parameterized by a real number γ. So a particular individual’s utility

function can be denoted by Uγ(w).

Further suppose that an individual’s utility function parameter γ is sam-

pled randomly from an underlying random variable Γ with distribution func-

tion FΓ(γ). So, a particular individual’s utility function, Uγ(w), is a random

quantity3, the randomness being induced by FΓ(γ).

Based on this formulation, an individual will choose to buy insurance if

and only if the following condition is satisfied for the combination of the
1Please see Footnote 2 on page 30.
2Another possible explanation of some individuals’ non-purchasing may be that an

actuarially fair premium is, in practice, not offered, i.e. premium loadings for expenses
and profit. However, heterogeneity in risk aversion is a more flexible explanation, in that
it can explain why different individuals with the same probabilities of loss and offered the
same premiums may make different decisions.

3We must be careful not to call the function Uγ(w) a random variable. We shall have
no need of any of the metric structure of spaces of functions that this would entail.
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offered premium π and their particular utility function Uγ(w):

Uγ(W − πL) > (1− µ)Uγ(W ) + µUγ(W − L), (2.5)

Note that all individuals are behaving deterministically, given their knowl-

edge.

Although utility functions of different individuals can have different ori-

gins and scales, certainty-equivalent decisions are independent of these choices.

So without loss of generality, we will assume that all individuals have the

same utility at the “end points” W − L and W . And for clarity, we will

suppress the subscript γ for the utility at the “end points” and write U(W )

and U(W − L) as they are the same for all individuals. We can then write

Equation (2.5) as:

Uγ(W − πL) > uc where (2.6)

uc = (1− µ)U(W ) + µU(W − L) is a constant. (2.7)

This says that an individual insures if the utility from insurance exceeds a

critical value uc. Note that uc is the same for all individuals who are exposed

to the same probability of loss.

Figure 2.2 provides a graphical representation showing utility functions

of four individuals with the same probability of loss µ. The concave util-

ity curves, with points A, B and C, represent risk-averse individuals, where

higher concavity represents higher risk-aversion. We also show a convex util-

ity curve, with point D, which represents a risk-loving (or risk-neglecting)

individual. (As mentioned previously, the model does not require that all

individuals are risk-averse.) For the individual at point A, the utility with

insurance, UγA(W − πL), exceeds the critical value uc, where γA is the indi-
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Figure 2.2: Heterogeneous utility functions within a risk-group, leading to

proportional insurance demand.

vidual’s utility function parameter. So the individual buys insurance. For the

individuals at points C and D, the inverse applies, so they do not purchase

insurance. The individual at point B is indifferent.

The utility at the fixed wealth (W − πL) is a random variable, that we

denote by UΓ(W −πL). The distribution function of UΓ(W −πL) is induced

by that of Γ and we denote it by GΓ(γ). The corresponding probability

density function of the utilities at that level of wealth is shown in the rotated

plot on the right-hand side of Figure 2.2.

Now assume that the insurer cannot observe individuals’ utility functions.

Then, for given offered premium π, all the insurer can observe of insurance

purchasing behaviour is the proportion of individuals within a risk-group of

risk µ who buy insurance. We call this a demand function and denote it by
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d(π). We have:

d(π) = P [UΓ(W − πL) > uc] = 1−GΓ(uc). (2.8)

Insurance purchase is denoted by the shaded area, d(π), under the density

graph for UΓ(W − πL).

We note the following three properties of demand for insurance:

(a) d(π), denotes a proportion, as 0 ≤ d(π) ≤ 1 is a valid probability.

(b) d(π) is non-increasing in π, i.e. demand for insurance cannot increase

when premium increases. This can be shown as follows: For utility

functions with U ′(w) > 0, if π1 < π2, the random variable UΓ(W−π1L)

is statewise dominant4 over the random variable UΓ(W − π2L). So,

π1 < π2 ⇒ P [UΓ(W − π1L) > uc] ≥ P [UΓ(W − π2L) > uc] (2.9)

⇒ d(π1) ≥ d(π2).

(c) Each individual’s decision is completely deterministic, given their knowl-

edge of their own utility function. But all the insurer sees is that any

particular individual buys insurance with probability d(π) and does not

buy insurance with probability (1− d(π)). In other words, the insurer

observes stochastic behaviour. If, for a particular individual we define

the function Q to be Q = 1 if they buy insurance or Q = 0 if they

do not. Then Q is deterministic in the eyes of the individual, and a

Bernoulli random variable with parameter d(π) in the eyes for the in-

surer. A full probabilistic model accounting for these different levels of
4One random variable is statewise dominant over a second if the first is at least as high

as the second in all states of nature, with strict inequality for at least one state. It is an
absolute form of dominance.
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information is given in Appendix A.1.

As noted earlier, certainty equivalent decisions do not depend on the ori-

gins and scales of utility functions, so we can standardise the utility functions

such that all individuals have the same utilities U(W ) and U(W −L) at the

“end points” W and W − L. The following standardisation is convenient:

U(W ) = 1, (2.10)

U(W − L) = 0. (2.11)

The constant uc in Equation 2.8 then becomes (1 − µ), and so the demand

for insurance is:

d(π) = P [UΓ(W − π L) > 1− µ]. (2.12)

In practice, demand for insurance can be empirically observed and esti-

mated from data, while individuals’ utility functions are not observable. The

micro-foundations of the insurance demand described above suggests a pos-

sible mechanism by which observable demand for insurance is generated by

the unobserved utility functions of individuals, which are assumed to follow

a probabilistic law. Different choices of utility functions and distributions of

the parameter Γ give rise to a wide variety of demand functions d(π). It is

not our purpose to discuss either elicitation of any particular utility func-

tion, or inference on the distribution of Γ, which would present formidable

challenges. Instead we propose to work directly with (proportional) demand

for insurance, d(π), which may be observed in practice.

We now define a related concept, the (point price) elasticity of insurance
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demand, as follows:

ε(π) = −∂ log d(π)
∂ log π , or, equivalently: (2.13)

d(π) = τ exp
[
−
∫ π

µ
ε(s)d log s

]
, (2.14)

where τ = d(µ) is the “fair-premium demand” for insurance.

The expression in Equation 2.14 has the benefit that we do not have to

impose any regularity conditions, like continuity, on the demand function

d(π). We require only that the demand elasticity ε(π) in Equation 2.13 is

non-negative, so that the demand d(π) in Equation 2.14 is non-increasing in

premium π.

2.2 Iso-elastic Demand

In this section, we will firstly use iso-elastic demand as an example to demon-

strate the link from specific distributions of risk preferences to specific pro-

portional demand for insurance, where individuals are exposed to the same

probability of loss.

Suppose W = L = 1 with a power utility function:

Uγ(w) = wγ, (2.15)

so that Uγ(0) = 0 and Uγ(1) = 1. This particular form of utility function

leads to:

relative risk aversion coefficient: − w
U ′′γ (w)
U ′γ(w) = 1− γ. (2.16)

So the heterogeneity in preferences between individuals can be modelled
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through the randomness of the risk aversion parameter γ. As outlined in

sub-section 2.1.2, we define a positive random variable Γ, and individual risk

preferences γ are then instances drawn from the distribution of Γ.

Inserting this utility function into Equation 2.12, the demand for insur-

ance at a given premium π < 1 is then:

d(π) = P [UΓ(1− π) > 1− µ] , (2.17)

= P
[
(1− π)Γ > 1− µ

]
, (2.18)

= P [Γ log(1− π) > log(1− µ)] , as log is monotonic, (2.19)

= P

[
Γ <

log(1− µ)
log(1− π)

]
, as log(1− π) < 0. (2.20)

So, given an observed (proportional) insurance demand function, which is

non-increasing in premium, π, the underlying random variable Γ has the

following distribution function:

FΓ(γ) = P [Γ < γ] = d(1− (1− µ)1/γ). (2.21)

Since 1−(1−µ)1/γ ≈ µ/γ for small µ using first order Taylor approximation,

we might in some circumstances approximate equation (2.21) by the simpler:

FΓ(γ) = P [Γ < γ] = d

(
µ

γ

)
. (2.22)

Note that FΓ(γ) is a non-decreasing function and lies between 0 and 1.

Of course, for FΓ to be a valid distribution function, we would also require

limγ→0 FΓ(γ) = 0 and limγ→∞ FΓ(γ) = 1, or equivalently, limπ→∞ d(π) = 0

and limπ→0 d(π) = 1, which appear to be reasonable assumptions. However,

empirical observations are unlikely to be available for these extreme cases,

so it is only possible to model insurance purchasing behaviour over the range
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of premiums observed in the market, with appropriate extrapolations at the

limiting extremes.

Therefore, given an observed proportional insurance demand, d(π), which

is a valid probability and non-increasing in π, heterogeneity of risk prefer-

ences driven by the power utility function and characterised by the random

parameter Γ with the distribution function given by Equation 2.21 produces

the observed demand for insurance for small premiums.

To get iso-elastic demand function, suppose Γ has the following distribu-

tion:

FΓ(γ) = P [Γ ≤ γ] =



0 if γ < 0

τ γλ if 0 ≤ γ ≤ (1/τ)1/λ

1 if γ > (1/τ)1/λ,

(2.23)

where τ and λ are positive parameters. Note that τ = λ = 1 leads to a

uniform distribution. λ controls the shape of the distribution function and τ

controls the range over which Γ takes its values.5

Based on this distribution for Γ, the demand for insurance in Equation

2.12 takes the form:

d(π) = τ
(
µ

π

)λ
, (2.24)

which is named as “iso-elastic demand”. This demand function is subject to

a cap of 1, because proportional demand can not be greater than 100%. The

constant demand elasticity is:

ε(π) = −∂ log(d(π))
∂ log π = λ. (2.25)

The parameter τ can also be interpreted as the fair-premium demand,
5This is a generalised version of the Kumaraswamy distribution, which in its standard

form takes values only over [0,1] (Kumaraswamy (1980)).
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that is the demand when an actuarially fair premium is charged.

The motivation examples given at the beginning of this thesis can then be

shown to correspond to this iso-elastic demand function, with fair-premium

demand τ = 0.5 and constant demand elasticity λ = 0.435 for both risk-

groups. These are reasonable parameters.6

This equation specifies demand as a function of the “premium loading”

(π/µ). When the premium loading is high (insurance is expensive), demand

is low, and vice versa. The “iso-elastic” terminology reflects that the price

elasticity of demand is the same everywhere along the demand curve.

Figure 2.3 shows examples of iso-elastic demand functions as functions of

premium π, for risk µ = 0.01 and different values of the elasticity parameter

λ = 0.4, 0.8 and 1.2. We observe that, for a given value of λ, d(π) decreases

with π. For a given value of premium π, d(π) is smaller when λ is larger.

This reflects the feature that a large value of λ leads to a higher sensitivity

to premium changes.

An important point to note here is that power utility function of the form

given in Equation 2.15 is concave only if the risk aversion parameter γ is less

than 1. Such a constraint can be imposed on random variable Γ by setting

τ = 1 in Equation 2.23. Then the third branch of Equation 2.23 implies that

d(π) = 1 for π < µ, which corresponds to the standard assumption in the

economics literature that all individuals are risk-averse and hence will buy

insurance for premiums not exceeding their probability of loss. By permitting

some individuals to be ‘risk-lovers’, the model better represents the partial

take-up of insurance which is observed in practice. Although ‘risk-loving’

or ‘risk-seeking’ are the usual descriptions, ‘risk-neglecting’ might be a more
6Approximately half the population has some life insurance (see Footnote 2). For yearly

renewable term insurance in the US, demand elasticity has been estimated at 0.4 to 0.5
(Pauly et al. (2003)). A questionnaire survey about life insurance purchasing decisions
produced an estimate of 0.66 (Viswanathan et al. (2006)).
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Figure 2.3: Plot of demand functions with respect to a given premium with

τ = 1, µ = 0.01, λ = 0.4, 0.8 and 1.2.

realistic one.

In the above formulation, we assumed that the elasticity of demand from

a risk-group is the same for all values of the premium π. The simplicity

of the assumption is appealing. Any variations in the underlying elasticity

parameters can be assumed to be smoothed using a single estimate, which

can be reasonably justified if the variations are indeed small. An example is

shown in the left-hand plot of Figure 2.4 with λ = 0.5.

The constant demand elasticity, say λi for risk-group i, could take dif-

ferent values for different risk-groups; for example with two risk-groups, λi
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is typically higher for the higher risk-group. One example of this is shown

in the right-hand plot of Figure 2.4, where we consider two risk-groups with

µ1 = 0.01 and µ2 = 0.04 and the corresponding demand elasticities are

λ1 = 0.2 and λ2 = 0.8 respectively.
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Figure 2.4: Plot of demand elasticity with respect to a given premium-the

case of iso-elastic demand

2.3 Negative-exponential Demand

The assumptions of iso-elastic demand with constant demand elasticity al-

lows mathematical tractability, but can be criticised as unrealistic. For most

goods and services, we might expect demand elasticity to increase with price,
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because of the income effect: for high risks, a higher price of insurance repre-

sents a larger part of the consumer’s total budget constraint, so the response

to a small proportional change in that price should be higher. This suggests

that demand elasticity should be modelled as an increasing function of the

premium. One approach is shown in Figure 2.5. In this case, the linear rela-

tionship shown between demand elasticity and premium is posited to apply

identically for the higher and low risk-groups.

The particular linear relationship in Figure 2.5, where the straight line

representing demand elasticity passes through the origin, arises where the

fair-premium demand elasticities λi vary in proportional to the corresponding

fair premiums µi (for risk-groups i = 1, 2,), that is

λ1

µ1
= λ2

µ2
. (2.26)

A suitable model for demand elasticity is then

ε(π) = λ1

µ1
π = λ2

µ2
π, (2.27)

which in turn leads to the following demand function:

d(π) = τ exp
[(

1− π

µ

)
λ

]
. (2.28)

A further possibility is for demand elasticity as a function of premium to

be a non-linear curve fitted as follows:

ε(π) = kπn, where λ1

µn1
= λ2

µn2
= k, for some n = log(λ2/λ1)

log(µ2/µ1) , (2.29)

such that ε(µ1) = λ1 and ε(µ2) = λ2 if there are two risk-groups in the

population. The parameter n can be thought of as the “elasticity of elasticity”
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Figure 2.5: Plot of demand elasticity with respect to a given premium-the

case of negative-exponential demand

of demand, which we shall call the “second-order elasticity”.

The form of demand elasticity in Equation 2.29 leads to the following

class of demand functions:

d(π) = τ exp
[{

1−
(
π

µ

)n}
λ

n

]
, (2.30)

with τ again representing fair-premium demand for insurance. We call this

“negative-exponential demand”.

This demand function can be derived from the following distribution of

risk preferences:
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Suppose Y ∼ Weibull(λ, n) distribution, in the following form:

P [ Y > y ] = exp
[
−λ
n
yn
]
, λ, n, y > 0. (2.31)

Now define:

Z = Y |Y > ψ , where ψ =
[
1 + n

λ
log τ

]1/n
> 0. (2.32)

So,

P [Z > z ] =

 1 if z ≤ ψ;
P [Y >z ]
P [Y >ψ ] = exp

[
λ
n

(ψn − zn)
]

if z > ψ.
(2.33)

Next, define Γ = 1/Z, so that:

FΓ(γ) = P [ Γ < γ ] = P [Z > 1/γ ] =

 1 if 1/γ ≤ ψ;

exp
[
λ
n

(ψn − γ−n)
]

if 1/γ > ψ.

(2.34)

By Equation 2.22:

FΓ(γ) = P [Γ < γ] = d

(
µ

γ

)
(2.35)

which leads to the form of negative-exponential demand in Equation 2.30.

Note: For this demand function, second-order elasticity n = 1 corre-

sponds to demand elasticity as a straight-line function of premium as in

Equation 2.28. n → 0 corresponds to iso-elastic demand. Because when

n→ 0, Equation 2.29 becomes:

ε(π) = λ, (2.36)
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and the demand function becomes:

d(π) = τ
(
µ

π

)λ
, (2.37)

which is the iso-elastic demand function. The proof is given in Theorem

A.2.1 in Appendix A.

And when n 6= 1, demand elasticity becomes a curved function of pre-

mium. Two possible graphical representations of the negative-exponential

demand function in Equation 2.30 with n 6= 1 are shown in Figure 2.6:
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Figure 2.6: Plot of demand elasticity with respect to a given premium-the

case of negative-exponential demand

• In the left-hand plot, µ1 = 0.01, µ2 = 0.04, ε(µ1) = 0.1 and ε(µ2) = 0.9
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so that n = log(9)/ log(4) ≈ 1.585 and λ2 > λ1.

• In the right-hand plot, µ1 = 0.01, µ2 = 0.04, ε(µ1) = 0.3 and ε(µ2) =

0.6 so that n = log(2)/ log(4) = 0.5 and λ2 < λ1.

2.4 Summary

In this chapter, we provide a utility-based micro-foundation for the propor-

tional insurance demand function by introducing heterogeneity in individuals’

utility functions. As observed in many insurance markets, not all individuals

choose to buy insurance at any given premium because of this heterogene-

ity. In our model, individuals make decisions completely deterministically on

the basis of certainty-equivalent utility calculations, but the insurer observes

apparently stochastic decision-making, resulting in a proportional insurance

demand function.

In the next chapter, we introduce generalised framework to allow indi-

viduals to belong to different risk-groups having different loss probabilities,

built upon which equilibrium in the insurance market under given risk clas-

sification is analysed.
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Chapter 3

Risk Classification and

Equilibrium in Insurance

Markets

In the previous chapter, we have developed a framework for insurance de-

mand based on heterogeneous risk preferences of individuals who have the

same wealth W and the same probabilities of loss amount L. In this chap-

ter, we provide a generalised framework to allow individuals to belong to

different risk-groups having different loss probabilities. Then, based on the

assumption that insurers will charge premium(s) at which they break even

under different risk classifications, we look at different types of equilibria.
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3.1 Framework for Insurance Risk Classifica-

tion

For simplicity, we assume all wealth and losses are of unit amount, that is

W = L = 1. Whist we will consider a variety of risk classifications in this

thesis, we always assume that as a result of regulation or otherwise, the risk

classification is common to all insurers. Competition between insurers each

using different risk classifications will not be considered in this thesis.

Suppose that a population can be sub-divided into m distinct risk-groups,

based on information which is fully observable by insurers. Let µ1, µ2, ..., µm

be the underlying probabilities of loss, of an individual in each of the risk-

groups. Without loss of generality, we assume, the risk-groups are indexed

in an increasing order of risk, i.e. 0 < µ1 < µ2 < ... < µm < 1.

Let µ be a random variable denoting the probability of loss for an individ-

ual chosen at random from the whole population, such that P [µ = µi] = pi

for i = 1, 2, ...,m. In other words, the proportion of the population belonging

to risk-group i is pi.

Suppose insurers charge premiums π1, π2, . . . , πm for the respective risk-

groups. Initially we do not impose any constraints on the order or size of

insurance premiums, so that the insurers are free to charge any premiums to

any risk-group. Based on the framework developed in Chapter 2, we denote

the demand for insurance for risk-group i, given offered premium πi, by di(πi),

where 0 ≤ di(πi) ≤ 1 and di(πi) is non-increasing in πi.

Let the insurance purchasing decision of an individual chosen at random

from the whole population be represented by the indicator random variable

Q, taking the value of 1 if insurance is purchased; and 0 otherwise. Then
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conditional on the risk-group, Q is a Bernoulli random variable defined by:

E[Q|µ = µi] = P [Q = 1|µ = µi] = di(πi). (3.1)

Then the expected population demand for insurance is the unconditional

expected value of Q:

E[Q] =
m∑
i=1

E[Q|µ = µi]P [µ = µi] =
m∑
i=1

di(πi)pi. (3.2)

E[Q] corresponds to a unit version of the fifth row of the tables in the moti-

vating examples earlier in this thesis.

Now suppose that the occurrence of a loss event for an individual chosen

at random from the whole population is represented by the indicator random

variable, X, taking the value of 1 if a loss event has occurred; and 0 otherwise.

Then X is a Bernoulli random variable defined as:

E[X|µ = µi] = P [X = 1|µ = µi] = µi. (3.3)

Then the expected population loss is the unconditional expected value of X:

E[X] =
m∑
i=1

E[X|µ = µi]P [µ = µi] =
m∑
i=1

µipi. (3.4)

E[X] corresponds to a unit version of the third row of the tables in the

motivating examples earlier in this thesis.

We assume that Q and X are independent, conditional on µ = µi. That

is, the level of risk may influence the decision to buy insurance, but there is

no moral hazard; insured individuals in any risk-group are not more likely to

suffer the loss event than uninsured individuals. Then the expected claims
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outgo for insurers is:

E[QX] =
m∑
i=1

E[QX|µ = µi]P [µ = µi],

=
m∑
i=1

E[Q|µ = µi]E[X|µ = µi]P [µ = µi],

=
m∑
i=1

di(πi)µipi. (3.5)

Finally, for an individual chosen at random from the whole population,

define random variable Π, as the premium paid by that individual. As pre-

miums are only paid by individuals who purchase insurance, Π = QΠ. And

since everybody in risk-group i is offered the same premium πi, we have:

E[Π|µ = µi] = E[QΠ|µ = µi] = E[Q|µ = µi]πi = di(πi)πi. (3.6)

Then the unconditional expected premium income is:

E[Π] =
m∑
i=1

E[Π|µ = µi]P [µ = µi] =
m∑
i=1

di(πi)πipi. (3.7)

E[Π] corresponds to the final column of the fourth row in the tables in the

motivating examples earlier in this thesis. Since individuals who do not buy

insurance pay premium zero, we can also write E[Π] = E[QΠ].

The expected profit for insurers, as a function of risk classification π =

(π1, π2, . . . , πm), is then :

ρ(π) = E[Π]− E[QX] =
m∑
i=1

di(πi)πipi −
m∑
i=1

di(πi)µipi. (3.8)

A full probabilistic model, of heterogeneity in insurance purchasing be-

haviour leading to a framework within which insurance risk classification is
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provided in Appendix A.1.

3.2 Equilibrium in the Insurance Market

Equilibrium is achieved when the expected profit for insurers is zero. In

other words, π = (π1, π2, . . . , πm) denotes an equilibrium, if it satisfies the

equilibrium condition:

ρ(π) = E[Π]− E[QX] = 0, (3.9)

⇒
m∑
i=1

di(πi)πipi =
m∑
i=1

di(πi)µipi. (3.10)

For brevity, we firstly confine our attention to two obvious, and opposing,

risk classifications : full risk classification and no risk classification. We aim

to analyse equilibrium premium(s) in each case.

In this thesis, we assume that an equilibrium has been reached and that

insurers use the same premium strategy that break even. We do not consider

how equilibrium was reached, or whether profits or losses were made along

the way. We model the insurance market as a “timeless equilibrium”, “equi-

librium” in the sense that it focuses on the steady state where all insurers’

profits and losses are competed away. And “timeless” in the sense that when

a pooled premium is charged on different risk-groups due to a restriction on

risk classification, it glosses over any sequence of profits and losses which

occur as insurers adjust the pooled premium towards the equilibrium level.

Whilst risk classification is restricted, the level of pooled premiums is not.
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3.2.1 Full Risk Classification

An obvious solution to Equation 3.10 is to set premiums equal to the respec-

tive loss probabilities, i.e. πi = µi for i = 1, 2, ...,m. We call this particular

set of equilibrium the risk-differentiated premiums under full risk classifica-

tion. In this case, the expected population demand for insurance is

E[Q] =
m∑
i=1

piτi, (3.11)

where τi is the fair-premium demand di(µi).

Also, when πi = µi for i = 1, ...,m, the expected premium and expected

claim are equal and given by:

E[Π] = E[QX] =
m∑
i=1

piτiµi. (3.12)

We define the concept of expected claim per policy:

E[QX]
E[Q] =

∑m
i=1 piτiµi∑m
i=1 piτi

, (3.13)

=
m∑
i=1

αiµi, (3.14)

where αi is defined as the fair-premium demand-share for risk-group i,

αi = piτi∑m
j=1 pjτj

, i = 1, 2, ...,m. (3.15)

So the expected claim per policy at risk-differentiated premiums is actually a

weighted-average of true risks of all risk-groups. Intuitively speaking, when

there are proportionally more high risks in the population, we would expect

the average claim amount to increase. We will come back to this concept

later in this thesis.

87



3.2.2 No Risk Classification

At the other end of the spectrum is the pooled equilibrium where risk clas-

sification is banned and so all risk-groups are charged the same premium

π0, i.e. πi = π0 for i = 1, 2, . . . ,m. As mentioned in the Introduction and

demonstrated in the Motivating examples, charging pooled equilibrium pre-

mium leads to adverse selection in terms of increase in pooled premium and

reduction in total expected number of insured. However, because insurers

are assumed to adjust the pooled premium to whatever level is necessary to

ensure equilibrium, and competition between insurers in risk classification is

not permitted, adverse selection does not imply insurer losses.

We have the following result:

Result 3.1. When all the insurers are banned from using any risk classifi-

cation, there exists at least one pooled premium at which the expected profit

for insurers is zero. However, its uniqueness is not guaranteed.

The existence of a pooled equilibrium can be demonstrated as follows.

Setting the pooled premium π0 = µ1, the probability of loss for the lowest

risk-group, leads to ρ(µ1) ≤ 0.1 Setting the pooled premium at the highest

level of risk, i.e. π0 = µm, gives ρ(µm) ≥ 0. Assuming insurance demand

to be a continuous function of premium, therefore, there exists at least one

root π0 ∈ [µ1, µm] which gives a pooled equilibrium, i.e. ρ(π0) = 0. However,

depending on the type of the demand function, uniqueness of the pooled

equilibrium is not guaranteed, i.e. there might be multiple solutions. We

will look at multiple solutions to equilibrium premium in detail in Section

3.6.
1For notational convenience, we specify only one argument for multivariate functions

if all arguments are equal, e.g. we write ρ(π) for ρ(π, π, . . . , π).
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The expected population demand for insurance, in this case of pooled

equilibrium becomes

E[Q] =
m∑
i=1

di(π0)pi. (3.16)

For equilibrium, according to Equation 3.9, ρ(π0) = 0, i.e. the expected

premium and expected claim need to be equal, so

ρ(π0) =
m∑
i=1

di(π0)pi(π0 − µi) = 0, (3.17)

⇔
m∑
i=1

di(π0)piµi =
m∑
i=1

di(π0)piπ0. (3.18)

In this case, the expected claim per policy will be:

E[QX]
E[Q] = E[QΠ]

E[Q] = π0. (3.19)

We name this premium, π0, the pooled equilibrium premium. It corresponds

to the break-even premiums in Table 2 and 3 in the motivating examples

earlier in this thesis.

3.2.3 Partial Risk Classification

Between the two extreme cases of risk classifications, i.e. full risk classifica-

tion and no risk classification, there is also partial risk classification, in which

insurers can observe different risk groups and can charge any premiums, sub-

ject to the equilibrium condition ρ(π) = 0 with no specific constraints on the

premiums.

Partial risk classification might be considered to be a more realistic strat-

egy, because insurers might be allowed to differentiate premiums to some

extent, but may not be able to fully reflect the differences between different
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risk-groups. We will look at partial risk classification in detail in Chapter 7.

In the rest of this chapter, we will analyse equilibrium for three types of

demand functions, i.e. iso-elastic demand, negative-exponential demand and

then any general demand function. In particular, we will focus on the case

when there is no risk classification, i.e. the same pooled premium is charged

to all risk-groups.

3.3 Iso-elastic Demand

For iso-elastic demand, we will firstly assume there are only two risk-groups

in a population, i.e. a low risk-group and a high risk-group. We look at

pooled equilibrium premium when these two groups have the same demand

elasticity, i.e. λ1 = λ2, and also when they have different demand elasticities,

i.e. λ1 and λ2 are not necessarily the same. Then, we extend the analysis to

the case of more risk-groups.

3.3.1 Two Risk-groups: Equal Demand Elasticity

In this sub-section, we discuss equilibrium when the low risk-group and the

high risk-group have the same elasticity of demand, i.e. λ1 = λ2 = λ. Our

main result in this case is:

Result 3.2. When the low risk-group and the high risk-group have equal

elasticity of demand, there is a unique pooled equilibrium premium.

This is because solving Equation 3.17 gives:

π0 = α1µ
λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
, (3.20)
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i.e. there is a unique equilibrium premium. It is illustrative to express

π0 as a weighted average of the true risks µ1 and µ2:

π0 = θµ1 + (1− θ)µ2, (3.21)

where

θ = α1

α1 + α2
(
µ2
µ1

)λ , (3.22)

αi = piτi
p1τ1 + p2τ2

, i = 1, 2 (3.23)

where αi is the fair-premium demand share as defined in Equation 3.15.

Figure 3.1 shows an example of a unique equilibrium premium when both

risk-groups have the same demand elasticity. It demonstrates that the ex-

pected total profit for insurers monotonically increases with the pooled pre-

mium. When the premium is very low, e.g. π = µ1 = 0.01 in this example,

the expected total profit for insurers is negative provided at least one high

risk buys insurance. And when the premium is very high, e.g. π = µ2 = 0.04

in this example, the expected total profit for insurers is positive provided at

least one low risk buy insurance. Because expected total profit is a continu-

ous function of premium, there is at least one pooled equilibrium premium at

which insurers break even. And in this scenario of equal demand elasticity,

there is a unique pooled equilibrium premium.

Note that π0 in Equation 3.20 does not depend directly on the individual

values of the population fractions (p1, p2) and fair-premium demands (τ1, τ2),

but only indirectly on these parameters through the demand-shares (α1, α2).

In other words, populations with the same true risks (µ1, µ2) and demand-

shares (α1, α2) have the same equilibrium premium, even if the underlying
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Figure 3.1: Expected profit as a function of pooled premium for a population

with (µ1, µ2) = (0.01, 0.04), α1 = 90%, α2 = 10% and λ1 = λ2 = 1.

(p1, p2) and (τ1, τ2) are different.

Figure 3.2 plots the pooled equilibrium premium against demand elas-

ticity, λ, for two different population structures with the same true risks

(µ1, µ2) = (0.01, 0.04) but different fair-premium demand-shares (α1, α2).

The following results follow directly from Equation 3.20, and are illus-

trated in Figure 3.2.

Result 3.3.

lim
λ→0

π0 = α1µ1 + α2µ2. (3.24)

Intuitively, if demand is inelastic, changing the premium makes no difference,

and so the equilibrium premium will be the same as the expected claim per
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Figure 3.2: Pooled equilibrium premium as a function of λ for two popula-

tions with the same (µ1, µ2) = (0.01, 0.04) but different values of (α1, α2).

policy if risk-differentiated premiums were charged. In Figure 3.2, this is

0.013 and 0.019 for fair-premium demand-shares of α1 = 0.9 and α1 = 0.7

respectively.

Result 3.4.

π0 is an increasing function of λ. (3.25)

Intuitively, an increase in demand elasticity means that at any premium

between µ1 and µ2, there will be less demand than before from low risks and

more demand than before from high risks; the premium for which profits

on low risks exactly balance losses on high risks will therefore be higher.

In Figure 3.2, both curves slope upwards. In Equation 3.22, increasing λ

reduces the weight θ on low-risk, resulting in an increase in the equilibrium

premium π0.
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Result 3.5.

lim
λ→∞

π0 = µ2. (3.26)

Intuitively, if demand elasticity is very high, demand from the low risk-group

falls to zero for any premium above their true risk µ1. The only remaining

insureds are then all high risks, so the equilibrium premium must move to

π0 = µ2. In Figure 3.2, both curves converge to µ2 = 0.04 as λ increases.

Result 3.6.

π0 is a decreasing function of α1. (3.27)

Intuitively, if the fair-premium demand-share α1 of the lower risk-group in-

creases, we would expect the equilibrium premium to fall. In Figure 3.2, the

curve for α1 = 90% lies below the curve for α1 = 70%.

3.3.2 More Risk-groups: Equal Demand Elasticity

Some of the results on equilibrium premium for two risk-groups in the previ-

ous sub-section can be easily generalised to m risk-groups (where m ≥ 2). In

particular, we can derive an explicit form of the pooled equilibrium premium

for the case when all m risk-groups have the same demand elasticity, i.e.

λ1 = λ2 = ... = λm = λ. Our key result is:

Result 3.7. When all m risk-groups have the same demand elasticity λ,

there is a unique pooled equilibrium premium.

Based on iso-elastic demand, the equilibrium condition defined in Equa-
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tion 3.17 gives:

m∑
i=1

piτi

(
µi
π0

)λ
(π0 − µi) = 0, or, equivalently: (3.28)

m∑
i=1

αi

(
µi
π0

)λ
=

m∑
i=1

αi

(
µi
π0

)λ+1
, where αi = piτi∑m

j=1 pjτj
for i = 1, 2, ...,m.

(3.29)

Solving Equation 3.29 gives:

π0 =
∑m
i=1 αiµ

λ+1
i∑m

i=1 αiµ
λ
i

. (3.30)

Using similar logic as in sub-section 3.3.1, we have the following main

results for more than two risk-groups:

Result 3.8.

π0 ≥
m∑
i=1

αiµi. (3.31)

In other words, given an iso-elastic demand, when there are many risk-groups,

pooled equilibrium premium is never smaller than the expected claim per

policy under full risk classification.

Result 3.9.

π0 ↑ λ. (3.32)

In other words, pooled equilibrium premium increases with demand elasticity

λ.

Result 3.10.

lim
λ→∞

π0 = µm. (3.33)

In other words, pooled equilibrium premium is capped at the level of the

highest risk when demand elasticity is very large.
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Equation 3.29 provides another perspective to the equilibrium condition.

Consider a random variable, V , taking values vi = µi
π0

with probabilities αi
for i = 1, 2, ...,m. Then, Equation 3.29 says that, under equilibrium, the

random variable V satisfies:

E[V λ] = E[V λ+1]. (3.34)

This is an important result which we will refer to in later chapters on loss

coverage and social welfare.

3.3.3 Two Risk-groups: Different Demand Elasticities

In practice, however, it might not always be the case that both the low

risk-group and the high risk-group will have the same demand elasticity.

Therefore, in this sub-section, we consider the case when the low risk-group

and the high risk-group have different elasticities of demand, i.e. λ1 6= λ2.

If we substitute iso-elastic demand function at an equilibrium premium,

π0,

di(π0) = τi

µi
π0

λi (3.35)

into the equilibrium condition in Equation 3.17, we get the following equa-

tion:

λ1 log
π0

µ1

+ λ2 log
µ2

π0

 = log
α1(π0 − µ1)
α2(µ2 − π0)

. (3.36)

After rearranging the above equation, we have:

λ2 = −
log(π0

µ1
)

log(µ2
π0

)λ1 +
log

α1(π0−µ1)
α2(µ2−π0)


log(µ2

π0
) . (3.37)
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We provide two illustrative plots in Figure 3.3 showing the relationship be-

tween equilibrium premium, π0, and demand elasticities of both low and

high risk-groups, λ1 and λ2. A contour plot of equilibrium premium, π0, for

α1 = 70% is the left plot, and α1 = 90% is the right plot. In both plots, with

λ1 and λ2 on x and y axes respectively, the straight lines represent different

levels of equilibrium premiums for any given combinations of λ1 and λ2. If we

focus on any one particular straight line, i.e. for a particular equilibrium pre-

mium, π0, we notice that λ1 and λ2 are linearly related as shown in Equation

3.37. So we have the following results on pooled equilibrium premium:

Result 3.11. The same equilibrium premium can be attained by populations

with different demand elasticities, as long as these are linearly related as

per Equation 3.37. Therefore, to reach the same equilibrium premium, an

increase/decrease in λ1 means a decrease/increase in λ2.

Result 3.12.

lim
(λ1,λ2)→(0,0)

π0 = α1µ1 + α2µ2. (3.38)

This follows directly from Equation 3.36. Intuitively, if demand is inelastic,

the equilibrium pooled premium will be close to the expected claim under

fair premiums.

Result 3.13.

π0 ≥ α1µ1 + α2µ2. (3.39)

This follows from the fact that µ1 ≤ π0 ≤ µ2, λ1 ≥ 0, λ2 ≥ 0 and the

relationship in Equation 3.36. Intuitively, the equilibrium pooled premium

is never smaller than the expected claim under fair premiums.

Result 3.14.

lim
(λ1,λ2)→(∞,λ2)

π0 = µ2, (3.40)
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Figure 3.3: Equilibrium premium as a function of (λ1, λ2) for α1 = 70% and

α1 = 90%, when (µ1, µ2) = (0.01, 0.04).

which again follows from Equation 3.36. Intuitively, high demand elasticities

lead to an equilibrium where only high risks purchase insurance.

Result 3.15. Given π0:

log (π0/µ1)
log (µ2/π0) is an increasing function of π0, (3.41)

i.e. the (absolute value of the) slope of the line, in Equation 3.36 increases

with π0. Intuitively, a higher equilibrium premium π0 is consistent with

higher sensitivity to λ2 and lower sensitivity to λ1. In the limit, as π0 → µ2,

the straight line in Equation 3.36 becomes perpendicular to the λ1-axis, as

can be seen from Figure 3.3.

Result 3.16. Given π0:
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lim
λ1→0

λ2 =
log

(
α1(π0−µ1)
α2(µ2−π0)

)
log

(
µ2
π0

) is an increasing function of π0, (3.42)

i.e. the intercept on the λ2-axis in the plots of Figure 3.3 increases with

π0. Intuitively, if the low-risk group is insensitive to premiums, a higher

equilibrium premium π0 is consistent with higher demand elasticity λ2 for

of high risks, because this increases the demand from that group at any

premium π0 < µ2.

Result 3.17. Given π0, changing the fair-premium demand-share α1 results

in parallel shifts of the straight lines given in Equation 3.36, as the slopes

remain unchanged while the intercepts are adjusted accordingly.

In Figure 3.3, changing α1 from 70% to 90% has the effect of translating the

contours towards the top-right corner. It also confirms that increasing the

fair-premium demand-share α1 results in a decrease in equilibrium premium,

because the impact of the low risk-group increases.

3.4 Negative-exponential Demand

So far, we have only considered constant demand elasticities (as a function of

premium), either for all individuals in the population, or for all individuals

belonging to a particular risk-group. However, it can be argued that demand

elasticities should actually be increasing functions of premiums (instead of

being a constant), to reflect the income effect on demand. The argument

being that for high risks, a higher price of insurance represents a larger part

of the consumer’s total budget constraint, so the response to a small propor-

tional change in that price should be higher. In this section, we generalise our
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analysis to allow for different demand elasticity functions, εi(π) for different

risk-groups i = 1, 2, ...,m.

Recall from Section 2.3, negative-exponential demand has the following

form:

di(π) = τi exp
[{

1−
(
π

µi

)n}
λi
n

]
, i = 1, 2, ...,m, (3.43)

with demand elasticity function being:

εi(π) = λi

(
π

µi

)n
. (3.44)

3.4.1 Two Risk-groups: Equal Demand Elasticity

We firstly assume that there are two risk-groups in a population, i.e. a low

risk-group and a high risk-group with probabilities of loss µ1 < µ2. We also

assume that the fair-premium demand elasticities are given by

εi(µi) = λi, i = 1, 2. (3.45)

Then there exists an n such that

ε(π) = λ1

(
π

µ1

)n
= λ2

(
π

µ2

)n
, (3.46)

⇒λ2

λ1
=
(
µ2

µ1

)n
= βn, (3.47)

where β = µ2
µ1

, i.e. the relative risk between the high risks and the low

risks. This means that everyone’s demand elasticity varies in the same way

in response to variations in the premium.

To examine non-constant demand elasticities, firstly we fix the second-

order elasticity n for the two risk-groups. The two demand functions are
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linked in the following way:

λ1

µn1
= λ2

µn2
= k. (3.48)

This ensures that, di(µi) = τi and εi(µi) = λi as required, and also:

ε(π) = εi(π) = kπn, for i = 1, 2. (3.49)

This implies that varying demand elasticity of one risk-group affects the

other, due to the relationship: λ2 = λ1β
n where β = µ2/µ1. In this section

we will assume that, the parameters, n, µ1 and µ2 (and thus β) are fixed,

while we study the impact of changing the demand elasticity of the low risk-

group λ1 (with corresponding changes in λ2).

Suppose proportion of population for the two risk-groups are p1 and p2

respectively. Now if the same premium is charged for both risk-groups, the

equilibrium premium, π0, should satisfy the equilibrium condition, ρ(π0) = 0.

We denote demand elasticities at pooled equilibrium premium π0 by λ0,

therefore,

ε(π0) = λ0 = λ1

µn1
πn0 = λ2

µn2
πn0 . (3.50)

Within this framework, the pooled equilibrium premium is unique and is
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given by:

π0 =
α1 exp

[{
1−

(
π0
µ1

)n}
λ1
n

]
µ1 + α2 exp

[{
1−

(
π0
µ2

)n}
λ2
n

]
µ2

α1 exp
[{

1−
(
π0
µ1

)n}
λ1
n

]
+ α2 exp

[{
1−

(
π0
µ2

)n}
λ2
n

] , (3.51)

=
α1 exp

[{
1− λ0

λ1

}
λ1
n

]
µ1 + α2 exp

[{
1− λ0

λ2

}
λ2
n

]
µ2

α1 exp
[{

1− λ0
λ1

}
λ1
n

]
+ α2 exp

[{
1− λ0

λ2

}
λ2
n

] , using Equation 3.50,

(3.52)

= α1e
λ1
n µ1 + α2e

λ2
n µ2

α1e
λ1
n + α2e

λ2
n

, (3.53)

= uµ1 + (1− u)µ2, (3.54)

where

u = α1

α1 + α2e
λ1(βn−1)

n

. (3.55)

We have the following results:

Result 3.18.

lim
λ1→0

π0 = α1µ1 + α2µ2. (3.56)

In other words, the equilibrium pooled premium has a minimum when λ1 →

0. This result says that for non-elastic demand elasticity, the pooled equilib-

rium premium is the same as the expected claim per policy if risk-differentiated

premiums were charged. This is a direct consequence of limλ1→0 u = α1 in

Equation 3.55.

Result 3.19.

lim
λ1→∞

π0 = µ2. (3.57)

In other words, the equilibrium pooled premium has a maximum when λ1 →

+∞. This result shows that if demand is very elastic, then the increased

premium due to pooling becomes unattractive to low risks and only the
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high risks buy insurance. This is a direct consequence of limλ1→∞ u = 0 in

Equation 3.55.

Result 3.20.

u is a decreasing function of λ1. (3.58)

In other words, the proportion of insured low-risk individuals falls as the

demand elasticity increases, which also explains the limiting values of u.

This again follows from Equation 3.55 with a detailed proof given in Theorem

B.2.1 in Appendix B.2.

Result 3.21.

π0 is an increasing function of demand elasticity parameter λ1. (3.59)

This result is intuitive, because when demand elasticity becomes larger, there

will be less demand from the low risks and more demand from the high risks.

Thus the premium that will exactly balance the profits from the low risks

and the losses from the high risks will be higher, which also explains the

limiting values of π0. The proof is given as Theorem B.2.2 in Appendix B.2.

Result 3.22. When n > 0,

λ0 is an increasing function of π0. (3.60)

This is also intuitive because demand elasticity, i.e. sensitivity to insurance

premium changes, is expected to increase with premium. The proof is given

as Theorem B.2.3 in Appendix B.2.

Result 3.23. For n > 0,

λ0 is an increasing function of λ1. (3.61)
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In other words, when n > 0, the demand elasticity at pooled equilibrium

premium increases as the demand elasticity parameter of low-risk (and high-

risk) increases. Again this is intuitive because we have already shown that

equilibrium premium increases with λ1, and we are dealing with demand

elasticity functions which are increasing with premium. This result is proved

in Theorem B.2.4 in Appendix B.2.

3.4.2 More Risk-groups: Equal Demand Elasticity

The results on equilibrium premium for two risk-groups can be easily gener-

alised to m risk-groups (where m ≥ 2). In particular, we focus on the case

when all m risk-groups have the same demand elasticity at pooled equilib-

rium premium, i.e. λ1
(
π0
µ1

)n
= λ2

(
π0
µ2

)n
= ... = λm

(
π0
µm

)n
(because there is

an explicit form of pooled equilibrium premium in this case). Our key result

is:

Result 3.24. When all m risk-groups have the same demand elasticity at

pooled equilibrium premium, there is a unique pooled equilibrium premium.

Based on negative-exponential demand, the equilibrium condition defined

in Equation 3.17 gives:

m∑
i=1

piτi exp
[{

1−
(
π0

µi

)n }
λi
n

]
(π0 − µi) = 0, (3.62)

⇒
m∑
i=1

αi exp
(
λi
n

)
π0 =

m∑
i=1

αi exp
(
λi
n

)
µi, (3.63)

where

αi = piτi∑m
j=1 pjτj

for i = 1, 2, ...,m. (3.64)
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And the unique pooled equilibrium premium, π0, is given by:

π0 =
∑m
i=1 αi exp

(
λi
n

)
µi∑m

i=1 αi exp
(
λi
n

) . (3.65)

Results on pooled equilibrium premium in sub-section 3.4.1 can also be

extended to the case of m risk-groups. Using the same approach in proving

features of pooled equilibrium premium in sub-section 3.4.1, we have the

following main results on π0 for more risk-groups:

Result 3.25.

π0 ≥
m∑
i=1

αiµi. (3.66)

In other words, when there are many risk-groups, pooled equilibrium pre-

mium given a negative-exponential demand is never smaller than the ex-

pected claim per policy under full risk classification.

Result 3.26.

π0 ↑ λ1. (3.67)

In other words, pooled equilibrium premium increases with demand elasticity

parameter λ1.

Result 3.27.

lim
λ1→∞

π0 = µm. (3.68)

In other words, pooled equilibrium premium is capped at the level of the

highest risk when demand elasticity is very large.

3.5 General Demand

We now turn our focus on any general demand function.
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Using Equation 2.14, the general demand for insurance, for risk-group i,

is:

di(π) = τi exp
[
−
∫ π

µi
εi(s)d log s

]
, for i = 1, 2, ...,m. (3.69)

Under this formulation, the equilibrium condition under risk pooling, i.e.

ρ(π0) = 0, gives:

m∑
i=1

piτi exp
[
−
∫ π0

µi
εi(s)d log s

]
(π0 − µi) = 0, or, equivalently: (3.70)

m∑
i=1

αi exp
[ ∫ µi

π0
εi(s)d log s

]
(π0 − µi) = 0; (3.71)

in which, the term: ∫ µi

π0
εi(s)d log s, (3.72)

can be interpreted using the concept of arc elasticity of demand, denoted by

ηi(a, b) and defined in Vazquez (1995) as follows:

ηi(a, b) =
∫ b
a εi(s)d log s∫ b

a d log s
. (3.73)

Arc elasticity, ηi(a, b), can be interpreted as the average value of (point)

elasticity of demand, εi(s), over the price logarithmic arc from price a to

price b. So, in our case, we can define:

λi = ηi(π0, µi) =
∫ µi
π0
εi(s)d log s∫ µi
π0
d log s , for i = 1, 2, ...,m. (3.74)

Equation 3.71 can then be rewritten using arc elasticities as follows:

m∑
i=1

αi exp
[
λi

∫ µi

π0
d log s

]
(π0 − µi) = 0, or, equivalently: (3.75)

m∑
i=1

αi

(
µi
π0

)λi
(π0 − µi) = 0. (3.76)
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Note that Equation 3.76 is equivalent to the equilibrium condition for iso-

elastic demand (in Equation 3.28) in the case of m risk-groups (m ≥ 2)

where demand elasticity for each group might potentially be different. We

summarise this observation in the following result:

Result 3.28. At equilibrium, the formulation of demand elasticities as gen-

eral functions of premium is equivalent to the formulation for iso-elastic de-

mand, but with relevant arc elasticities in place of fixed elasticities.

This result shows that for any given general demand function with de-

mand elasticity as a function of premium, the equilibrium condition can be

interpreted using the iso-elastic formulation but with appropriate arc elas-

ticities in place of fixed elasticities.

Therefore, some results of pooled equilibrium premium on iso-elastic de-

mand can also be interpreted for general demand in terms of arc elasticities.

In particular, π0 ≥
∑2
i=1 αiµi, i.e. pooled equilibrium premium given a

general demand is no smaller than the expected claim per policy under full

risk classification.

3.6 Multiple Equilibria

In sub-section 3.2.2, we noted that although there exits an equilibrium pre-

mium which satisfies the equilibrium condition in Equation 3.17, uniqueness

of pooled equilibrium premium is not guaranteed. In this section, we look

at the possibility of multiple solutions to the equilibrium condition, i.e. mul-

tiple equilibria, if there are two risk-groups with possibly different demand

elasticities. Iso-elastic demand and negative-exponential demand are used

as examples to demonstrate the necessary conditions that lead to multiple

equilibria. Our main result is:
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Result 3.29. When the low risk-group and the high risk-group might not

have the same elasticities of demand, multiple equilibria can arise. To have

multiple equilibria, two conditions must be satisfied, which are:

(a) demand elasticity for the low risk-group is substantially higher than

demand elasticity for the high risk-group; and

(b) the low risk-group has a fair-premium demand-share within a very nar-

row range of very high values.

The first condition is the opposite of what we would expect in practice,

because of the income effect on demand (i.e. for high risks, a higher price of

insurance represents a larger part of the consumer’s total budget constraint,

so the response to a small proportional change in that price should be higher).

And loosely speaking, the second condition means that the high risk-group

must be very small relative to the total population.

These two conditions are practically ruled out by economic considerations,

which make it unlikely to appear in practical situations. Therefore, multiple

equilibria are unlikely to be troublesome in any practical application.

3.6.1 Iso-elastic Demand

In this sub-section, we use iso-elastic demand to analyse the conditions re-

quired for the existence of multiple equilibria.

Figure 3.4 shows an example where there are more than one solution

(multiple equilibra) to the equilibrium condition in Equation 3.17. This

figure demonstrates how expected profit behaves with respect to premium.

In this example, given a much higher proportion of low risks in a popu-

lation in addition to having a very large constant demand elasticity, there

are three equilibrium premiums (i.e. three premiums at which the expected
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profit for insurers is zero). The smallest equilibrium premium, is close to the

risk-differentiated premium for the low risk-group, µ1 = 0.01. The largest

equilibrium premium is close to the risk-differentiated premium for the high

risk-group, µ2 = 0.04. And there is a third equilibrium premium that is

located in between the other two.
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Figure 3.4: Expected profit as a function of premium for a population with

(µ1, µ2) = (0.01, 0.04), α1 = 99.2%, α2 = 0.8% and λ1 = 5, λ2 = 1.

Thus, for any choice of demand function, it is important that we deter-

mine whether or not multiple equilibria can arise, and if they can, whether

or not they are associated with realistic parameters.

First we provide some examples of multiple equilibria in Figure 3.5. This

uses (µ1, µ2) = (0.01, 0.04) and an extreme divergence of elasticity parame-
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ters: (λ1, λ2) = (5, 1). The figure shows plots of the expected profit curves,

ρ(π), for a narrow range of very high values [98.8%, 99.6%] of the fair-

premium demand-share for low risks, α1. We note the following patterns:
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Figure 3.5: Profit function for (µ1, µ2) = (0.01, 0.04) and (λ1, λ2) = (5, 1)

for various values of α1 in the range [98.8%, 99.6%]
.

For α1 < 99% , there is a unique equilibrium, close to µ2.

For α1 = 99% , in addition to an equilibrium close to µ2, the profit curve

attains a local maximum, which is also a root, at πlo.

For α1 = 99.4% , the profit curve has an equilibrium below πlo, with another

root at πhi.
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For α1 > 99.4% , there is only one equilibrium close to µ1.

For 99% < α1 < 99.4% , the profit curve has 3 roots, (π01, π02, π03), where

µ1 < π01 < πlo < π02 < πhi < π03 < µ2.

This example highlights that multiple equilibria are only possible for a

narrow range [αlo, αhi] of high values of the fair-premium demand-share for

low risks, α1, which in this particular example is [99.0%, 99.4%]. Moreover,

the divergence of the elasticity parameters (λ1, λ2) = (5, 1) in the example

is also extreme, and probably implausible, because of the income effect on

demand mentioned earlier.

These observations are captured in the following result:

Result 3.30. For pooled premium, given (µ1, µ2) and (λ1, λ2), multiple equi-

libria exist if

λ2 − λ1 < −
√
µ2 +√µ1√
µ2 −

√
µ1
, and (3.77)

a(πlo)
1 + a(πlo) = αlo < α1 < αhi = a(πhi)

1 + a(πhi)
, where (3.78)

a(π) =
(
µ2 − π
π − µ1

)(
µλ2

2

µλ1
1

)
π−(λ2−λ1), and (3.79)

(πlo, πhi) solves: π2 −
(
µ1 + µ2 + µ2 − µ1

λ2 − λ1

)
π + µ1µ2 = 0. (3.80)

A proof and a discussion of Result 3.30 are provided in Theorem B.1.1 in

Appendix B.

Note that, if there are multiple equilibria, there can be a maximum of 3

equilibria, because a(π0) is monotonic in π0 over (πlo, πhi).

To illustrate the details, we provide a graphical representation of Result

3.30 in Figure 3.6, for the case when (µ1, µ2) = (0.01, 0.04). The graph shows

the two conditions that must be satisfied for multiple equilibria to arise:
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(a) Elasticity condition: λ2−λ1 < −3 is the condition in Equation 3.77 for

this particular example with µ1 = 0.01, µ2 = 0.04. Multiple equilibria

are possible for pairs of (λ1, λ2) in the region below the straight line

λ2−λ1 = −3 (but only if the demand-share condition in Condition (b)

below is also satisfied).

For example, the highlighted point (λ1, λ2) = (5, 1) lies within the

region where multiple equilibria are possible. This is consistent with

our findings in the example in Figure 3.5.

(b) Demand-share condition: The figure also shows the contour plots of

(αlo, αhi) as given in Equation 3.78, within the region identified in Con-

dition (a). For any (λ1, λ2) point in the region below the straight line,

multiple equilibria arise only if the fair-premium demand-share for low

risks α1 lies between the αlo and αhi specified for that point.

For the particular example of (λ1, λ2) = (5, 1), αlo = 99% and αhi = 99.4%

respectively, which matches with the boundaries identified in Figure 3.5.

Result 3.30 highlights that multiple equilibria arise only for extreme pop-

ulation structures. Specifically, Equation 3.78 requires the fair-premium

demand-share for low risks, α1, to be in a narrow range of high values. So

provided α1 is less than the lower end αlo of this range, we can rule out

multiple equilibria. The followings are corollaries to the main result:

Corollary 3.1. Given (µ1, µ2), define c =
√
µ2+√µ1√
µ2−
√
µ1

. Then if:

α1 <

(√
µ2
µ1

)c+1

1 +
(√

µ2
µ1

)c+1 , (3.81)

there is a unique equilibrium.
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Figure 3.6: Region on the (λ1, λ2)-plane where multiple equilibria are pos-

sible for (µ1, µ2) = (0.01, 0.04). The plot also shows the lower and upper

bounds of α1 required for multiple equilibria.

The proof is provided in Theorem B.1.2 in Appendix B.

In terms of the example in Figure 3.6, Corollary 3.1 says that for α1 <

94.1%, multiple equilibria are not possible, no matter how extreme the elas-

ticities (λ1, λ2). Note that values of αlo and αhi shown on the contour plots

in the figure never fall below 94.1%, which is actually the value of αlo = αhi

for (λ1, λ2) = (3, 0).

We are now in a position to consider, in detail, an example of a population

for which multiple equilibria are possible. Following the same approach as in

Figure 3.3 in sub-section 3.3.3, with (µ1, µ2) = (0.01, 0.04), Figure 3.7 shows

the contour plot of the pooled equilibrium premium when the fair-premium

demand-share α1 = 99.2%. Both plots in Figure 3.7 show the same example,

with the right-hand plot zooming into the multiple equilibria region. The
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plots also show the boundary condition necessary for multiple equilibria:

λ2 − λ1 = −3, as per Equation 3.77 of Result 3.30.
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Figure 3.7: Contour plot of pooled equilibrium premium as a function of

(λ1, λ2) for α1 = 99.2%, when (µ1, µ2) = (0.01, 0.04).

According to Figure 3.6, (λ1, λ2) = (5, 1) falls within the multiple equi-

libria region and α1 = 99.2% falls between (αlo, αhi) = (99%, 99.4%). So

for such a combination, multiple equilibria should occur. Multiple equilibria

are clearly visible in the left-hand plot of Figure 3.7 where the straight-line

contours of equilibrium premiums intersect.

Focussing on the particular case of (λ1, λ2) = (5, 1), according to Figure

3.5, there are multiple equilibria at (π01, π02, π03). The right-hand plot of

Figure 3.7 shows 3 straight lines, each representing one of the equilibrium

premiums, (π01, π02, π03), all intersecting at (λ1, λ2) = (5, 1).

Result 3.30 says that multiple equilibria arise only if we have both an

extreme population structure and an implausible divergence of demand elas-
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ticities. Corollary 3.1 gives a condition on α1 that guarantees a unique equi-

librium irrespective of the demand elasticities.

Provided equilibrium is unique, an important relationship between the

equilibrium pooled premium and demand elasticities is given below:

Corollary 3.2. If there is a unique equilibrium, then the equilibrium pooled

premium is an increasing function of the individual demand elasticities.

A proof is provided in Theorem B.1.3 in Appendix B.

3.6.2 Negative-exponential Demand

In this sub-section, we explore multiple equilibria using negative-exponential

demand. Here we show some explicit results on the conditions which lead

to multiple equilibria when the second order elasticity n = 1 in negative-

exponential demand. Note that the following approach in determining mul-

tiple equilibria can be generalised for any n ≥ 0. We only focus on n = 1

because the result can be explicitly presented.

When n = 1, the negative-exponential demand function in Equation 2.30

becomes:

di(π) = τi exp
[ (

1− π

µi

)
λi

]
, for i = 1, 2, (3.82)

with the demand elasticity function being:

εi(π) = λi
π

µi
. (3.83)

So, in this case, the demand elasticity function is a linearly increasing func-

tion of premium.

115



The equilibrium condition in Equation 3.10 can be written as:

(
1− π0

µ2

)
λ2 =

(
1− π0

µ1

)
λ1 + log

[
α1(π0 − µ1)
α2(µ2 − π0)

]
, (3.84)

⇒ λ2 = −

(
π0
µ1
− 1

)
(
1− π0

µ2

)λ1 +
log

[
α1(π0−µ1)
α2(µ2−π0)

]
(
1− π0

µ2

) . (3.85)

Figure 3.8 shows an example where there are more than one solution

(i.e. multiple equilibria) to Equation 3.84. This figure demonstrates how

expected profit behaves with respect to premium. In this example, there

are three equilibrium premiums (i.e. three premiums at which the expected

profit for insurers is zero). The smallest equilibrium premium, is close to the

risk-differentiated premium for the low risk-group, µ1 = 0.01. The largest

equilibrium premium, is close to the risk-differentiated premium for the high

risk-group, µ2 = 0.04. And there is a third equilibrium premium that is

located somewhere in between the other two.

Our key result on multiple equilibria, Result 3.29, in the case of negative-

exponential demand, is formally summarised as follows:

Result 3.31. For pooled premium, given (µ1, µ2) and (λ1, λ2), multiple equi-

libria exist if

λ2

µ2
− λ1

µ1
< − 4

µ2 − µ1
, and (3.86)

a(πlo)
1 + a(πlo)

= αlo < α1 < αhi = a(πhi)
1 + a(πhi)

, where (3.87)

a(π) =
(
µ2 − π
π − µ1

)
exp

[
λ2 − λ1 − (λ2

µ2
− λ1

µ1
)π
]
, and (3.88)

(πlo, πhi) are solutions to: π2 − (µ1 + µ2)π + µ1µ2 −
µ2 − µ1
λ2
µ2
− λ1

µ1

= 0. (3.89)

This result is formally proved in Theorem B.2.5 in Appendix B.2.
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Figure 3.8: Total profit for a population with (µ1, µ2) = (0.01, 0.04), α1 =

99.75%, α2 = 0.25% and λ1 = 5, λ2 = 3.

We begin the analysis with some examples of multiple equilibria in Figure

3.9. This uses (µ1, µ2) = (0.01, 0.04) and a very divergence of elasticity

parameters: (λ1, λ2) = (2, 0.5). The figure shows plots of the expected profit

curves, ρ(π), for a narrow range of very high values [92.3%, 97.8%] of the

fair-premium demand-share for low risks, α1. We note the following patterns:

For α1 < 94.7% , there is a unique equilibrium, close to µ2.

For α1 = 94.7% , there is another equilibrium premium, at πlo, in addition

to an equilibrium premium close to µ2.
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Figure 3.9: Profit function for (µ1, µ2) = (0.01, 0.04) and (λ1, λ2) = (2, 0.5),

but different values of α1 in the range [92.3%, 97.8%]
.

For α1 = 97.1% , there is another equilibrium premium, at πhi, in addition

to an equilibrium premium close to µ1.

For α1 > 97.1% , there is only one equilibrium, close to µ1.

For 94.7% < α1 < 97.1% , there are three equilibrium premia, (π01, π02, π03),

where µ1 < π01 < πlo < π02 < πhi < π03 < µ2.

We argue that, based on our results, multiple equilibrium premia is unlikely

to happen in practical world because: it is unlikely that elasticity of demand

from the high risk-group would be that much smaller than that from the low

risk-group. This is due to the income effect on demand mentioned before.
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And it is unlikely that the fair-premium demand share will fall into such a

narrow range. In this particular example, that range is [94.7%, 97.1%].

We state the following two corollaries of the main result:

Corollary 3.3. For pooled premium, given (µ1, µ2), if α1 <
e2

1+e2 then there

is a unique equilibrium.

This result is formally proved in Theorem B.2.6 in Appendix B.2.

Corollary 3.4. For pooled premium, given (µ1, µ2), if there is a unique equi-

librium, then the equilibrium premium is an increasing function of the indi-

vidual demand elasticities.

This result is formally proved in Theorem B.2.7 in Appendix B.2.

3.7 Summary

In this chapter, we introduced a framework to firstly define equilibrium pre-

mium (i.e. the premium at which insurers break even) under different risk

classifications, and then analysed some of its features using iso-elastic demand

and negative-exponential demand before generalising to general demand.

In particular, we have focused on the case when there is no risk clas-

sification, i.e. insurers charge the same (pooled equilibrium) premium to

all risk-groups. Using illustrative examples, we found that: when all risk-

groups have the same demand elasticity at the pooled equilibrium premium,

there is a unique pooled equilibrium premium, and it is located between the

weighted-average of the population’s true risk and the highest risk.

When different risk-groups do not necessarily have the same demand elas-

ticities, there might be multiple equilibria (i.e. multiple solutions to the
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equilibrium premium). However, we have shown that the conditions, un-

der which multiple equilibria can occur, are unlikely to happen in practice.

In any case, all our analyses in the subsequent chapters are valid for any

equilibrium premium, unique or otherwise.
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Chapter 4

Adverse Selection

In the economic literature, adverse selection is usually defined by the correla-

tion between risk and insurance coverage (e.g. Chiappori & Salanie (1997)).

A positive correlation is typically considered as a sign of ‘adverse’ selection

(e.g. for a survey see Cohen & Siegelman (2010)), because if people with

high risks require more insurance coverage, this might be considered ‘ad-

verse’ to insurers. Using the notations introduced in Chapter 3, this can

be quantified by the covariance between the random variables Q and X, i.e.

E[QX] − E[Q]E[X]. We prefer to use the ratio rather than the difference,

so our definition is:

Adverse selection = E[QX]
E[Q]E[X] . (4.1)

This intuitive definition indicates that adverse selection is a ratio of the ex-

pected claim per policy to the expected loss per risk, where the risk is randomly

chosen from the whole population (both insured and uninsured).

To compare the impact of a given premium strategy to the case of charging
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risk-differentiated premiums (i.e. under full risk classification), we define

adverse selection ratio as the ratio between adverse selection at a given

premium strategy and adverse selection at risk-differentiated premiums, i.e.

R(π) = adverse selection at a given risk classification scheme
adverse selection at the full risk classification . (4.2)

In particular, when a pooled premium is charged to different risk groups due

to a restriction on risk classification scheme, Equation 4.2 can be rewritten

as

R(π0) = π0∑m
i=1 αiµi

, (4.3)

since π0 = E[QX]
E[Q] .

Therefore, whether there is adverse selection as a result of risk classifica-

tion scheme being restricted, depends on the size of the pooled equilibrium

premium compared to the weighted-average of the population’s true risk.

For both iso-elastic demand (in Section 3.3) and negative-exponential

demand (in Section 3.4), we have proved that π0 ≥ α1µ1 + α2µ2 when there

are two risk-groups. This result can be generalised to more risk-groups, i.e.

π0 ≥
∑m
i=1 αiµi, with m ≥ 2 (in sub-section 3.3.2 and 3.4.2), i.e. the pooled

equilibrium premium under no risk classification is always greater than the

expected claim per policy under full risk classification.

Moreover, in section 3.5, we have also proved that for any given general

demand function with demand elasticity as a non-decreasing function of pre-

mium, its equilibrium condition at a given risk classification scheme can be

represented by the equilibrium condition of iso-elastic demand, but with ap-

propriate arc elasticities substituted for fixed elasticities. And, pooled equi-

librium premium from a general demand is always greater than the expected

claim per policy under full-risk-classification scheme. So using Equation 4.3,
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we reach the main finding on adverse selection:

Result 4.1. When risk classification is banned and a pooled equilibrium pre-

mium π0 is charged across different risk-groups, there is always adverse se-

lection, i.e. R(π0) ≥ 1, and the level of adverse selection also increases with

demand elasticity.

Therefore, adverse selection might not be a good measure of the impact of

pooling on society as a whole, because it cannot differentiate between cases

where pooling leads to a larger or smaller fraction of society’s losses being

compensated by insurance.

Figure 4.1 shows adverse selection ratio for iso-elastic demand for two

populations with the same underlying risks (µ1, µ2) = (0.01, 0.04) with equal

demand elasticity, but different values of α1. We observe that regardless of

the population split between the low and the high risk-groups, adverse selec-

tion ratio is always greater than 1. Moreover, adverse selection ratio, R(π0),

is an increasing function of demand elasticity, because pooled premium π0 is

an increasing function of demand elasticity (by Result 3.9).

The adverse selection ratio, R(π0) has an upper boundary, µ2
α1µ1+α2µ2

(in

the case of two risk-groups), when demand elasticity from both risk-groups

is extremely large (and µm∑m

i=1 αiµi
in the case of m risk-groups with m ≥ 2).

This is because, at high demand elasticities, π0 → µ2. Therefore, in order to

break even, insurers have to raise the pooled premium to the same level as

the highest risk.

Moreover, when the fair-premium demand-share of the low risk-group

tends to be very large, the limiting value increases. This is due to the fact

that a large number of low risks will reduce their demand for insurance when

premium goes up. This impact from population split between risk-groups

123



λ

A
dv

er
se

 s
el

ec
tio

n 
ra

tio

1.
0

1.
5

2.
0

2.
5

3.
0

0 1 2 3 4 5 6

2.1

3.1

α1

90%
70%

Figure 4.1: Adverse selection ratio as a function of λ for two populations

with the same (µ1, µ2) = (0.01, 0.04) but different values of α1.

is illustrated in Figure 4.1, where the population with larger proportion of

low risks (the dark line) has a higher adverse selection ratio than the popu-

lation with fewer low risks (the dashed line) when demand elasticity is higher.

To summarise, pooling always leads to adverse selection. Therefore this

metric is unable to distinguish between cases where pooling gives a better

outcome for society as a whole (Table 2 in the motivating examples earlier

in this thesis) and cases where pooling gives a worse outcome for society as a

whole (Table 3 in the motivating examples earlier in this thesis). This leads

us to the concept of loss coverage ratio discussed in the next chapter.
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Chapter 5

Loss Coverage

Loss coverage was first introduced in Thomas (2008) as “the population’s

expected losses compensated by insurance” and is heuristically characterised

in the motivating examples early in this thesis. In this chapter, we will

formally define loss coverage and analyse its features.

Our main finding is:

Loss coverage might be a better metric to measure the impact

of pooling. When a moderate level of adverse selection is tol-

erated, loss coverage for pooled premium exceeds that for risk-

differentiated premiums, i.e. pooling can benefit the society as a

whole. In particular, at pooled equilibrium, for any demand elas-

ticity functions, as long as the elasticities of the low risk-groups

(i.e. who pay more than their fair actuarial premium) do not ex-

ceed 1 and the elasticities of the high risk-groups (i.e. who pay

less than their fair actuarial premium) exceed that of the low risk-

groups, then loss coverage under pooling is bigger than under full

risk classification.
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5.1 Framework for Loss Coverage

Loss coverage can be formally defined within the model framework developed

in Chapter 2 as the expected insurance claims outgo, or expected population

losses compensated by insurance, at equilibrium, i.e. E[QX]. So:

Loss coverage: LC(π) = E[QX] (5.1)

=
m∑
i=1

di(πi)µipi, (5.2)

where π are premiums charged to different risk-groups which satisfy the equi-

librium condition in Equation 3.10. Loss coverage can also be thought of as

risk-weighted insurance demand.

In particular, the loss coverage at risk-differentiated premiums under full

risk classification is:

LC(µ) =
m∑
i=1

di(µi)µipi. (5.3)

Specifically, to compare the relative merits of different risk classifica-

tions, we define a reference level of loss coverage using the level under risk-

differentiated premiums as follows:

Loss coverage ratio: C(π) = LC(π)
LC(µ) . (5.4)

Here we do not impose any constraint on the order or size of insurance

premiums, so that the insurers are free to charge any premiums to any risk-

group, as long as the premiums achieve equilibrium in the market.

To analyse the impact of pooling, we consider the ratio of loss coverage

for pooled premium, π0, and loss coverage for risk-differentiated premiums,
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µ. We define loss coverage ratio at pooled premium as:

C(π0) = LC(π0)
LC(µ) . (5.5)

Therefore, loss coverage ratio, C(π0) > 1, indicates that pooling is better

than full risk classification, in terms of a higher proportion of the population’s

losses being compensated by insurance under pooling.

In the following sections, we will analyse loss coverage at pooled equilib-

rium premium using iso-elastic demand. Then we extend the analysis to a

more general demand with negative-exponential demand. For each demand

function, we will look at the scenario when a population can be sub-divided

into two risk-groups, i.e. a low risk-group and a high risk-group, and then

generalise the analysis to more risk-groups. For each of the above scenarios,

we further explore the case when all the risk-groups have the same demand

elasticity, and the case when each risk-group could have their own different

demand elasticities.

5.2 Iso-elastic Demand

We start our analysis of loss coverage ratio using iso-elastic demand. Firstly,

let us consider the simple case of iso-elastic demand where there are two

risk-groups, i.e. a low risk-group and a high risk-group, and they have the

same demand elasticity, i.e. λ1 = λ2 = λ.
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5.2.1 Two Risk-groups: Equal Demand Elasticity

Using iso-elastic demand in Equation 2.24, loss coverage at pooled equilib-

rium premium π0 is given by:

LC(π0) =
2∑
i=1

τi

(
µi
π0

)λ
µipi =

2∑
i=1

µλ+1
i

πλ0
τipi. (5.6)

Then the loss coverage ratio at pooled equilibrium premium becomes:

C(π0) = C(λ) = 1
πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2
, (5.7)

where

π0 = α1µ
λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
,

which is the unique pooled equilibrium premium given in Equation 3.20.

Note that, loss coverage ratio, C(λ), can be expressed as:

C(λ) = [wβ1−λ + (1− w)]λ[w + (1− w)βλ]1−λ
βλ(1−λ) , where (5.8)

w = α1µ1

α1µ1 + α2µ2
, and (5.9)

β = µ2

µ1
> 1. (5.10)

Figure 5.1 shows the loss coverage ratio for four population structures.

Both plots in Figure 5.1 show the same example, with the right-hand plot

zooming over the range 0 < λ < 1. We have the following results:

Result 5.1.

lim
λ→0

C(λ) = 1. (5.11)

When demand for insurance becomes very insensitive to premium changes,

i.e. λ → 0, both the low risks and the high risks’ demand for insurance
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Figure 5.1: Loss coverage ratio as a function of λ for four population struc-

tures.

will be indifferent from the case when they face risk-differentiated premiums.

Therefore, pooling gives the same level of loss coverage as risk-differentiated

premiums.

Result 5.2.

lim
λ→∞

C(λ) = α2µ2

α1µ1 + α2µ2
. (5.12)

If demand for insurance becomes extremely elastic to premium changes,

i.e. λ → ∞, and the pooled premium is higher than µ1 which is the risk-

differentiated premium of the low risks, only the high risks will buy insurance.

To ensure a zero expected profit, insurers will increase the pooled premium

π0 to µ2, i.e. the risk-differentiated premium for high risks. As a result, the

loss coverage ratio will tend to a lower boundary.
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The left-hand plot of Figure 5.1 also shows the lower limit of C(λ) in-

creases when the low risk-group’s fair-premium demand-share decreases (or

high risk-group’s fair-premium demand-share increases). This means that

when there are relatively more high risks in the population, more risk will

be compensated by insurance when the demand becomes very elastic.

Result 5.3. For λ > 0,

λ Q 1⇔ C(λ) R 1. (5.13)

We see that, when demand elasticity is less than 1, loss coverage ratio is

greater than or equal to 1. The proof of this result is given in Theorem C.1.1

in Appendix C.

Result 5.4. In particular when 0 < λ < 1, loss coverage ratio has a maxi-

mum value, i.e. maxw,λC = 1
2

(
4
√

µ2
µ1

+ 4
√

µ1
µ2

)
= 1

2

(
4
√
β + 1

4
√
β

)
.

This maximum value is reached when λ = 0.5 and w = 0.5. Moreover, loss

coverage ratio also increases with the relative risk, β, which is demonstrated

in the right-hand-side plot in Figure 5.1 where the green dashed curve (with

λ = 0.5, w = 0.5, β = 5) is higher than the red dashed curve (with λ =

0.5, w = 0.5, β = 4). This implies that a pooled premium might be highly

beneficial in the presence of a small group with very high risk exposure.

Hoy (2006) obtained a similar result based on social welfare, so there are at

least two different normative justifications for pooling very different insurance

risks. The proof of this result is given in Theorem C.1.2 in Appendix C.

5.2.2 More Risk-groups: Equal Demand Elasticity

Result 5.3 can be further generalised to m risk-groups (where m ≥ 2). As

before, we are looking at cases when all m risk-groups have the same demand
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elasticity, i.e. λ1 = λ2 = ... = λm = λ.

In this case, the loss coverage ratio, as defined in Equation 5.5, compar-

ing loss coverage at pooled premium to loss coverage at risk-differentiated

premiums, is:

C(π0) = LC(π0)
LC(µ) =

∑m
i=1 αi

(
µi
π0

)λ
µi∑m

i=1 αiµi
=
∑m
i=1 αi

(
µi
π0

)λ+1

∑m
i=1 αi

(
µi
π0

) = E[V λ+1]
E[V ] = E[V λ]

E[V ] ,

(5.14)

where V is defined in sub-section 3.3.2 as a random variable taking values

vi = µi
π0

. Recall that equilibrium condition leads to the relationship that

E
[
V λ

]
= E

[
V λ+1

]
with probabilities αi for i = 1, 2, ...,m. Under this set-

up, we have the following general result:

Result 5.5. Suppose there are m risk-groups with risks µ1 < µ2 < ... < µm

and they have the same iso-elastic demand elasticity λ. Then λ Q 1 ⇒

C(π0) R 1.

This result states the relationship between the common iso-elastic demand

elasticity λ of m risk-groups, and loss coverage ratio when those risk-groups

are pooled. In particular, this result confirms that if the common iso-elastic

demand elasticity is less than 1, then loss coverage under pooling is higher

than or equal to risk differentiated premiums. This result is proved in The-

orem C.2.1 in Appendix C.2.

5.2.3 Two Risk-groups: Different Demand Elasticities

If the demand elasticities of the low and high risk-groups are possibly differ-

ent, then the loss coverage ratio becomes:

C(λ1, λ2) =
α1µ1(µ1

π0
)λ1 + α2µ2(µ2

π0
)λ2

α1µ1 + α2µ2
, (5.15)
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where π0 is an equilibrium premium that satisfies the equilibrium condition

in Equation 3.37. We can also express loss coverage ratio in Equation 5.15

in either of the following forms:

logC = −λ1 log(π0

µ1
) + log k1, (5.16)

where k1 = α1(µ2 − µ1)π0

(α1µ1 + α2µ2)(µ2 − π0) ; or (5.17)

logC = λ2 log(µ2

π0
) + log k2, (5.18)

where k2 = α2(µ2 − µ1)π0

(α1µ1 + α2µ2)(π0 − µ1) . (5.19)

Figure 5.2 shows the graphical representations of Equations 5.16 and 5.18,

for different values of α1 when (µ1, µ2) = (0.01, 0.04). We have the following

results:

Result 5.6. Given an equilibrium premium, π0, the loss coverage ratio is

a log-linear function of either λ1 or λ2. And the loss coverage ratio is an

increasing function of λ2, and a decreasing function of λ1.

In Result 3.11, we have proved that to maintain the same equilibrium

premium, an increase in λ2 means a decrease in λ1. And increasing λ2 and

decreasing λ1 will lead to increase in demand from both risk-groups. There-

fore, the loss coverage ratio will increase as a result. In particular, the loss

coverage ratio is maximised when λ1 = 0 and takes the value of k1; and

minimised when λ2 = 0 and takes the value of k2.

Result 5.7. For a given value of λ2, the loss coverage ratio is a decreasing

function of λ1.

Interpretation of this result is that, all else being fixed, including λ2, the

equilibrium pooled premium can only increase if λ1 increases. Higher demand
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Figure 5.2: Loss coverage ratio (log scale) as functions of λ1 and λ2 for

different values of equilibrium premiums, when (µ1, µ2) = (0.01, 0.04) and

α1 = 90% and 99%.
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elasticity and higher equilibrium pooled premium both imply a fall in low-

risk demand. A higher equilibrium pooled premium also reduces high-risk

demand. Since demand from both risk-groups falls, the loss coverage ratio

falls. The proof is given in Theorem C.1.3 in Appendix C.

Result 5.8. For a given value of λ1, loss coverage ratio is an increasing

function of λ2 if λ1 ≤ µ2
α1(µ2−µ1) .

This is illustrated in the left panel of Figure 5.2, where loss coverage

ratio is increasing with pooled equilibrium premium for small values of λ1.

However, for some large value of λ1, the crossover of the lines for different

equilibrium pooled premiums implies a non-monotonic ordering of premiums

by loss coverage ratio. This effect arises because all else being fixed, including

λ1, the pooled equilibrium premium can only increase if λ2 increases. But for

high risks, an increase in premium and increase in elasticity have opposite

effects on demand. The sum of these effects plus the fall in low-risk demand

determine the change in the loss coverage ratio, which can either rise or fall

depending on the demand elasticity of the low risks. The proof is given in

Theorem C.1.4 in Appendix C.

Focusing on demand elasticities less than 1, Figure 5.3 demarcates the

regions where the loss coverage ratio is greater than or less than 1. We make

the following observations:

(a) For 0 < λ1 < λ2 < 1, loss coverage ratio exceeds 1, i.e. when high risks

have a higher demand elasticity than the low risks, we have a higher

loss coverage ratio. A proof is given in Theorem C.1.5 in Appendix C.

(b) For 0 < λ2 < λ1 < 1, the curve showing loss coverage ratio of 1

becomes increasingly more convex up to certain limit, as β increases.
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In other words, as the relative risk increases, more combinations of

(λ1, λ2) produce loss coverage ratio greater than 1.
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Figure 5.3: Curves demarcating the regions where loss coverage ratio is

greater than and less than 1 for different values of µ1 when α1 = 90% and

µ2 = 0.04.

5.2.4 More Risk-groups: Different Demand Elastici-

ties

We now look at loss coverage ratio when each risk-group has iso-elastic de-

mand but where the demand elasticities can be different for different risk-

groups, i.e.

εi(π) = λi for i = 1, 2, ...,m; (5.20)
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where higher risk-groups are likely to have higher demand elasticities because

of the income effect on demand. We will formalise the relationship between

λis later in this section. Under this formulation, the equilibrium condition

under risk pooling, i.e. ρ(π0) = 0, gives:

m∑
i=1

piτi

(
µi
π0

)λi
(π0 − µi) = 0, or, equivalently: (5.21)

m∑
i=1

αi

(
µi
π0

)λi
=

m∑
i=1

αi

(
µi
π0

)λi+1
. (5.22)

As in sub-section 3.3.2, we define a random variable V taking values vi = µi
π0

with probabilities αi for i = 1, 2, ...,m. Now, define a function f(v), such

that:

f(vi) = λi, for i = 1, 2, ...,m. (5.23)

Then the equilibrium condition, in Equation 5.22, can be re-framed as:

E
[
V f(V )

]
= E

[
V f(V )+1

]
. (5.24)

Loss coverage ratio that compares loss coverage under pooling to loss

coverage under full risk classification is:

C(π0) =
∑m
i=1 αi

(
µi
π0

)λi
µi∑m

i=1 αiµi
=
∑m
i=1 αi

(
µi
π0

)λi+1

∑m
i=1 αi

(
µi
π0

) = E[V f(V )+1]
E[V ] = E[V f(V )]

E[V ] .

(5.25)

Under this setting, we have the following result:

Result 5.9. Suppose there are m risk-groups with risks µ1 < µ2 < ... < µm

with iso-elastic demand elasticities λ1, λ2, ..., λm respectively. Define λlo =

maxv≤1 f(v) and λhi = minv>1 f(v). Then if λlo < 1 and λhi ≥ λlo, loss cov-

erage at pooled equilibrium premium is higher than or equal to loss coverage
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at risk-differentiated premiums, i.e. C(π0) ≥ 1.

The formal proof is given in Theorem C.2.2 in Appendix C.2.

Under pooled equilibrium, λlo is the maximum of the demand elasticities

of all those low risk-groups who pay more premium, π0, than their actuar-

ially fair risk, µ. So, λlo < 1 signifies that, for these low risk-groups, their

iso-elastic demand elasticities should be less than 1, which is in line with

empirical evidence in many insurance markets (which will be mentioned in

Table 5.1).

On the other hand, λhi, is the minimum of the demand elasticities of all

those high risk-groups who pay less premium, π0, under pooling, than their

actuarially fair risk, µ. The interpretation of the second condition, λhi ≥ λlo

is that, for those higher risk-groups, the demand elasticities should be larger

than those of the lower risk-groups, which is consistent with what we expect

from the income effect on demand.

In summary, as long as the iso-elastic demand elasticities of the different

risk-groups satisfy the two conditions: λlo < 1 and λhi ≥ λlo, then loss cov-

erage under pooling is greater than or equal to under full risk classification.

The following special cases of Result 5.9 are worth noting:

• If the iso-elastic demand elasticities are the same for all risk-groups,

i.e. λi = λ for i = 1, 2, ...,m, then by definition λlo = λhi = λ, and so

λlo = λ < 1 gives C(π0) ≥ 1, which reinforces the result in sub-section

5.2.2 for the case when λ < 1.

• For the special case of: 0 < λ1 ≤ λ2 ≤ ... ≤ λm < 1, the two conditions,

λlo < 1 and λhi ≥ λlo, are trivially satisfied and hence in this case:

C(π0) ≥ 1.
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• For the case of 2 risk-groups, λlo = λ1 and λhi = λ2, and the conditions

on the demand elasticities translate to λ1 < 1 and λ2 ≥ λ1.

This two risk-group case is illustrated in Figure 5.4, where (µ1, µ2) =

(0.01, 0.04) and (α1, α2) = (90%, 10%). The two axes represents λ1

and λ2. The figure demarcates the region of C(π0) > 1 (shaded green)

from the region of C(π0) < 1 (shaded pink) by the boundary curve

C(π0) = 1 (in red).
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Figure 5.4: Curve demarcating the regions where loss coverage ratio is

greater than and less than 1 when (µ1, µ2) = (0.01, 0.04) and (α1, α2) =

(90%, 10%).

The conditions on λ1 and λ2 say that in the region above the λ1 =

λ2 diagonal and λ1 < 1, demarcated by the green dashed borders,
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loss coverage under pooling is always higher than that under full risk

classification. This is true irrespective of the relative sizes and relative

risks of the high and low risk populations.

Figure 5.4 also highlights another important point that Result 5.9

focuses only on loss coverage inside the region demarcated by green

dashes. Outside this region, loss coverage under pooling can be higher

or lower than under full risk-classification (higher in the green segments

to the right of the dashed green lines; lower throughout the red area

towards the right). The position of the C(π0) = 1 curve which demar-

cates the red and green areas changes slightly with relative population

sizes and relative risks, which have been shown in Figure 5.3 where

loss coverage ratios at different relative risks are plotted. The region

demarcated by green dashes is the only region for which we obtain a

universal result (i.e. one which holds independent of relative sizes and

risks of high and low risk populations). Fortuitously, empirical evidence

and economic rationale imply that realistic values of (λ1, λ2) may often

fall within this region.

5.2.5 Summary for Iso-elastic Demand

As a summary, for iso-elastic demand with equal demand elasticities in all

risk-groups, λ1 = λ2 = ... = λ, the loss coverage ratio at pooled equilibrium

premium (LCR) can be characterised as follows.

1. Under pooling, if λ < 1 then LCR ≥ 1.

2. As λ increases from zero, LCR increases to a maximum at around

λ = 0.5; then decreases to 1 when λ = 1; and then flattens out at a
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lower limit for high values of λ, where the only remaining insureds are

high risks.

3. When there are two risk-group, a low risk-group and a high risk-group,

the maximum value of LCR, attained for λ about 0.5, depends on the

relative risk, β = µ2/µ1. A higher β gives a higher maximum value of

LCR.

For iso-elastic demand with different demand elasticities λi in risk-group

i, respectively, LCR can be characterised as follows:

1. When there are two risk-groups, i.e. a low risk-group and a high risk-

group:

(a) Given λ2, LCR is a decreasing function of λ1.

(b) On the other hand, given λ1, LCR is not necessarily a monotonic

function of λ2.

(c) For λ1 < 1 and λ2 > λ1, LCR is always greater than 1.

(d) For other values of λ1 and λ2, LCR > 1 if λ1 is ‘sufficiently low’

compared with λ2. The value of λ1 which is ‘sufficiently low’ may

be greater or less than λ2. We did not find any general conditions

on (λ1 , λ2) that guaranteed LCR > 1.

(e) As relative risk β increases, more combinations of (λ1, λ2) result

in LCR > 1.

2. When there are more risk-groups: if λlo < 1 and λhi ≥ λlo, then LCR

is always greater than or equal to 1.

We suggest loss coverage — the expected losses compensated by insurance

for the whole population — as a reasonable metric for the social efficacy of
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insurance. If this is accepted, and if our iso-elastic model of insurance demand

is reasonable, then pooling will be beneficial:

(a) in the equal elasticities case, whenever λ < 1; and

(b) in the different elasticities case, if λlo is sufficiently low, compared to

λhi.

5.3 General Demand

In this sub-section, we generalise our previous analysis on loss coverage ra-

tio (using iso-elastic demand) by assuming a general demand function with

demand elasticity being a non-decreasing function of premium. We have the

following main finding:

Result 5.10. Suppose there are m risk-groups with risks µ1 < µ2 < ... < µm

and demand elasticities ε1(π), ε2(π), ..., εm(π), such that λ1, λ2, ..., λm are the

respective arc elasticities under pooled equilibrium. Define λlo = maxv≤1 f(v)

and λhi = minv>1 f(v). Then λlo < 1 and λhi ≥ λlo ⇒ C(π0) ≥ 1.

Recall that arc elasticities are introduced in Equation 3.73 as

ηi(a, b) =
∫ b
a εi(s)d log s∫ b

a d log s
. (5.26)

At equilibrium, if we define:

λi = ηi(π0, µi) =
∫ µi
π0
εi(s)d log s∫ µi
π0
d log s , for i = 1, 2, ...m, (5.27)

then we have seen in Result 3.28 that, at equilibrium, the formulation of

demand elasticities as general functions of premium is equivalent to the case

of iso-elastic demand with relevant arc elasticities in place of fixed elasticities.
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Result 5.10 says that under pooled equilibrium, as long as the arc elas-

ticities of the low risk-groups (paying more than their actuarial premium)

do not exceed 1 and the arc elasticities of the high risk-groups (paying less

than their fair actuarial premium) exceed that of the low risk-groups, the

loss coverage under pooling is bigger than under full risk classification.

For the special case of εi(π) being non-decreasing functions of premium

π and bounded above by 1, where ε1(π) ≤ ε2(π) ≤ ... ≤ εm(π) the required

conditions for the above result are automatically satisfied. This is because

the arc elasticities of demand, being an average of the underlying point elas-

ticities, satisfy: 0 < λ1 ≤ λ2 ≤ ... ≤ λm < 1, which then implies that λlo < 1

and λhi ≥ λlo and thus C(π0) ≥ 1.

Note that our previous key results on loss coverage ratio (at pooled equi-

librium premium) using iso-elastic demand are a special case of this result

using general demand. Therefore, we can conclude that loss coverage under

pooling is bigger than that under full risk classification as long as arc elas-

ticities of different risk-groups satisfy certain conditions; there are no further

requirements on the form of the demand function.

The results obtained in this section on general demand suggest that loss

coverage will be higher under pooling than under full risk classification, if

1. elasticity (or arc elasticity, if elasticity is not constant) is less than 1

for all lower risk-groups; and

2. elasticity (or arc elasticity, if elasticity is not constant) for all higher

risk-groups exceeds that for all lower risk-groups,

where arc elasticities are logarithmic averages of demand elasticities over the

arc, from true risk price to the equilibrium pooled price.
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Are these conditions likely to be satisfied in the real world?

For the first condition, Table 5.1 shows some relevant empirical estimates

for insurance demand elasticities.1 It can be seen that most estimates are

of magnitude significantly less than 1. Whilst the various contexts in which

these estimates were made may not correspond closely to the set-up in this

thesis, the figures are at least suggestive of the possibility that the first

condition may often be satisfied.

Table 5.1: Estimates of demand elasticity for various insurance markets

Market & country Demand elasticities Authors
Term life insurance, USA -0.66 Viswanathan et al. (2006)
Yearly renewable term life, USA -0.4 to -0.5 Pauly et al. (2003)
Whole life insurance, USA -0.71 to -0.92 ?
Health insurance, USA 0 to -0.2 Chernew et al. (1997),

Blumberg et al. (2001),
Buchmueller & Ohri (2006)

Health insurance, Australia -0.35 to -0.50 Butler (1999)
Farm crop insurance, USA -0.32 to -0.73 ?

For the second condition, we know of no empirical evidence that insurance

demand elasticities are higher (or lower) for higher risks. However, as noted

earlier in the thesis, this condition may be plausible in that it is consistent

with the income effect on demand.

5.3.1 Negative-exponential Demand Example

In this sub-section, using negative-exponential demand as an example of

general demand, we demonstrate some results on loss coverage ratio, and
1Demand elasticity is defined as a positive constant in this thesis for convenience, but

estimates in empirical papers are generally given with the negative sign, so Table 5.1
quotes them in that form.
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compare the results to those derived from iso-elastic demand. Recall from

Chapter 2 that negative-exponential demand is:

di(π) = τi exp
[{

1−
(
π

µi

)n}
λi
n

]
, (5.28)

with demand elasticity as

εi(π) = λi

(
π

µi

)n
, for i = 1, ...,m. (5.29)

The parameter n corresponds to the “elasticity of elasticity”, and hence is

called “second-order elasticity”. We assume n is the same for all risk-groups.

As with iso-elastic demand, we start with the scenario that a population

can be subdivided into two risk-groups, m = 2, i.e. a low risk-group and a

high risk-group.

Equal demand elasticity at a given premium π means:

λ1

(
π

µ1

)n
= λ2

(
π

µ2

)n
. (5.30)

In particular, at pooled equilibrium premium, π0, we have the following re-

lationship:

λ0 = λ1

(
π0

µ1

)n
= λ2

(
π0

µ2

)n
. (5.31)

Then loss coverage ratio using negative-exponential demand is:

C(π0) = d1(π0)p1 + d2(π0)p2

d1(µ1)p1µ1 + d2(µ2)p2µ2
π0, (5.32)

=
α1 exp

[
λ1−λ0
n

]
+ α2 exp

[
λ2−λ0
n

]
α1µ1 + α2µ2

π0, (5.33)

= α1e
λ1
n + α2e

λ2
n

α1µ1 + α2µ2
e−

λ0
n π0, (5.34)
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where π0 is the pooled equilibrium premium introduced in Equation 3.53.

Figure 5.5 shows an example of how loss coverage ratio behaves with

respect to equilibrium premium for negative-exponential demand functions

with different values of n. Recall that:

• When n→ 0, we have the iso-elastic demand with a constant demand

elasticity function with respect to premium.

• When n = 1, the demand has a demand elasticity function which is

linearly increasing with premium.
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Figure 5.5: Plot of the loss coverage ratio C as a function of equilibrium

premium π0 for negative-exponential demand function of different n with

α1 = 90%, α2 = 10%, µ1 = 0.01, µ2 = 0.04.
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We observe the following:

(a) When n > −1, as the equilibrium premium increases from its minimum

(i.e. α1µ1 +α2µ2), initially the loss coverage ratios of various negative-

exponential demand with different values of n all start increasing from

1, then they continue to increase till reaching their corresponding max-

imums. At higher equilibrium premium, the loss coverage ratios de-

crease, and end up at the same level which is less than 1 when the

equilibrium premium reaches its maximum of µ2 (which is 0.04 in this

example).

(b) When n ≤ −1, loss coverage ratios are never greater than 1, i.e. when

individuals have demand elasticity function that decreases more than

proportionately to premium, loss coverage of pooled equilibrium pre-

mium is never greater than the loss coverage of risk-differentiated pre-

miums.

(c) Given an equilibrium premium, loss coverage ratio increases with “second-

order elasticity”, n, i.e. loss coverage is higher for individuals for whom

demand elasticity is very sensitive to premium.

We now look at each of the above observations in details with the following

results:

Result 5.11.

lim
π0→α1µ1+α2µ2

C(π0) = 1 for n ∈ R. (5.35)

In other words, at the minimum pooled equilibrium premium, loss coverage

ratio goes to 1 for negative-exponential demand function with non-decreasing

demand elasticity function of premium.
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This is a direct result from Equation 5.34, and using the result that

limλ1→0 π0 = α1µ1 + α2µ2 from Result 3.18 in sub-section 3.4.1. Note that

when n → 0, the negative-exponential demand function becomes iso-elastic

demand, and the result on loss coverage ratio for iso-elastic demand has been

proved in sub-section 5.2.1.

Result 5.12.

lim
π0→µ2

C(π0) = α2µ2

α1µ1 + α2µ2
< 1 for n ∈ R. (5.36)

In other words, at the maximum pooled equilibrium premium, loss coverage

ratio with different values of n (i.e. second-order elasticity) tends to the same

lower limit.

This result can be proved using the same approach as in Result 3.19 in

sub-section 3.4.1. When demand elasticity becomes very large, only the high

risks still buy insurance, so, only high risks will be covered by insurance.

Result 5.13.

C(π0) ≤ 1, when n ≤ −1. (5.37)

In other words, for negative-exponential demand with demand elasticity de-

creasing more than proportionately to the premium, loss coverage at pooled

equilibrium premium is always smaller than loss coverage at risk-differentiated

premiums. This result is proved in Theorem D.2.1 in Appendix D.

Note that demand elasticity functions which fall as a function of premium

are not realistic, because of the income effect on demand (i.e. at higher prices

the cost of insurance represents a larger part of consumers’ total budget con-

straint, so their elasticity of demand for insurance is expected to be higher),

but we include these cases for completeness.
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Result 5.14. For n > −1,

∂

∂π0
C(π0)|λ1→0 > 0. (5.38)

This result indicates that for those demand elasticity functions which are

non-decreasing function of premium or decreasing less than proportionately

to premium, when demand elasticities are small, loss coverage is an increasing

function of pooled equilibrium premium. Therefore, loss coverage at pooled

equilibrium premium is higher than loss coverage at risk-differentiated pre-

miums if demand elasticity is small. This result is proved in Theorem D.2.2

in Appendix D.

Result 5.15. For a given equilibrium premium π0, the loss coverage ratio is

an increasing function of the second-order elasticity.

This result indicates that given a pooled market equilibrium, loss coverage

under pooling is higher if the individual’s demand elasticity is very sensitive

to premium. This result is proved in D.2.3 in Appendix D.

Result 5.16. For any n ≥ 0, the loss coverage ratio is maximised for:

λ∗0 = 1 + [{u+ (1− u)βn} − {u+ (1− u)β}n]
n ∂
∂λ1

log π0
, (5.39)

where

u = α1

α1 + α2e
λ1(βn−1)

n

(5.40)

defined in Equation 3.55.

Figure 5.6 shows the graph of loss coverage ratio as functions of demand

elasticity at pooled equilibrium premium, λ0 for n ≥ 0.

Note that both Figures 5.5 and 5.6 show loss coverage ratio for negative-

exponential demand for different values of n, but Figure 5.5 is plotted against
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equilibrium premium π0 while Figure 5.6 is plotted against demand elasticity

λ0.
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Figure 5.6: Plot of the loss coverage ratio C as a function of demand elasticity

λ0 for different demand function with α1 = 90%, α2 = 10%, µ1 = 0.01, µ2 =

0.04.

We observe that:

• For 0 < n < 1, λ∗0 < 1. This result is shown in Figure 5.6 in which the

black curve (with n = 0) and the red dashed curve (with n = 0.5 < 1)

achieves their maximums when λ0 < 1. Note that iso-elastic demand

is a special case when n→ 0.

• For n = 1, λ∗0 = 1. This result is shown in Figure 5.6 in which the green

dashed curve (with n = 1) achieves its maximum when λ0 = 1. This
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is the case when negative-exponential demand has a demand elasticity

that is linearly increasing with premium.

• For n > 1, λ∗0 > 1. This result is shown in Figure 5.6 in which the two

blue dashed curves (with n = 2 and 3) achieves their maximums when

λ0 > 1.

The proofs are given in Theorem D.2.4 in Appendix D.

5.4 Summary

In this chapter, we formally define the concept of loss coverage which is the

population’s expected losses compensated by insurance using examples of

iso-elastic demand, negative-exponential demand and general demand. Loss

coverage ratio is then defined as the ratio of loss coverage at a given premium

strategy to the loss coverage at risk-differentiated premiums.

We focus on the case when risk classification regime is banned so that

insurers charge a pooled premium to all the risk-groups. We then analyse

the loss coverage ratio for different scenarios.

Our main finding is: Loss coverage might be a better metric to measure

the impact of pooling. When a moderate level of adverse selection is toler-

ated, loss coverage is higher under pooling if the shift in coverage towards

higher risks more than compensates for the fall in number of risks insured,

i.e. pooling can benefit the society as a whole. This is specifically the case

when the demand elasticities of the low risk-groups are less than 1, and the

demand elasticities of the high risk-groups are higher than those of the low

risk-groups (which is consistent with some empirical findings).
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Chapter 6

Social Welfare and Loss

Coverage

In this chapter, we reconcile loss coverage to the utilitarian concept of social

welfare. We will show that, under iso-elastic demand, if insurance

premiums are small relative to wealth, maximising loss coverage

maximises social welfare.

Our approach to social welfare is in the same spirit as Hoy (2006): we

assume cardinal and interpersonally comparable utilities, and assign equal

weights to the utilities of all individuals. This equal-weights approach is

based on the Harsanyi (1955) “veil of ignorance” argument: that is, behind

the (hypothetical) “veil of ignorance”, where one does not know what po-

sition in society (e.g. high risk or low risk) one occupies, the appropriate

probability to assign to being any individual is 1/m, where m is the number

of individuals in society. Alternative risk classifications can then be com-

pared by comparing expected utility in each scheme for the (hypothetical)

individual utility-maximiser behind the ‘veil of ignorance’.

In Hoy (2006), the author found that, following the simple Rothschild-
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Stiglitz-Wilson (RSW) model (Rothschild & Stiglitz (1976), Wilson (1977))

for insurance, if the population of the high risks was ‘sufficiently small’, the

expected welfare might be enhanced by regulatory adverse selection, i.e. the

society can benefit from some adverse selection. Although, according to the

author, it was difficult to quantify how ‘small’ this high risks’ population

should be, the suggestion that adverse selection should not always be elimi-

nated has opened a new area of discussion.

Based on the model framework in Section 2.1, suppose an individual is

selected at random from the whole population. The individual’s expected

utility can be written as follows:

Social Welfare (6.1)

= E [QUΓ(W − ΠL) + (1−Q) [(1−X)UΓ(W ) +X UΓ(W − L)] ]

where the first part represents random utility if insurance is purchased; and

the second part is the random utility if insurance is not purchased. Recall

the definition of Q and X:

Q : is a Bernoulli random variable which takes the value of 1 if insurance is

purchased; 0 otherwise,

X : is a Bernoulli random variable, taking the value of 1 if a loss event occurs

and 0 otherwise.

As certainty equivalent decisions do not depend on the origins and scales

of utility functions, in Section 2.1, we assumed without loss of generality, that

utilities for all individuals are the same at the ‘end-points’, W and W − L.

But, this argument cannot be directly extended to Equation (6.1), because
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individuals’ utilities can differ for identical levels of wealth, which has direct

implications for social welfare.

However, without any standardisation, Equation (6.1) is susceptible to

being dominated by a ‘utility monster’ who derives more utility from a given

level of wealth than all other individuals combined (Bailey (1997), Nozick

(1974)). So we propose to continue standardising utility functions so that

all utilities are the same at ‘end-points’, W and W − L, as before. This

standardisation implies that the same ‘disutility of uninsured loss’ [U(W )−

U(W −L)] is assigned to all individuals, but utility if insurance is purchased

UΓ(W − ΠL) differs between individuals. Under this standardisation, social

welfare, denoted by S can be expressed as:

S = E [QUΓ(W − ΠL) + (1−Q) [(1−X)U(W ) +X U(W − L)]] . (6.2)

To derive an expression for S, we consider the constituent parts of Equa-

tion (6.2) separately. Here we sketch the argument, the full probabilistic

model is in Appendix A.3. First:

E [QUΓ(W − ΠL) ]

=
m∑
i=1

E[QUΓ(W − πiL) | µ = µi ]P [µ = µi], (6.3)

=
m∑
i=1
{E[UΓ(W − πiL) | UΓ(W − πiL) > uci , µ = µi ] (6.4)

×P [UΓ(W − πiL) > uci | µ = µi ] pi} ,

=
m∑
i=1

U∗i (W − πiL) di(πi) pi, using Equation (2.8), (6.5)

where uci = (1− µi)U(W ) + µiU(W −L) (as defined in Equation (2.7)) and

U∗i (W − πiL) = E[UΓ(W − πiL) | UΓ(W − πiL) > uci , µ = µi ] represents
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the expected utility of individuals purchasing insurance in risk-group i.

Using the assumption that all individuals have the same utilities U(W )

and U(W −L) at wealth levels W and W −L, and that the random variables

Q and X are independent given a risk-group, the second part of Equation

(6.2) becomes:

E [ (1−Q) [(1−X)U(W ) +X U(W − L)] ]

=
m∑
i=1

E[ (1−Q) [(1−X)U(W ) +X U(W − L)] | µ = µi ]P [µ = µi], (6.6)

=
m∑
i=1

[(1− di(πi)) {(1− µi)U(W ) + µi U(W − L)}] pi. (6.7)

Combining Equations (6.5) and (6.7), we get the following expression for

social welfare:

S =
m∑
i=1

[
di(πi)U∗i (W − πi L)︸ ︷︷ ︸

Insured population

(6.8)

+ (1− di(πi)) {(1− µi)U(W ) + µi U(W − L)}︸ ︷︷ ︸
Uninsured population

]
pi,

=
m∑
i=1

[(1− µi)U(W ) + µi U(W − L)] pi︸ ︷︷ ︸
Constant as a function of πi

(6.9)

+
(

m∑
i=1

di(πi)µipi
)
× [U(W )− U(W − L)]︸ ︷︷ ︸

Loss coverage×Positive multiplier

−
m∑
i=1

di(πi) [U(W )− U∗i (W − πiL)] pi︸ ︷︷ ︸
Adjustment factor to account for premiums

.

= Constant + Loss Coverage× Positive multiplier (6.10)

− Premium adjustment factor.
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A regulator or a policymaker aiming to maximise social welfare, will be in-

terested in choosing a risk-classification π = (π1, π2, ..., πm) which maximises

S. However, social welfare depends on unobservable utility functions, which

makes it difficult to implement. On the other hand, loss coverage depends

solely on observable quantities and Equation 6.10 shows that social welfare

and loss coverage are directly related. So, it will be useful if it can be shown

that both measures, social welfare and loss coverage, agree on the choice of

risk-classification under certain assumptions. A regulator or policymaker can

then use loss coverage as a proxy for social welfare.

6.1 Iso-elastic Demand Example: Equal De-

mand Elasticity

In this section, we will demonstrate the relationship between loss coverage

and social welfare using iso-elastic demand.

Using the convenient standardisation of U(W ) = 1 and U(W − L) = 0

as defined in Equations 2.10 and 2.11, along with the assumption that W =

L = 1, and noting that social welfare S is a function of the risk-classification

π = (π1, π2, . . . , πm), Equation (6.2) becomes:

S(π) = E [QUΓ(1− Π) + (1−Q)(1−X) ] , (6.11)

= E [Q {UΓ(1− Π)− (1−X) } ] +K, (6.12)

where K = E[1−X] is a constant as it does not depend on π.
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Using the particular form of utility function U(w) = wγ, we have:

S(π) = E
[
Q
{

(1− Π)Γ − (1−X)
} ]

+K, (6.13)

≈ E [Q (1− Γ Π− 1 +X ) ] +K, (6.14)

using first order Taylor approximation and assuming insurance premium is

sufficiently small compared to individuals’ wealth.

We introduce Ŝ(π) as this approximation of S(π). Hence,

Ŝ(π) = E [Q(X − Γ Π) ] +K, (6.15)

= E [QX ]− E [QΓ Π ] +K, (6.16)

= LC(π)− PA(π) +K, (6.17)

where LC(π) = E [QX ] is loss coverage and PA(π) = E [QΓ Π ] is the

premium adjustment factor under the risk-classification π. We have already

analysed LC(π) in Chapter 5, so we focus on PA(π) here.

Firstly, recall that Q, is a Bernoulli random variable which takes the

value of 1 if insurance is purchased and 0 otherwise. And from Equation

2.22, given a risk-group i, insurance is purchased when Γi < µi
πi

, where the

random variable Γi = [ Γ | µ = µi ]. Hence:

[Q | µ = µi ] = I
[

Γi <
µi
πi

]
. (6.18)
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So:

PA(π) =
m∑
i=1

E [QΓ Π | µ = µi ] P [µ = µi], (6.19)

=
m∑
i=1

E
[
I
[
Γi ≤

µi
πi

]
Γi πi

]
pi, (6.20)

=
m∑
i=1

E
[
Γi I

[
Γi ≤

µi
πi

] ]
πi pi, (6.21)

where Γi has the same cumulative distribution function as given in Equation

(2.23):

P [Γi ≤ γ] =



0 if γ < 0

τi γ
λi if 0 ≤ γ ≤ (1/τi)1/λi

1 if γ > (1/τi)1/λi ,

(6.22)

Now suppose all risk-groups have equal demand elasticities, i.e. λ1 =

λ2 = ... = λm = λ.

Our main finding in the case of equal demand elasticities is:

Result 6.1. For iso-elastic demand, assuming insurance premium is suf-

ficiently small compared to individuals’ wealth, ranking risk classifications

by (observable) loss coverage always gives the same ordering as ranking by

(unobservable) utilitarian social welfare. In particular, in the case of equal

demand elasticities, loss coverage and social welfare, point to the same con-

clusion that pooling under no risk classification provides a greater or equal

social efficacy of insurance compared to risk-differentiated premiums under

full risk classification, when demand elasticity λ < 1; and vice versa.
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This result can be derived from Equation 6.21 as follows:

PA(π) =
m∑
i=1

[∫ µi
πi

0
γτiλγ

λ−1dγ

]
πipi, (6.23)

= λ

(λ+ 1)

m∑
i=1

(
µi
πi

)λ+1
τiπipi, (6.24)

= λ

(λ+ 1)

m∑
i=1

µλ+1
i

πλi
τipi, (6.25)

= λ

(λ+ 1)LC(π), by the definition of loss coverage. (6.26)

Hence social welfare in Equation (6.17) becomes:

Ŝ(π) = 1
λ+ 1LC(π) +K. (6.27)

The right-hand side of Equation (6.27) can be interpreted as follows:

The second term K = E[1 − X] corresponds to expected utility in the

absence of the institution of insurance (recall that we have standardised

U(W ) = 1, U(W − L) = 0, and X is the loss for an individual drawn at

random from the population).

The first term represents an increase in expected utility, attributable to

the institution of insurance; this allows for the expectations of both utility

of benefits received, and disutility of premiums paid. If λ is small (corre-

sponding to inelastic demand and high risk aversion), the premiums paid are

relatively unimportant, so the increase in expected utility is a large fraction

of the loss coverage 1. If λ is large (corresponding to elastic demand and low

risk aversion), the premiums paid are important, so the increase in expected
1The fraction 1/(λ+ 1) can also be viewed as a fraction of the loss coverage LC(π) =

E[QX] which ‘counts’ as an offset against the uninsured losses X which appear in K =
E[1−X], where the offset is in on a welfare scale and includes allowance for both benefits
and premiums.
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utility is only a small fraction of the loss coverage.

It follows from Equation (6.27) that for any pair of risk classifications π1

and π2, we can write

Ŝ(π1) ≥ Ŝ(π2)⇔ LC(π1) ≥ LC(π2) (6.28)

and clearly the contrapositive (i.e with both inequalities reversed) also holds.

In other words: for iso-elastic demand, assuming insurance premium

is sufficiently small compared to individuals’ wealth, ranking risk

classifications by loss coverage always gives the same ordering as

ranking by social welfare. So a policymaker or regulator can implement

a risk classification which gives higher (observable) loss coverage, with the

comfort of knowledge that this also gives higher (unobservable) social welfare.

Equation 6.28 holds for any pair of risk classifications which satisfy the

equilibrium condition in Equation 3.10. This includes schemes where premi-

ums are partly (but not fully) risk-differentiated (which will be discussed in

Chapter 7), as well as the polar cases of pooling and actuarially fair premi-

ums. Where the comparison is between the polar cases, combining Equation

6.28 with Equation 5.13 (i.e. λ Q 1 ⇔ C(π0) R 1) shows that for iso-elastic

demand, pooling gives higher or equal social welfare than actuarially fair

premiums whenever demand elasticity is less than one, and vice versa.
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6.2 Iso-elastic Demand Example: Different

Demand Elasticities

If all risk-groups have iso-elastic demand, but with possibly different demand

elasticities, then Equation 6.21 can be expressed as:

PA(π) =
m∑
i=1

E
[
Γi I

[
Γi ≤

µi
πi

] ]
piπi, (6.29)

=
m∑
i=1

[∫ µi
πi

0
γτiλiγ

λi−1dγ

]
piπi, (6.30)

=
m∑
i=1

(
λi

1 + λi

)
piτiµi

(
µi
πi

)λi
=

m∑
i=1

(
λi

1 + λi

)
di(πi)piµi. (6.31)

Recall from Section 5.2:

LC(π) =
n∑
i=1

piτiµi

(
µi
πi

)λi
=

n∑
i=1

di(πi)piµi. (6.32)

It follows from Equation 6.17 that social welfare in this case becomes:

Ŝ(π) =
n∑
i=1

( 1
1 + λi

)
di(πi)piµi +K, (6.33)

where K = E[1−X] is a constant as it does not depend on π.

If we want to compare social welfare at pooled equilibrium premium (un-

der no risk classification) to social welfare at risk-differentiated premiums

(under full risk classification), we define “social welfare ratio” at pooled

equilibrium premium as:

ŜW (π0) = Ŝ(π0)
Ŝ(µ)

. (6.34)

To demonstrate some features of social welfare ratio at pooled equilib-
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rium premium, we use an example of two risk-groups in the population, i.e.

m = 2, a low risk-group and a high risk-group.

Figure 6.1 shows an example of the social welfare ratio (at pooled equi-

librium premium) given different demand elasticities for the low (λ1 on the

x-axis) and the high risk-groups (λ2 on the y-axis).

λ1

λ 2

0 1 2 3 4 5

0
1

2
3

4
5

Figure 6.1: Plot of social welfare ratio ŜW (π0) with α1 = 90%, α2 =

10%, µ1 = 0.01, µ2 = 0.04.

We have the following results:

Result 6.2. When both risk-groups have demand elasticities that are less

than 1, and the high risks have a higher demand elasticity than the low risks,

assuming insurance premium is sufficiently small compared to individuals’
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wealth, social welfare at pooled premium is greater than the social welfare at

risk-differentiated premiums, i.e. the social welfare ratio ŜW (π0) is greater

than 1 when 0 < λ1 < λ2 < 1.

Recall that the ordering of demand elasticities 0 < λ1 < λ2 < 1 is what

we might expect due to the income effect on demand which we mentioned

earlier in this thesis. This result is proved in Theorem E.2.8 in Appendix E.

In Figure 6.1, Result 6.2 is represented by the fact that in the area above

the λ1 = λ2 diagonal inside the unit square, all social welfare ratio contours

are greater than 1.

Result 6.3. When 0 < λ2 < λ1 < 1, either full or no risk classification

maximises social welfare Ŝ(π).

In Figure 6.1, this result is represented by the fact that in the area below

the λ1 = λ2 diagonal within the unit square, there are social welfare ratio

contours greater or smaller than 1. This result is proved in Theorem E.2.9

in Appendix E.

Result 6.4. When λ2 > λ1, C(π0) < 1 ⇒ ŜW (π0) < 1, i.e. when the

high risks have higher demand elasticities than the low risks, if loss coverage

under pooling is smaller than under full risk classification, then so is the

social welfare.

Figure 6.2 is the same as Figure 6.1 but with loss coverage ratio being

plotted as well in dashed blue contours, using the same underlying parame-

ters.

From this plot, we observe that above the diagonal line where λ1 = λ2,

the solid contour line representing ŜW (π0) = 1 lies entirely to the left of the

dashed blue contour line representing C(π0) = 1. It follows that C(π0) < 1

implies that ŜW (π0) < 1.
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This result is proved in Theorem E.2.5 in Appendix E.

λ1

λ 2

0 1 2 3 4

0
1

2
3

4

social welfare ratio

loss coverage ratio

Figure 6.2: Plot of social welfare ratio ŜW (π0) and loss coverage ratio C(π0)

with α1 = 90%, α2 = 10%, µ1 = 0.01, µ2 = 0.04.

Result 6.5. When λ2 < λ1, C(π0) > 1 ⇒ ŜW (π0) > 1, i.e. when the

low risks have higher demand elasticities than the high risks, if loss coverage

under pooling exceeds that under full risk classification, then so is the social

welfare.

From Figure 6.2, we observe that below the diagonal line where λ1 = λ2,

the solid contour line representing ŜW (π0) = 1 lines entirely to the right

of the dashed blue contour line representing C(π0) = 1. It follows that

C(π0) > 1 implies that ŜW (π0) > 1. This result is proved in Theorem E.2.5

in Appendix E.
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Results in this section show consistency between the two measures: loss

coverage and social welfare, when comparing the impact of risk classification

regimes on social welfare.

6.3 Summary

In this chapter, we introduced social welfare, which is defined as the aggregate

expected utilities of all individuals in a population with equal weight assigned

to each individual. We investigate the relationship between loss coverage and

social welfare. We found that, under certain assumptions, loss coverage and

social welfare are directly related.

Using iso-elastic demand as an example, assuming insurance premium is

sufficiently small compared to individuals’ wealth, we proved that ranking

risk classifications by (observable) loss coverage always gives the same or-

dering as ranking by (unobservable) utilitarian social welfare. In particular,

maximising loss coverage is equivalent to maximising social welfare.

164



Chapter 7

Partial Risk Classification

Our analysis on loss coverage and social welfare so far has focused only on two

risk classifications, i.e. full risk classification where risk-differentiated pre-

miums are charged for different risk-groups, and no risk classification where

all risk-groups are charged the same pooled equilibrium premium. Under

this set-up, using iso-elastic demand with realistic demand elasticities, we

have found that loss coverage and social welfare for pooled premium exceeds

that for risk-differentiated premiums, i.e. pooling can benefit the society as

a whole in terms of the proportion of loss covered by insurance and the cor-

responding aggregate social welfare.

In practice, there can be intermediate risk classifications, between the two

extremes of full and no risk classification. We call these intermediate risk

classifications, partial risk classification. Partial risk classification is possi-

bly a more realistic strategy, because insurers can differentiate risks only to

a certain extent, which may not fully reflect the differences between different

risk-groups. For example, in the European Union, gender-based premiums

were banned from 2012, but insures can still charge different premiums for
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different ages; in the U.S., the Patient Protection and Affordable Care Act

allows classification only by age, location, family size and smoking status;

and many countries have restricted insurers’ use of genetic test results for

underwriting purposes.

In this chapter, we want to analyse loss coverage and social welfare for

partial risk classification.

Recall the following definitions:

• Loss coverage ratio C is defined as

C = LC(π)
LC(µ) , (7.1)

i.e. the ratio of loss coverage for a premium strategy π (given a risk

classification) to that of full risk classification µ.

• Social welfare ratio ŜW is defined as

ŜW = Ŝ(π)
Ŝ(µ)

, (7.2)

i.e. the ratio of social welfare for a premium strategy π (given a risk

classification) to that of full risk classification µ.

Using iso-elastic demand, we will first analyse partial risk classification

for populations with only two risk-group: a high and a low risk-group. Then

we will generalise our results to the case of more risk-groups.
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7.1 Two Risk-groups

We have the following main result on maximising loss coverage in the case

of two risk-groups:

Result 7.1. Using iso-elastic demand, when there are only two risk-groups,

partial risk classification can lead to higher loss coverage compared to both full

and no risk classification only when the elasticities of demand of the low risks

and high risks are different and both are greater than 1 with the high risks

have a higher elasticity of demand up to a certain level, i.e. 1 < λ1 < λ2 < L

for some L > 1.

Figure 7.1 shows an example of the regions where different risk classifi-

cations (“No” for no risk classification, “Full” for full risk classification, and

“Partial” for partial risk classification) maximises loss coverage ratio. λ1, the

demand elasticity for the low risk-group is on the x-axis and λ2, the demand

elasticity for the high risk-group is on the y-axis. Any combination of (λ1, λ2)

located on the black curve gives loss coverage ratio at pooled equilibrium pre-

mium C(π0) = 1, to the left of which leads to C(π0) > 1 and to the right

of which leads to C(π0) < 1. The dark coloured region indicates that full

risk classification maximises loss coverage ratio. The light coloured region

indicates that certain partial risk classification maximises loss coverage ratio,

and the region without colour indicates that no risk classification maximises

loss coverage ratio.

The dashed blue curve has the following form:

λ1

λ2

(
λ2 − 1
λ1 − 1

)
= µ2

µ1
(7.3)

where (µ1, µ2) are risks of the low and high risk-group. (µ2
µ1

is 4 in this

example.) When both λ1 and λ2 are greater than 1, this curve demarcates
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the two areas partial risk classification maximises loss coverage ratio on the

right of the curve while no risk classification maximises loss coverage ratio

on the left.

λ1

λ 2

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

C(π0) < 1

C(π0) > 1

C(π0) = 1

No

Partial

Full

Figure 7.1: Plot of the areas where different risk classifications give the

highest loss coverage ratio with α1 = 90%, α2 = 10%, µ1 = 0.01, µ2 = 0.04.

7.1.1 Equal Demand Elasticity

When both risk-groups have the same demand elasticity λ, we have already

proved in Section 5.2 that loss coverage at pooled equilibrium premium is

higher than loss coverage at risk-differentiated premiums if the constant de-

mand elasticity λ < 1. Taking partial risk classification into account, we

have the following result:
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Result 7.2. If both the low risk-group and the high risk-group have the same

iso-elastic demand elasticity λ, then

• 0 < λ < 1⇒ No risk classification maximises loss coverage;

• λ = 1⇒ All risk classifications schemes have the same loss coverage;

• λ > 1⇒ Full risk classification maximises loss coverage.

In Figure 7.1, λ1 = λ2 = λ < 1 falls into the area where no risk classifi-

cation (indicated by “No”) maximises loss coverage. And λ1 = λ2 = λ > 1

falls into the area where the full risk classification (indicated by “Full”) max-

imises loss coverage. And at the special case of λ1 = λ2 = λ = 1, all three

areas, i.e. “No”, “Full” and “Partial” meet at that point. This means all

three risk classification schemes lead to the same loss coverage. Hence, when

the low risk-group and the high risk-group have equal demand elasticities,

partial risk classification does not maximise loss coverage.

Result 7.2 is formally proved in Theorem F.1.3 and F.1.4 in Appendix F.

7.1.2 Different Demand Elasticities

In the case when demand elasticities for the low risk-group and high risk-

group could be different, we have the following results on maximising loss

coverage:

Result 7.3. If both risk-groups have demand elasticities which are less than

1, i.e. 0 < λ1, λ2 < 1, then

• 0 < λ1 < λ2 < 1⇒ No risk classification maximises loss coverage;

• 0 < λ2 < λ1 < 1 and λ1
λ2

(
1−λ2
1−λ1

)
> µ2

µ1

⇒ Full risk classification maximises loss coverage;
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• 0 < λ2 < λ1 < 1 and λ1
λ2

(
1−λ2
1−λ1

)
≤ µ2

µ1

⇒ Either full or no risk classification maximises loss coverage.

From Figure 7.1, we observe that 0 < λ1 < λ2 < 1 falls into the region

where no risk classification (“No”) maximises loss coverage. 0 < λ2 < λ1 < 1

and λ1
λ2

(
1−λ2
1−λ1

)
> µ2

µ1
(i.e. the area to the right of the dashed blue curve within

the unit square) falls into the region where full risk classification (“Full”)

maximises loss coverage.

Result 7.3 is formally proved in Theorem F.1.7 and F.1.8 in Appendix F.

Result 7.4. If both risk-groups have demand elasticities which are greater

than 1, i.e. λ1, λ2 > 1, then

• λ1 > λ2 > 1⇒ Full risk classification maximises loss coverage;

• λ2 > λ1 > 1 and λ1
λ2

(
λ2−1
λ1−1

)
> µ2

µ1

⇒ No risk classification maximises loss coverage;

• λ2 > λ1 > 1 and λ1
λ2

(
λ2−1
λ1−1

)
≤ µ2

µ1

⇒ A partial risk classification maximises loss coverage.

This result proves that partial risk classification could maximise loss cov-

erage if demand elasticities for both risk-groups are greater than 1 and the

demand elasticity for the high risk-group is larger than the demand elastic-

ity for the low risk-group up to a certain level. If the high risk-group has

a much higher demand elasticity, then no risk classification maximises loss

coverage instead. This feature is shown in Figure 7.1 where partial risk clas-

sification maximises loss coverage ratio in the area (i.e. the light coloured

area) between the diagonal λ1 = λ2 > 1 and the dashed blue boundary curve
λ1
λ2

(
λ2−1
λ1−1

)
= µ2

µ1
.
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On the other hand, when the low risk-group has a higher demand elastic-

ity than the high risk-group, full risk classification maximises loss coverage.

Result 7.4 is proved in Theorem F.1.11, F.1.12 and F.1.13 in Appendix

F.

Result 7.5.

0 < λ1 < 1 < λ2 ⇒ No risk classification maximises loss coverage. (7.4)

This result proves that when the high risk-group has a demand elasticity

that is greater than 1 and the low risk-group has a demand elasticity that is

less than 1, no risk classification maximises loss coverage.

Result 7.5 is proved in Theorem F.1.14 in Appendix F.

Result 7.6.

0 < λ2 < 1 < λ1 ⇒ Full risk classification maximises loss coverage. (7.5)

This result proves that when the low risk-group has a demand elasticity

that is greater than 1 and the high risk-group has a demand elasticity that

is less than 1, full risk classification maximises loss coverage.

Result 7.6 is proved in Theorem F.1.15 in Appendix F.

The above results on maximising loss coverage can also be explained in-

tuitively. Using Figure 7.1 as an example, in the uncoloured region (i.e. λ1

‘sufficiently low’ compared with λ2), no risk classification maximises loss cov-

erage. This phenomenon can be explained in the following way: other things

equal, lower demand elasticity for the low risk-group means demand from

low risks at risk-differentiated premium is indifferent to that at the pooled
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premium. Higher demand elasticity for the high risk group indicates a much

higher demand at pooled equilibrium compared to the risk-differentiated pre-

mium. And taking into account of the high relative risk of 4 in this example,

the aggregate loss coverage at pooled premium is optimal. Conversely, in the

dark coloured region, full risk classification maximises loss coverage.

Partial risk classification maximises loss coverage only in the light coloured

middle region where both elasticities exceed 1, with λ2 higher than λ1 to a

certain level. This is a region where both demand elasticities are ‘reasonably

high’, i.e. demand is reasonably responsive to premiums.

7.2 Three Risk-groups

Some of the results on partial risk classification for two risk-groups can be

further generalised for more risk-groups (e.g. m risk-groups, where m ≥ 2).

We present our findings for three risk-groups (i.e. the low risk-group, middle

risk-group and high risk-group).

7.2.1 Equal Demand Elasticity

When there are three risk-groups, i.e. a low risk-group, a middle risk-group

and a high risk-group, and they have the same demand elasticity, using iso-

elastic demand, we have the following results:

Result 7.7. When demand elasticity is greater than 1, full risk classification

maximises loss coverage.

This result is proved in Theorem F.2.2 in Appendix F.

Result 7.8. When demand elasticity is less than 1 and if we assume high

risks cannot be charged a premium lower than that of the low risks, i.e. πi ≥
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πj if µi > µj for all i and j, then no risk classification maximises loss

coverage.

This result is proved in Theorem F.2.5 in Appendix F.

In Figure 7.2 we consider an example of loss coverage ratio at different

premium strategies π = (π1, π2, π3) where (µ1, µ2, µ3) = (0.01, 0.02, 0.04),

(α1, α2, α3) = (60%, 30%, 10%) and λ1 = λ2 = λ3 = 0.8. π1 is on the x-axis

and π2 is on the y-axis with π3 is the contour plot shown as dashed dark

blue indifference curves. Loss coverage ratio comparing a given premium

strategy (π1, π2, π3) to risk-differentiated premiums (µ1, µ2, µ3) are plotted

as black contours. Any combination of π1, π2 and π3 on this plot satisfies

the equilibrium condition to ensure zero expected profits for insurers. The

shaded area indicates the region: µ1 ≤ π1 ≤ π2 ≤ π3 ≤ µ3. The pooled

equilibrium premium π0 for no risk classification is shown in Figure 7.2 as

the circle. (In this example, π0 = 0.02.)

Figure 7.2 shows that under the constraint π1 ≤ π2 ≤ π3, no risk classi-

fication leads to the highest loss coverage ratio. This is the graphical repre-

sentation of Result 7.8.

Figure 7.2 also shows that if the constraint that µ1 ≤ π1 ≤ π2 ≤ π3 ≤ µ3 is

removed, a higher loss coverage ratio (compared to C(π0)) might be achieved

by partial risk classification. As these specific cases may be considered to be

unrealistic, we defer the discussions on theses to Appendix F.2.2.
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Figure 7.2: Plot of loss coverage ratio in terms of π1, π2 assuming µ1 ≤

π1 ≤ π2 ≤ π3 ≤ µ3 with α1 = 60%, α2 = 30%, α3 = 10%, µ1 = 0.01, µ2 =

0.02, µ3 = 0.04 and λ1 = λ2 = λ3 = 0.8.

7.3 Maximising Social Welfare: Two Risk-

groups

In Section 7.1, using iso-elastic demand, we have analysed loss coverage ratio

in the case of two risk-groups taking partial risk classification into account.

In this section, we explore the impact on social welfare, in the case when

partial risk classification is allowed.
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7.3.1 Equal Demand Elasticity

When both the low and the high risk-groups have the same demand elasticity

λ, we have already proved in Section 6.1 that, using iso-elastic demand, social

welfare at pooled equilibrium premium is higher than social welfare at risk-

differentiated premiums if the constant demand elasticity λ < 1.

If partial risk classification is allowed, we have the following result:

Result 7.9. When there are two risk-groups, and they have the same demand

elasticity, i.e. λ1 = λ2 = λ,

• 0 < λ < 1⇒ No risk classification maximises social welfare;

• λ = 1⇒ All risk classification schemes have the same social welfare;

• λ > 1⇒ Full risk classification maximises social welfare.

This result proves that pooling (under no risk classification) maximises

social welfare when demand elasticity λ < 1; and risk-differentiated premi-

ums (under full risk classification) maximise social welfare when demand

elasticity λ > 1. Therefore, no intermediate partial risk classification max-

imises social welfare when both the low risk-group and the high risk-group

have the same demand elasticity.

Recall that in Result 7.2, we have proved that partial risk classification

does not maximise loss coverage in the case of equal demand elasticity. Hence,

this result shows the consistency between social welfare and loss coverage in

terms of implications from different risk classifications.

Result 7.9 is proved in Theorem E.2.3 and E.2.4 in Appendix E.
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7.3.2 Different Demand Elasticities

When the low risk-group and the high risk-group could possibly have different

demand elasticities, we have the following results:

Result 7.10. When both risk-groups have demand elasticities that are less

than 1,

• 0 < λ1 < λ2 < 1

⇒ No risk classification maximises social welfare;

• 0 < λ2 < λ1 < 1

⇒ Either Full or no risk classification maximises social welfare.

This result proves that if there are two risk-groups, i.e. a low risk-group

and a high risk-group, and both risk-groups have demand elasticities which

are less than 1, either the full or the no risk classification maximises social

welfare. In particular, when the high risk-group has a higher demand elas-

ticity than the low risk-group, then no risk classification maximises social

welfare.

Result 7.10 is proved in Theorem E.2.8 and E.2.9 in Appendix E.

When both risk-groups have demand elasticities that are greater than 1,

we have the following results:

Result 7.11.

1 < λ2 < λ1 ⇒ Full risk classification maximises social welfare.

This result proves that when both the low risk-group and the high risk-

group have demand elasticities that are greater than 1, and the low risks have
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a higher demand elasticity than the high risks, full risk classification max-

imises social welfare. This result is proved in Theorem E.2.12 in Appendix

E.

Result 7.12. When 1 < λ1 < λ2:

• 1 < λ1 < λ2 < K for some K > 1

⇒ A partial risk classification maximises social welfare.

• Otherwise, no risk classification maximises social welfare.

This result proves that when both risk-groups have demand elasticities

that are greater than 1, and the high risks have a higher demand elasticity

than the low risks up to a certain level, partial risk classification maximises

social welfare.

Proof of Result 7.12 is given in Theorem E.2.13 and E.2.14 in Appendix E.

Therefore, partial risk classification can result in higher social welfare

than both no risk classification and full risk classification when demand

elasticity of the high risks are higher than that of the low risks up to a

certain level.

7.4 Summary

In this chapter, we examine the implication on loss coverage and social wel-

fare when partial risk classifications are taken into account. Partial risk

classification might be a more realistic strategy, because insurers usually are

allowed to underwrite to some extent.

Using iso-elastic demand as an example and assume insurance premium

is sufficiently small compared to individuals’ wealth, we proved that for two
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risk-groups with demand elasticity less than 1, either full risk classification

or no risk classification maximises loss coverage and social welfare.

Partial risk classifications do, in some cases, result in a higher loss cov-

erage and/or social welfare than full or no risk classification. For two risk-

groups, this happens if demand elasticities of both risk-groups are greater

than 1, with high risks’ demand elasticity higher (but up to a certain level)

than low risks’ demand elasticity.

Using iso-elastic demand, we also analysed the case of three risk-groups,

i.e. the low, middle and high risk-group. When all three risk-groups have

the same demand elasticity, and high risks cannot be charged a premium

lower than that of the low risks, then either full risk classification or no risk

classification maximises loss coverage. If high risks are charged at a lower

premium than the low risks, then partial risk classification could maximise

loss coverage ratio. This last finding is worth further researching.
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Chapter 8

Conclusions

In this thesis, we analyse a generic insurance market where a pooled pre-

mium is charged across different risk-groups in the absence of insurance

risk-classification. The outcome is interpreted through an equilibrium at

which insurers break even. We characterise equilibrium by four quantities:

equilibrium premium, adverse selection, loss coverage and social welfare. Us-

ing elasticity-driven demand functions, e.g. iso-elastic demand, negative-

exponential demand and a general demand, we ask the following four funda-

mental questions in this thesis:

1. Is there an equilibrium premium, and is this equilibrium premium

unique?

2. What is(are) the corresponding level(s) of adverse selection at this/these

equilibrium premium(s)?

3. What is(are) the corresponding level(s) of loss coverage at this/these

equilibrium premium(s), and whether it is a better measure compared

to adverse selection?
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4. What is(are) the implication(s) on social welfare and do loss cover-

age and social welfare lead to consistent conclusions on the impact of

restricted risk classification?

8.1 Equilibrium Premium

In Chapter 3, we examined the first question. We solve for the “timeless

equilibrium” premium(s) that give(s) insurers a zero expected profit for a

given level of demand elasticity regardless of how equilibrium was reached,

or whether profits or losses were made along the way. And we focus on the

steady state where all insurers’ profits and losses are competed away.

In Chapter 2, we introduced demand functions that will be used in this

thesis, e.g. iso-elastic demand, negative-exponential demand and general

demand, with an explanation of the heterogeneity in individuals’ insurance

purchasing behaviours. Then in Chapter 3, using the demand functions from

Chapter 2, we explore equilibrium premium(s) in the case when all risk-

groups have the same demand elasticity, and also in the case when they are

not necessarily the same.

In both cases, we confirm that there is at least one equilibrium premium.

In the equal-demand-elasticity case, there is a unique equilibrium premium,

and the equilibrium premium increases with the common demand elasticity.

This result also holds for the case when there are many risk-groups in the

population, as long as all of them have the same demand elasticity.

In the different-demand-elasticity case, there might be multiple equilib-

ria. However, multiple equilibria only arise under extreme conditions, which

makes it unlikely to appear in practical situations. To have multiple equi-

libria, elasticity of demand from the high risk-group must be substantially
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lower than that from the low risk-group, and the fair premium demand share

of the low risk-group must fall within a narrow interval.

Therefore, multiple equilibria are not likely to be a practical concern.

8.2 Adverse Selection

In Chapter 4, we examined the second question on adverse selection. We

defined adverse selection as a ratio of the expected claim per policy to the

expected loss per risk. Because when there are restrictions on risk classifica-

tion, insurers are assumed to adjust the pooled premium to whatever level

is necessary to ensure equilibrium, and competition between insurers in risk

classification is not permitted, adverse selection does not imply insurer losses.

Our main finding is that, regardless of the relationship between demand

elasticities of different risk-groups, adverse selection under pooling will al-

ways be higher than that under risk-differentiated premiums. The level of

adverse selection also increases with demand elasticity. So this concept of ad-

verse selection fails to distinguish between different scenarios where smaller

or larger expected fractions of the population’s losses are compensated by

insurance.

8.3 Loss Coverage

In Chapter 5, we examined the third question. Loss coverage is defined as

the population’s expected losses compensated by insurance (Thomas (2008)).

Similar to the analysis on equilibrium premium, for each demand func-

tions used in this thesis, e.g. iso-elastic demand, negative-exponential de-

mand and general demand, we explore loss coverage in the case when all
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risk-groups have the same demand elasticity, and also in the case when they

are not necessarily the same.

In the equal-demand-elasticity case, restricting risk classification increases

loss coverage if demand elasticity is sufficiently small (e.g. less than 1 for iso-

elastic demand). This result also holds for the case when there are many

risk-groups in the population, as long as all of them have the same demand

elasticity.

When demand elasticities are different for different risk-groups, restricting

risk classification increases loss coverage if demand elasticity for low risks is

sufficiently low, compared to that for high risks. This is despite the fact that

restricting risk classification always increases adverse selection.

This phenomenon can be explained in the following way: adverse selec-

tion is associated with a fall in the number of insured individuals at pooled

premium compared with that obtained under full risk classification. This

reduction is usually seen as inefficient. However, adverse selection is also

associated with a shift in coverage towards higher risks. If this shift is large

enough, it can more than outweigh the fall in the numbers insured, so that

loss coverage is increased. Since this implies that more risk is voluntarily

traded and more losses are compensated, it is a counter-argument to the

perception of reduced efficiency.

Therefore, the concept of loss coverage might be a better measure of the

impact of restricted risk classification. We find that adverse selection is not

always a bad thing, as long as loss coverage can be increased.
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8.4 Social Welfare

The question on social welfare is addressed in Chapter 6. We defined social

welfare as the sum of expected utilities of all individuals in a population with

equal weight assigned to each individual.

We showed that for iso-elastic demand, if insurance premium is assumed

to be sufficiently small compared to individuals’ wealth, ranking risk classifi-

cation schemes by (observable) loss coverage always gives the same ordering

as ranking by (unobservable) utilitarian social welfare. In particular, if the

common demand elasticity is less than 1, which is consistent with many em-

pirical studies, then maximising loss coverage maximises social welfare as

well. So loss coverage can be used as a proxy for social welfare.

When two risk-groups have different iso-elastic demand elasticities but

both being less than 1, and if demand elasticity of the high risks is larger

than the demand elasticity of the low risks, then pooling gives higher social

welfare. Given that in practice, empirical evidence suggests that demand

elasticities for insurance is always smaller than 1, and economic argument

implies that higher risks should have a higher demand elasticity for insurance

because of the income effect, our conditions on increasing social welfare can

be satisfied in the real world.

8.5 Partial Risk Classification

In Chapter 7, we explored the impact of partial risk classification (or inter-

mediate risk classification) on loss coverage and social welfare.

We found that, using iso-elastic demand, in the case of two risk-groups,

partial risk classification can lead to higher loss coverage and/or social welfare

than both full risk classification and no risk classification when demand
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elasticities of both risk-groups are greater than 1, and high risks have a

higher (but up to a certain level) demand elasticity than the low risks. In the

relatively more realistic case when demand elasticities for both risk-groups

are small (e.g. less than 1), either full or no risk classification maximises

loss coverage and/or social welfare. Although in the above cases partial risk

classifications have immaterial impact on maximising loss coverage and/or

social welfare, its potential implications should not be ignored, especially

when there are more risk-groups.

When the above analysis was generalised using iso-elastic demand with

three risk-groups, we found that partial risk classification could lead to a

higher loss coverage when the common demand elasticity is sufficiently small

(e.g. less than 1), and high risks are charged at a lower premium than the

low risks, e.g. when insurers mis-classify risk-groups due to restrictions on

using one risk factor, but not the other. Although we know of no empirical

evidence so far that any such premium strategy is in place, this is an area

that is worth further developing in the future.

8.6 Summary

Restrictions on insurance risk classification may induce adverse selection,

which is usually perceived to reduce efficiency. In this thesis, we suggest a

counter-argument to this perception in circumstances where modest adverse

selection leads to an increase in “loss coverage”, defined as the expected

losses compensated by insurance for the whole population. This happens if

the shift in coverage towards higher risks under adverse selection more than

outweighs the fall in number of individuals insured. And this is the case

when the low risks have a small insurance demand elasticity that is a non-
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decreasing function of premium, and the high risks have a higher demand

elasticity than the low risks. Therefore, adverse selection is not always a bad

thing, as long as loss coverage is increased.

We reconcile the concept of “loss coverage” and a utilitarian concept of

social welfare. For iso-elastic insurance demand, if insurance premium is as-

sumed to be sufficiently small compared to individuals’ wealth, ranking risk

classification schemes by (observable) loss coverage always gives the same or-

dering as ranking by (unobservable) utilitarian social welfare. This is a useful

result from a policyholder’s perspective, because maximising loss coverage

does not require knowledge of individuals’ (unobservable) utility functions;

loss coverage is based solely on observable quantities.

Last but not the least, we also explore the implication of applying partial

risk classification, in the realistic situation when insurers can differentiate

risks only to a certain extent, which may not fully reflect the differences

between different risk-groups. We find that partial risk classification can

lead to a higher loss coverage and/or social welfare than full risk classification

and no risk classification when there are more risk-groups (e.g. more than

two) and there is no particular ordering in terms of the premiums charged

to different risk-groups. Although this finding is lack of approval based on

empirical evidence so far, we consider it as an interesting and important area

for future research.

The research findings in this thesis could add to the wider public policy

debate on implications of risk classification and provide necessary research

insights for informed decision making by actuaries, regulators, policyholders,

insurers, policy-makers, capital providers and other stakeholders.
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Appendix A

Probabilistic Model of

Heterogeneous Insurance

Purchasers

A.1 Model Specification

We can construct a probabilistic model by supposing that any individual

sampled at random possesses two attributes, risk of suffering a loss event (or

just ‘risk’ for short) and a utility function.

• We suppose that ‘risk’ is defined as the probability µ of suffering a

defined loss event. For simplicity, suppose the set of possible values of

µ is the finite set M = {µ1, µ2, . . . , µm}, that G is the power set of M

and that P [µ = µi] = pi.

• For simplicity, suppose that all utility functions belong to a family

parameterized by a real number γ. Individuals’ utility functions take

values in R.
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Then the idea of risk and utility being heterogeneous in a population may

be modelled by the probability space (Ω,F , P ) where:

• The sample space is Ω = M ×R.

• The sigma-algebra F is G × B, where B is the Borel sigma-algebra on

R.

• The probability measure P is assumed to be given by a probability

function F (µ, γ), discrete in its first component and absolutely contin-

uous in its second component.

An individual sampled at random has the attributes µ and γ given by the

probability F . We must have the marginal distribution:

pi = P [µ = µi] =
∫
{µi}×R

dF (µ, γ) =
∫
R
dF (µi, γ) (A.1)

where the first integral is Stieltjes, summing over the first component of F

and integrating over the second component.

Two individuals with the same value µi of µ may be said to belong to

the same risk group, for insurance purposes. The insurer is supposed able to

observe µ and will offer the same premium πi to everyone with risk µi. It is

assumed that an individual with risk µi, offered premium πi, will decide to

buy insurance, or not, non-randomly, determined by their utility function.

We suppose, however, that the insurer cannot observe γ. Since different in-

dividuals, sampled at random and allocated to the same risk-group, can have

different utility functions, the insurer will observe heterogeneous behaviour

within a risk-group. That is, even though all in the risk-group are offered the

same premium rate, some will buy insurance and others will not. The pur-

chasing decision, given the utility function, is non-random, but to the insurer
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it appears to be random because of the unobserved heterogeneity. At most,

the insurer can observe the proportion of individuals in any risk-group that

buy insurance. Thus the insurer may model the insurance-buying decision

of an individual in a given risk-group as a Bernoulli random variable.

The insurer’s premium strategy may be represented by a G−measurable

random variable on M , or by a (G×{∅,Ω})−measurable random variable on

Ω. In either case, denote it by Π. The insurance purchasing decision may be

represented by an indicator Q, taking the value 1 if insurance is purchased

and 0 otherwise. For a given premium strategy Π on the insurer’s part, Q is

an F−measurable random variable on Ω. Its restriction to a fixed value of

the risk µ = µi is the Bernoulli random variable that the insurer observes in

that risk-group.

The proportion of risks with µ = µi that buy insurance, which we may

call a ‘demand function’ and denote by di(πi), is the conditional expected

value of Q:

di(πi) = P [Q = 1 | µi ] = E[Q | µi ] =
∫
RQ(µi, γ) dF (µi, γ)∫

R dF (µi, γ) (A.2)

and the expected population demand for insurance is the unconditional ex-

pected value of Q:

E[Q] =
∫

Ω
Q(µ, γ) dF (µ, γ) (A.3)

=
∑
i∈M

∫
R
Q(µi, γ) dF (µi, γ) (A.4)

=
∑
i∈M

(∫
RQ(µi, γ) dF (µi, γ)∫

R dF (µi, γ) ×
∫
R
dF (µi, γ)

)
(A.5)

=
∑
i∈M

di(πi) pi. (A.6)

Define X to be a Bernoulli random variable, indicating that a loss event
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occurs. Given µi, X has parameter µi, and does not depend on any utility

function. Observation of X is new information, not part of the model above.

Then:

E[X] =
∫

Ω
E[X | µ, γ] dF (µ, γ) (A.7)

=
∑
i∈M

E[X | µi ]
∫
R
dF (µi, γ) (A.8)

=
∑
i∈M

µipi. (A.9)

Assume that Q and X are independent, conditional on µi. That is, the level

of risk may influence the decision to buy insurance, but there is no moral

hazard; insured individuals in any risk-group are not more likely to suffer the

loss event than uninsured individuals. Then the expected claims outgo for

the insurer is:

E[QX] =
∫

Ω
E[QX | µ, γ ] dF (µ, γ) (A.10)

=
∫

Ω
Q(µ, γ)E[X | µ, γ ] dF (µ, γ) (Q is F−measurable)

(A.11)

=
∑
i∈M

E[X | µi ]
∫
R
Q(µi, γ) dF (µi, γ) (A.12)

=
∑
i∈M

µi di(πi) pi (following Equation (A.5)). (A.13)
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Finally, the expected premium income is:

E[QΠ] =
∫

Ω
E[QΠ | µ, γ ] dF (µ, γ) (A.14)

=
∫

Ω
Q(µ, γ)E[ Π | µ, γ ] dF (µ, γ) (A.15)

=
∑
i∈M

E[ Π | µi ]
∫
R
Q(µi, γ) dF (µi, γ) (A.16)

=
∑
i∈M

πi di(πi) pi (following Equation (A.5)). (A.17)

Based on the formulation of expected premium income and claims outgo, the

total expected profit for insurers, as a function of risk-classification scheme

π = (π1, π2, . . . , πm), can be defined as:

Expected profit for insurers: ρ(π) = E[QΠ]− E[QX],

=
m∑
i=1

di(πi)πipi −
m∑
i=1

di(πi)µipi.

(A.18)

A.2 General Demand: Case of Iso-elastic De-

mand

Theorem A.2.1. Iso-elastic demand function is a special case of general

negative-exponential demand function when n→ 0.

Proof. The proof can be obtained using L’Hopital’s Rule on Equation 2.30:

lim
n→0

{1−
(
π
µ

)n
}λ

n
= lim

n→0

[
− λ

(
π

µ

)n
log

(
π

µ

) ]
= −λ log

(
π

µ

)
. (A.19)

⇒ lim
n→0

d(π) = τ exp
[
− λ log

(
π

µ

) ]
= τ

(
π

µ

)−λ
. (A.20)

Hence proved.
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A.3 Probabilistic Model of Social Welfare

Finally we define social welfare as expected utility of an individual chosen at

random, i.e.

Social Welfare (A.21)

= E [QUΓ(W − πL) + (1−Q) [X UΓ(W − L) + (1−X)UΓ(W )]] .

as in Equation (6.1). Let us review the measurability and dependencies of

the quantities we will need.

µ is G-measureable.

Γ is B-measureable (Borel sigma-algebra on R).

Π is G-measureable.

Q is F -measureable, but not independent of Π.

X is neither G-measureable nor F -measureable, but it is independent of Π.

Note that E[X | F ] = E[X | µi ] = µi. Consider the right-hand side of

Equation A.21 term by term.

E[QUΓ(W − πL)] (A.22)

= E[E[QUΓ(W − πL) | F ] ] (A.23)

=
m∑
i=1

pi

∫
R
Q(µi, γ)Uγ(W − πiL) dF (πi, γ) (A.24)

=
m∑
i=1

pi di(πi)
∫
RQ(µi, γ)Uγ(W − πiL) dF (πi, γ)

di(πi)
(A.25)

=
m∑
i=1

pi di(πi)E
[∫
R
Q(µi, γ)Uγ(W − πiL) dF (πi, γ)

∣∣∣∣Q(µi, ·) = 1
]

(A.26)
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where Q(µi, ·) denotes the restriction of Q to the ith risk-group. This is

equivalent to Equation (6.5) in the main text. Next:

E[ (1−Q)X UΓ(W − L) ] (A.27)

= E[ E[ (1−Q)X UΓ(W − L) | F ] ] (A.28)

=
m∑
i=1

pi

∫
R

(1−Q(µi, γ))Uγ(W − L)E[X | F ] dF (πi, γ) (A.29)

=
m∑
i=1

pi µi

∫
R

(1−Q(µi, γ))Uγ(W − L) dF (πi, γ) (A.30)

=
m∑
i=1

pi µi (1− di(πi))
∫
R(1−Q(µi, γ))Uγ(W − L) dF (πi, γ)

1− di(πi)
(A.31)

=
m∑
i=1

pi µi (1− di(πi)) (A.32)

× E
[∫
R

(1−Q)Uγ(W − L) dF (µi, γ)
∣∣∣∣Q(πi, ·) = 0

]
=

m∑
i=1

pi µi (1− di(πi))U(W − L), (A.33)

if Uγ(W − L) = U(W − L) for all γ.

Similarly,

E[ (1−Q) (1−X)UΓ(W ) ] (A.34)

=
m∑
i=1

pi (1− µi) (1− di(πi)) (A.35)

× E
[∫
R

(1−Q)Uγ(W ) dF (µi, γ)
∣∣∣∣Q(πi, ·) = 0

]
=

m∑
i=1

pi (1− µi) (1− di(πi))U(W ), (A.36)

if Uγ(W ) = U(W ) for all γ.

If we standardise the utility functions to obtain the social welfare S de-

fined in Equation (6.2) and make the appropriate change of variables, Equa-
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tions (A.33) and (A.36) simplify.
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Appendix B

Equilibrium

B.1 Iso-elastic Demand

B.1.1 Notations and Assumptions

We assume that there are two risk-groups and demand for insurance is driven

by iso-elastic demand elasticity. We use the following notations and assump-

tions:

• µ1 < µ2 are the underlying risks for the low risk-group and the high

risk-group.

• p1, p2 are the population proportions such that p1 + p2 = 1.

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi

(
µi
π

)λi
. (B.1)

• The demand elasticity at premium π is given by:

εi(π) = λi. (B.2)
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• Equilibrium is achieved when the following condition is satisfied:

2∑
i=1

pidi(πi)πi =
2∑
i=1

pidi(πi)µi ⇒
2∑
i=1

piτi

(
µi
πi

)λi
πi =

2∑
i=1

piτi

(
µi
πi

)λi
µi.

(B.3)

Each solution (π1, π2) to the above equilibrium condition represents

a specific risk-classification scheme. Special cases: (π1, π2) = (µ1, µ2)

represents full risk classification and (π1, π2) = (π0, π0) represents the

pooled equilibrium premium under no risk classification.

B.1.2 Theorems and Proofs

Theorem B.1.1. For pooled premium, given (µ1, µ2) and (λ1, λ2), multiple

equilibria exist if

λ2 − λ1 < −
√
µ2 +√µ1√
µ2 −

√
µ1
, and (B.4)

a(πlo)
1 + a(πlo) = αlo < α1 < αhi = a(πhi)

1 + a(πhi)
, where (B.5)

a(π) =
(
µ2 − π
π − µ1

)(
µλ2

2

µλ1
1

)
π−(λ2−λ1), and (B.6)

(πlo, πhi) solves: π2 −
(
µ1 + µ2 + µ2 − µ1

λ2 − λ1

)
π + µ1µ2 = 0. (B.7)

Proof. Note that for the formulation of profit function in Equation 3.10, can

be re-written as:

ρ(π) =(µ2 − µ1) [d1(π)p1 + d2(π)p2] [α1(π)− h(π)], where (B.8)

α1(π) = d1(π)p1

d1(π)p1 + d2(π)p2
, (B.9)

h(π) = µ2 − π
µ2 − µ1

. (B.10)

So: ρ(π) = 0⇔α1(π) = h(π). (B.11)
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And, the slope of ρ(π) is given by:

ρ′(π) =(µ2 − µ1) [d′1(π)p1 + d′2(π)p2] [α1(π)− h(π)]

+ (µ2 − µ1) [d1(π)p1 + d2(π)p2] [α′1(π)− h′(π)] where (B.12)

α′1(π) =α1(π)[1− α1(π)]
(
λ2 − λ1

π

)
, and (B.13)

h′(π) =− 1
µ2 − µ1

. (B.14)

As ρ(µ1) < 0 and ρ(µ2) > 0, there exists a premium π0 for which ρ(π0) = 0

and ρ′(π0) ≥ 0. Multiple equilibria exist if there exists a premium π0 for

which ρ(π0) = 0 and ρ′(π0) < 0, or equivalently:

α1(π0) = h(π0) (B.15)

α′1(π0) < h′(π0). (B.16)

Using the relationship in Equation B.15, the expression for α′1(π0) in Equa-

tion B.13 becomes:

α′1(π0) = h(π0)[1− h(π0)]
(
λ2 − λ1

π0

)
=
(
µ2 − π0

µ2 − µ1

)(
π0 − µ1

µ2 − µ1

)(
λ2 − λ1

π0

)
.

(B.17)

Case 1: λ2 − λ1 ≥ 0. In this case, α′1(π) ≥ 0 and so condition in Equation

B.16 cannot hold as h′(π0) < 0. So, multiple equilibria is not possible

in this case.

Case 2: λ2 − λ1 < 0. In this case, Condition B.16 leads to the following

equivalent condition:
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m(π0) = π2
0 −

(
µ1 + µ2 + µ2 − µ1

λ2 − λ1

)
π0 + µ1µ2 < 0. (B.18)

Now, m(π0) = (π0 − πlo)(π0 − πhi), where (B.19)

πlo = 1
2

[(
µ1 + µ2 + µ2 − µ1

λ2 − λ1

)
+ µ2 − µ1

λ2 − λ1

√
(λ2 − λ1 − c1)(λ2 − λ1 − c2)

]
,

(B.20)

and πhi = 1
2

[(
µ1 + µ2 + µ2 − µ1

λ2 − λ1

)
− µ2 − µ1

λ2 − λ1

√
(λ2 − λ1 − c1)(λ2 − λ1 − c2)

]
,

(B.21)

where c1 = −
√
µ2 +√µ1√
µ2 −

√
µ1

< −1, (B.22)

and c2 = −
√
µ2 −

√
µ1√

µ2 +√µ1
> −1. (B.23)

Note that, as both m(µ1) and m(µ2) are positive, m(π0) can only be negative,

if there are real solutions to m(π0) = 0, which means, either λ2 − λ1 > c2 or

λ2 − λ1 < c1.

Case 1: λ2 − λ1 > c2. In this case:

πhi − µ1 = µ2 − µ1

2(λ2 − λ1)

(
1 + (λ2 − λ1)−

√
(λ2 − λ1 − c1)(λ2 − λ1 − c2)

)
< 0,

⇒ πlo < πhi < µ1 < µ2. (B.24)

As the roots are not in the range [µ1, µ2] (note: m(µ1) > 0), m(π0) is

only positive over [µ1, µ2]. So, multiple equilibria is not possible in this

case.
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Case 2: λ2 − λ1 < c1. In this case:

πlo − µ1 = µ2 − µ1

2(λ2 − λ1)

(
1 + (λ2 − λ1) +

√
(λ2 − λ1 − c1)(λ2 − λ1 − c2)

)
> 0

And πhi − µ2 = µ2 − µ1

2(λ2 − λ1)

(
1− (λ2 − λ1)−

√
(λ2 − λ1 − c1)(λ2 − λ1 − c2)

)
< 0

⇒ µ1 < πlo < πhi < µ2 (B.25)

So, if λ2 − λ1 < c1, multiple equilibria is possible, but only when an

equilibrium premium π0 falls within the interval (πlo, πhi).

Finally, to check the condition under which an equilibrium premium π0 falls

within (πlo, πhi), we rewrite Equation B.8 for iso-elastic demand, to get:

a(π0) =
(
µ2 − π0

π0 − µ1

)(
µλ2

2

µλ1
1

)
π
−(λ2−λ1)
0 = α1

1− α1
. (B.26)

Now note that for λ2 − λ1 < c1 < −1, a(π0) is increasing in π0, because:

∂

∂π0
log a(π0) = (λ2 − λ1) m(π0)

π0(µ2 − π0)(π0 − µ1) > 0. (B.27)

So, multiple equilibria exists if λ2 − λ1 < c1 and α1 satisfies the condition:

a(πlo)
1 + a(πlo) = αlo < α1 < αhi = a(πhi)

1 + a(πhi)
, (B.28)

which proves our result.

Theorem B.1.2. For pooled premium, given (µ1, µ2), define c =
√
µ2+√µ1√
µ2−
√
µ1

.

If α1 <

(√
µ2
µ1

)c+1

1+
(√

µ2
µ1

)c+1 then there is a unique equilibrium.

209



Proof. In the special case of λ2 − λ1 = −c, Equations B.20 and B.21 leads

to:

πlo = πhi = √µ1µ2. (B.29)

⇒ a(πlo) = a(πhi) =
(√

µ2

µ1

)2λ1−c+1

. (B.30)

As in this case, a(πlo) = a(πhi) is an increasing function of λ1, the minimum

value is attained when λ1 = c (i.e. when λ2 = 0). So the minimum possible

value of:

αlo = a(πlo)
1 + a(πlo) =

(√
µ2
µ1

)c+1

1 +
(√

µ2
µ1

)c+1 . (B.31)

So, if α1 <

(√
µ2
µ1

)c+1

1+
(√

µ2
µ1

)c+1 , the conditions for multiple equilibria in Theorem

B.1.1 are violated and so, in this case, there is unique equilibrium.

Theorem B.1.3. For pooled premium, given (µ1, µ2), if there is a unique

equilibrium, then the equilibrium premium is an increasing function of the

individual demand elasticities.

Proof. We first keep λ2 fixed in Equation 3.36, and differentiate with respect

to λ1, to get:

d

dλ1
π0(λ1) =

log
(
π0
µ1

)
1

π0−µ1
+ 1

µ2−π0
+ λ2−λ1

π0

= 1
−(λ2 − λ1)m(π0)π0(π0−µ1)(µ2−π0) log

(
π0

µ1

)
,

(B.32)

where m(π0) is defined in Equation B.18. Similarly, if we keep λ1 fixed in

210



Equation 3.36, and differentiate with respect to λ2, we get:

d

dλ2
π0(λ2) =

log
(
µ2
π0

)
1

π0−µ1
+ 1

µ2−π0
+ λ2−λ1

π0

= 1
−(λ2 − λ1)m(π0)π0(π0−µ1)(µ2−π0) log

(
µ2

π0

)
.

(B.33)

As µ1 < π0 < µ2, if λ2 > λ1, then both π′0(λ1) and π′0(λ2) are positive. On the

other hand, if λ2 < λ1, m(π0) > 0 is sufficient for uniqueness of equilibrium

(by condition B.18), which also implies that π′0(λ1) and π′0(λ2) are positive. In

other words, uniqueness of equilibrium implies that the equilibrium premium

is an increasing function of the individual demand elasticities.

B.2 Negative-exponential Demand

B.2.1 Notations and Assumptions

We assume that there are two risk-groups and demand for insurance is driven

by negative-exponential demand elasticity. We use the following notations

and assumptions:

• µ1 < µ2 are the underlying risks for the low risk-group and the high

risk-group.

• p1, p2 are the population proportions such that p1 + p2 = 1.

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi exp
[{

1−
(
π

µi

)n}
λi
n

]
. (B.34)
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• The demand elasticity at premium π is given by:

εi(π) = λi

(
π

µi

)n
. (B.35)

• Equilibrium is achieved when the following condition is satisfied:

2∑
i=1

pidi(πi)πi =
2∑
i=1

pidi(πi)µi (B.36)

⇒
2∑
i=1

piτi exp
[{

1−
(
πi
µi

)n}
λi
n

]
πi =

2∑
i=1

piτi exp
[{

1−
(
πi
µi

)n}
λi
n

]
µi.

(B.37)

Each solution (π1, π2) to the above equilibrium condition represents

a specific risk-classification scheme. Special cases: (π1, π2) = (µ1, µ2)

represents full risk classification and (π1, π2) = (π0, π0) represents the

pooled equilibrium premium under no risk classification.

For illustration purpose, our analysis on multiple equilibria is based on

negative-exponential demand with n = 1, in which case:

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi exp
[(

1− π

µi

)
λi

]
. (B.38)

• The demand elasticity at premium π is given by:

εi(π) = λi
π

µi
, (B.39)

which is a non-decreasing linear function of premium.
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B.2.2 Theorems and Proofs

Theorem B.2.1. The weight in pooled equilibrium premium for negative-

exponential demand decreases with demand elasticity parameter of the low

risk-group, i.e. u ↓ λ1.

Proof. From Equation 3.55:

du

dλ1
= −

α1α2
(βn−1)

n
eλ1

(βn−1)
n

[α1 + α2e
λ1

(βn−1)
n ]2

(B.40)

= −u(1− u)
(βn − 1

n

)
; (B.41)

⇒ du

dλ1
R 0⇔ βn − 1

n
Q 0. (B.42)

Note:

βn − 1 R 0⇔ n R 0, (B.43)

⇒βn − 1
n

> 0 for n 6= 0, (B.44)

therefore du

dλ1
< 0 for n 6= 0. (B.45)

In the case when n→ 0, using L’Hopital’s Rule,

lim
n→0

βn − 1
n

= lim
n→0

βn log β
1 = log β > 0, (B.46)

⇒βn − 1
n

> 0 for n→ 0, (B.47)

therefore du

dλ1
< 0 for n→ 0. (B.48)

Therefore, for n ∈ R, du
dλ1

< 0.

Theorem B.2.2. The pooled equilibrium premium is an increasing function

of λ1.
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Proof.
∂π0

∂λ1
= ∂π0

∂u

du

dλ1
, (B.49)

and
∂π0

∂u
= µ1 − µ2 < 0. (B.50)

Thus, using Theorem B.2.1, we prove that ∂π0
∂λ1

> 0.

Theorem B.2.3. In the case when n > 0, demand elasticity is an increasing

function of the equilibrium premium.

Proof.

λ0 = λ1(π0

µ1
)n, (B.51)

⇒ ∂λ0

∂π0
= ∂λ1

∂π0

(
π0

µ1

)n
+ λ1n

µn1
πn−1

0 when n > 0, (B.52)

using Result 3.21. Hence proved.

Theorem B.2.4. For n > 0, λ0 ↑ λ1. i.e. When n > 0, the demand

elasticity at pooled equilibrium premium increases as the demand elasticity

parameter of low risks (and high risks) increases.

Proof.

λ0 = λ1

(
π0

µ1

)n
⇒ ∂λ0

∂λ1
=
(
π0

µ1

)n
+ nλ1

πn−1
0
µn1

∂π0

∂λ1
> 0, (B.53)

because π0 ↑ λ1 from Result 3.21.

Theorem B.2.5. For pooled premium, given (µ1, µ2) and (λ1, λ2), multiple
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equilibria exist if

λ2

µ2
− λ1

µ1
< − 4

µ2 − µ1
, and (B.54)

a(πlo)
1 + a(πlo)

= αlo < α1 < αhi = a(πhi)
1 + a(πhi)

, where (B.55)

a(π) =
(
µ2 − π
π − µ1

)
exp

[
λ2 − λ1 − (λ2

µ2
− λ1

µ1
)π
]
, and (B.56)

(πlo, πhi) are solutions to: π2 − (µ1 + µ2)π + µ1µ2 −
µ2 − µ1
λ2
µ2
− λ1

µ1

= 0. (B.57)

Proof. Note that for the formulation of profit function in Equation 3.10 can

be re-written as:

ρ(π) = (µ2 − µ1)[d1(π)p1 + d2(π)p2][α1(π)− h(π)], (B.58)

where

h(π) = µ2 − π
µ2 − µ1

. (B.59)

α1(π) = d1(π)p1

d1(π)p1 + d2(π)p2
. (B.60)

So ρ(π0) = 0 ⇔ α1(π) = h(π). (B.61)

And the slope of ρ(π) is given by:

ρ′(π) = (µ2 − µ1) [d′1(π)p1 + d′2(π)p2] [α1(π)− h(π)]

+(µ2 − µ1) [d1(π)p1 + d2(π)p2] [α′1(π)− h′(π)] where (B.62)

α′1(π) = α1(π)[1− α1(π)]
(
λ2

µ2
− λ1

µ1

)
, and (B.63)

h′(π) = − 1
µ2 − µ1

. (B.64)

As ρ(µ1) < 0 and ρ(µ2) > 0, there exists a premium π0 for which ρ(π0) = 0
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and ρ′(π0) ≥ 0. Multiple equilibria exist if there exists a premium π0 for

which ρ(π0) = 0 and ρ′(π0) < 0, or equivalently:

α1(π0) = h(π0) (B.65)

α′1(π0) < h′(π0). (B.66)

Using the relationship in Equation B.65, the expression for α′1(π0) in Equa-

tion B.63 becomes:

α′1(π0) = h(π0)[1− h(π0)]
(
λ2

µ2
− λ1

µ1

)
(B.67)

=
(
µ2 − π0

µ2 − µ1

)(
π0 − µ1

µ2 − µ1

)(
λ2

µ2
− λ1

µ1

)
. (B.68)

Case 1: λ2
µ2
− λ1

µ1
≥ 0. In this case, α′1(π) ≥ 0 and so condition in Equation

B.66 cannot hold as h′(π0) < 0. So, multiple equilibria is not possible

in this case.

Case 2: λ2
µ2
− λ1

µ1
< 0. In this case, Condition B.66 leads to the following

equivalent condition:

m(π0) = π2
0 − (µ1 + µ2)π0 + µ1µ2 −

µ2 − µ1
λ2
µ2
− λ1

µ1

< 0. (B.69)

Now, m(π0) = (π0 − πlo)(π0 − πhi), where

πlo = 1
2

µ1 + µ2 −
√√√√(µ2 − µ1)(µ2 − µ1 + 4

λ2
µ2
− λ1

µ1

)
, (B.70)

and

πhi = 1
2

µ1 + µ2 +
√√√√(µ2 − µ1)(µ2 − µ1 + 4

λ2
µ2
− λ1

µ1

)
. (B.71)

Note that, as both m(µ1) and m(µ2) are positive, m(π0) can only be
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negative, if there are real solutions to m(π0) = 0, which means,

µ2 − µ1 + 4
λ2
µ2
− λ1

µ1

> 0, (B.72)

⇒ λ2

µ2
− λ1

µ1
< − 4

µ2 − µ1
. (B.73)

In this case,

πlo − µ1 = 1
2
√
µ2 − µ1

√µ2 − µ1 −
√√√√µ2 − µ1 + 4

λ2
µ2
− λ1

µ1

 (B.74)

> 0, because λ2

µ2
− λ1

µ1
< 0. (B.75)

Hence, µ1 < πlo.

And

πhi − µ2 = 1
2
√
µ2 − µ1

√√√√µ2 − µ1 + 4
λ2
µ2
− λ1

µ1

−
√
µ2 − µ1

 (B.76)

< 0, because λ2

µ2
− λ1

µ1
< 0. (B.77)

Hence, πhi < µ2, and consequently, µ1 < πlo < πhi < µ2. Therefore, if λ2
µ2
−

λ1
µ1
< − 4

µ2−µ1
, multiple equilibria is possible, but only when an equilibrium

premium π0 falls within the interval (πlo, πhi).

Finally, to check the condition under which an equilibrium premium π0

falls within (πlo, πhi), we rewrite Equation 3.10 for negative-exponential de-

mand, to get:

a(π0) =
(
µ2 − π0

π0 − µ1

)
exp[λ2 − λ1 − (λ2

µ2
− λ1

µ1
)π0] = α1

1− α1
. (B.78)
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Now note that for λ2
µ2
− λ1

µ1
< − 4

µ2−µ1
< 0, a(π0) is increasing in π0, because:

∂

∂π0
log a(π0) =

(λ2
µ2
− λ1

µ1
)m(π0)

(µ2 − π0)(π0 − µ1) > 0. (B.79)

So, multiple equilibria exists if λ2
µ2
− λ1

µ1
< − 4

µ2−µ1
and α1 satisfies the condi-

tion:
a(πlo)

1 + a(πlo)
= αlo < α1 < αhi = a(πhi)

1 + a(πhi)
, (B.80)

which proves our result. Note that, if there are multiple equilibria, there can

be a maximum of 3 equilibria, as a(π0) is monotonic in π0 over (πlo, πhi).

Theorem B.2.6. For pooled premium, given (µ1, µ2), if α1 < e2

1+e2 , then

there is a unique equilibrium.

Proof. In the special case of λ2
µ2
− λ1

µ1
= − 4

µ2−µ1
,

πlo = πhi = µ1 + µ2

2 (B.81)

⇒ a(πlo) = a(πhi) = exp[λ1(µ2

µ1
− 1)− 2]. (B.82)

As in this case, a(πlo) = a(πhi) is an increasing function of λ1, the minimum

value is attained when λ1 = 4µ1
µ2−µ1

(i.e. when λ2 = 0). So the minimum

possible value of:

αlo = a(πlo)
1 + a(πlo) = e2

1 + e2 . (B.83)

So, if α1 <
e2

1+e2 , the condition for multiple equilibria in Theorem B.2.5 are

violated and so, in this case, there is a unique equilibrium.

Theorem B.2.7. For pooled premium, given (µ1, µ2), if there is a unique
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equilibrium, then the equilibrium premium is an increasing function of the

individual demand elasticities.

Proof. We first keep λ2 fixed in Equation 3.84, and differentiate with respect

to λ1, to get:

d

dλ1
π0(λ1) = (π0 − µ1)(µ2 − π0)

−(λ2
µ2
− λ1

µ1
)m(π0)

(π0

µ1
− 1). (B.84)

Similarly, if we keep λ1 fixed in Equation 3.84, and differentiate with respect

to λ2, we get:

d

dλ2
π0(λ2) = (π0 − µ1)(µ2 − π0)

−(λ2
µ2
− λ1

µ1
)m(π0)

(1− π0

µ2
). (B.85)

As µ1 < π0 < µ2, if λ1
µ1
< λ2

µ2
, then both π′0(λ1) and π′0(λ2) are positive. On the

other hand, if λ2
µ2
< λ1

µ1
,m(π0) > 0 is sufficient for uniqueness of equilibrium

(by Equation B.69), which also implies that π′0(λ1) and π′0(λ2) are positive,

i.e. uniqueness of equilibrium implies that the equilibrium premium is an

increasing function of the individual demand elasticities.
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Appendix C

Loss Coverage: Iso-elastic

Demand

C.1 Case of Two Risk-groups

C.1.1 Notations and Assumptions

We assume that there are two risk-groups and demand for insurance is driven

by iso-elastic demand elasticity. We use the following notations and assump-

tions:

• µ1 < µ2 are the underlying risks for the low risk-group and the high

risk-group.

• p1, p2 are the population proportions such that p1 + p2 = 1.

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi

(
µi
π

)λi
. (C.1)

Note: π ≥ 0 is an implicit assumption.
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• Equilibrium is achieved when the following condition is satisfied:

2∑
i=1

pidi(πi)πi =
2∑
i=1

pidi(πi)µi ⇒
2∑
i=1

piτi

(
µi
πi

)λi
πi =

2∑
i=1

piτi

(
µi
πi

)λi
µi.

(C.2)

Each solution (π1, π2) to the above equilibrium condition represents

a specific risk-classification scheme. Special cases: (π1, π2) = (µ1, µ2)

represents full risk classification and (π1, π2) = (π0, π0) represents the

pooled equilibrium premium under no risk classification.

• Loss coverage under a specific risk-classification scheme is defined as:

LC(π1, π2) =
2∑
i=1

piτi

(
µi
πi

)λi
µi, (C.3)

where (π1, π2) satisfy the equilibrium condition in Equation C.2.

C.1.2 Theorems and Proofs

Theorem C.1.1. For λ > 0,

λ Q 1⇔ C(λ) R 1. (C.4)

Proof. The loss coverage ratio for the case of equal demand elasticity is given

in Equation 5.7 and can be expressed as follows:

C(λ) = 1
πλ0

α1µ
λ+1
1 + α2µ

λ+1
2

α1µ1 + α2µ2
, where π0 = α1µ

λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
;

=
[
wµλ−1

1 + (1− w)µλ−1
2

]λ [
wµλ1 + (1− w)µλ2

]1−λ
(C.5)

= Ew
[
µλ−1

]λ
Ew

[
µλ
]1−λ

, (C.6)

where w = α1µ1
α1µ1+α2µ2

; and Ew denotes expectation in this context and the
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random variable µ takes values µ1 and µ2 with probabilities w and 1 − w

respectively.

Case λ = 1: It follows directly from Equation C.6 that C(1) = 1.

Case 0 < λ < 1: Holder’s inequality states that, if 1 < p, q < ∞ where

1/p+1/q = 1, for positive random variables X, Y with E[X]p, E[Y ]q <

∞, E [Xp]1/pE [Y q]1/q ≥ E[XY ].

Setting 1/p = λ, 1/q = 1 − λ, X = µλ(λ−1) and Y = 1/X, applying

Holder’s inequality on Equation C.6 gives,

C(λ) = Ew
[
X1/λ

]λ
Ew

[
Y 1/(1−λ)

]1−λ
≥ Ew[XY ] = 1. (C.7)

Case λ > 1: Lyapunov’s inequality states that, for positive random variable

µ and 0 < s < t, E[µt]1/t ≥ E[µs]1/s.

So Equation C.6 gives:

C(λ) =
Ew

[
µλ−1

]λ
Ew [µλ]λ−1 =

Ew
[
µλ−1

]1/(λ−1)

Ew [µλ]1/λ


λ(λ−1)

≤ 1, (C.8)

as Ew
[
µλ−1

]1/(λ−1)
≤ Ew

[
µλ
]1/λ

for λ > 1 by Lyapunov’s inequality.

Theorem C.1.2.

max
w,λ

C = 1
2

(
4

√
µ2

µ1
+ 4

√
µ1

µ2

)
= 1

2

(
4
√
β + 1

4
√
β

)
. (C.9)

222



Proof. Proceeding from Equation C.5, we have:

C(λ) =

[
wβ1−λ + (1− w)

]λ [
w + (1− w)βλ

]1−λ
βλ(1−λ) (C.10)

⇒ ∂

∂w
logC(λ) = λ(β1−λ − 1)

wβ1−λ + (1− w) −
(1− λ)(βλ − 1)
w + (1− w)βλ (C.11)

⇒ ∂2

∂w2 logC(λ) = − λ(β1−λ − 1)2

[wβ1−λ + (1− w)]2
− (1− λ)2(βλ − 1)2

[w + (1− w)βλ]2
< 0.

⇒ ∂

∂w
logC(λ) = 0 ⇒ w = λ(β − 1)− (βλ − 1)

(βλ − 1)(β1−λ − 1) , (C.12)

gives the maximum.

Inserting the value of w in Equation C.10, gives the result that: For 0 < λ <

1,

max
w

C(λ) = β − 1
βλ(1−λ)

(
βλ−1
λ

)λ (β1−λ−1
1−λ

)1−λ , where β = µ2

µ1
> 1. (C.13)

Equation C.13 can also be expressed as:

max
w

C(λ) = 1
2

(
4
√
β + 1

4
√
β

) 2
(

4
√
β − 1

4
√
β

)

(√

β

)λ
− 1

(√β)λ
λ


λ

(√
β

)1−λ
− 1

(√β)1−λ

1−λ


1−λ ,

= 1
2

(
4
√
β + 1

4
√
β

)
R(½)
R(λ) , (C.14)

where R(λ) =


(√

β
)λ
− 1(√

β

)λ
λ


λ

(√
β
)1−λ

− 1(√
β

)1−λ

1− λ


1−λ

. (C.15)

The result follows from R(λ) ≥ R(½), which in turn follows from the fact

that R(λ) is symmetric and convex over 0 < λ < 1. As symmetry is obvious,
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we only need to prove convexity of R(λ).

Note that,

logR(λ) = g(λ) + g(1− λ), where g(λ) = λ log


(√

β
)λ
− 1(√

β

)λ
λ

 .
(C.16)

If g(λ) is a convex function over (0,1), then g′′(λ) ≥ 0 and g′′(1 − λ) ≥ 0,

so logR(λ) is convex, which in turn implies R(λ) is convex. So it suffices to

show that:

g(x) = x log
(
ax − a−x

x

)
(C.17)

is convex over (0,1), where a =
√
β > 1. Now,

g′(x) = log
(
ax − a−x

x

)
+
(
ax + a−x

ax − a−x

)
x log a− 1. (C.18)

g′′(x) = (ax + a−x)x log a− (ax − a−x)
x(ax − a−x) + a2x − a−2x − 4x log a

(ax − a−x)2 log a,

≥ 0, (C.19)

as both [(ax+a−x)x log a−(ax−a−x)] and [a2x−a−2x−4x log a] are increasing

functions starting from 0 at x = 0. Hence proved.

Note that given maxw,λC = 1
2

(
β1/4 + β−1/4

)
, maxw,λC is also an increas-

ing function of β, i.e. the maximised loss coverage ratio (LCR) also increases

with the relative risk β.

This is because

d

dβ
max
w,λ

C ∝ β−3/4 − β−5/4 > 0, (C.20)

because β > 1. Hence proved.
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Figure C.1 shows the plots of maxw C(λ) for β = 4, 5. It shows that LCR

reaches its maximum when λ = 0.5 regardless of the value of β. And LCR is

larger when β is larger.

λ

m
ax

w
  C

(λ
)

1.
00

1.
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1.
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1.
06

1.
08

0.0 0.2 0.4 0.6 0.8 1.0
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1.082

0.5

β = 4
β = 5

Figure C.1: Maximum loss coverage ratio as a function of λ for specific

values of β.

Theorem C.1.3. For a given value of λ2, the loss coverage ratio is a de-

creasing function of λ1.
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Proof.

d

dλ1
logC = ∂

∂λ1
logC +

 ∂

∂π0
logC

dπ0

dλ1

 < 0, since (C.21)

∂

∂λ1
logC = − log(π0

µ1
) < 0, by Equation 5.16 , (C.22)

∂

∂π0
logC = −λ2

π0
− µ1

π0(π0 − µ1) < 0, by Equation 5.18 , (C.23)

dπ0

dλ1
> 0, by results in sub-section 3.3.3 .

(C.24)

Theorem C.1.4. For a given value of λ1, loss coverage ratio is an increasing

function of λ2 if λ1 ≤ µ2
α1(µ2−µ1) .

Proof. This phenomenon might be explained by the non-monotonic relation-

ship between loss coverage ratio and equilibrium premium, π0. Equation 5.16

gives:

∂

∂π0
logC ∝ (1− λ1)µ2 + λ1π0. (C.25)

When 0 ≤ λ1 ≤ 1, ∂
∂π0

logC > 0, i.e. loss coverage ratio is an increasing

function of π0. And based on results in sub-section 3.3.3, all else being

fixed, including λ1, the pooled equilibrium premium can only increase if λ2

increases. Therefore, loss coverage ratio is an increasing function of λ2 if

0 ≤ λ1 ≤ 1.

When λ1 > 1, ∂
∂π0

logC > 0 if λ1 < µ2
µ2−π0

. Result 3.13 shows that

π0 ≥ α1µ1 + α2µ2. Therefore, as long as λ1 ≤ µ2
µ2−(α1µ1+α2µ2) = µ2

α1(µ2−µ1) , loss

coverage ratio is an increasing function of λ2.
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As a result, there is a monotonic relationship between loss coverage ratio

and λ2 for λ1 ≤ µ2
α1(µ2−µ1) .

Theorem C.1.5. For 0 < λ1 < λ2 < 1, loss coverage ratio, C(λ), is greater

than 1.

Proof. The equilibrium pooled premium π0 given different demand elastici-

ties can be rewritten as

λ1 log
π0

µ1

+ λ2 log
µ2

π0

 = log
α1(π0 − µ1)
α2(µ2 − π0)

 (C.26)

(which is given in Equation 3.36).

Now Equation C.26 implies that there exists a λ∗, where λ1 ≤ λ∗ ≤ λ2,

such that:

λ∗ log
(
π0

µ1

)
+ λ∗ log

(
µ2

π0

)
= log

(
α1(π0 − µ1)
α2(µ2 − π0)

)
⇒ λ∗ =

log
(
µ2
π0

)
log β . (C.27)

In other words, given a population P with λ2 ≥ λ1, there exists a population

T with the same constant iso-elastic demand elasticity, λ∗, for both high and

low risk-groups. such that the equilibrium premium π0 is the same for both

populations, P and T . The two populations, P and T , differ only in their

demand elasticities, and nothing else.

Now, as λ1 ≤ λ∗ ≤ λ2, we observe:

τ1

(
µ1

π0

)λ1

≥ τ1

(
µ1

π0

)λ∗

and τ2

(
µ2

π0

)λ2

≥ τ2

(
µ2

π0

)λ∗

. (C.28)

In other words, for any equilibrium premium π0, proportional demand for

both high and low risk-groups are higher for population P compared to that

of population T .
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Consequently, the loss coverage ratio for population P with demand elas-

ticities (λ1, λ2) where λ2 ≥ λ1:

C =
α1
(
µ1
π0

)λ1
µ1 + α2

(
µ2
π0

)λ2
µ2

α1µ1 + α2µ2
, (C.29)

≥
α1
(
µ1
π0

)λ∗
µ1 + α2

(
µ2
π0

)λ∗
µ2

α1µ1 + α2µ2
, (C.30)

i.e. the loss coverage ratio of population T

= 1
πλ∗

0

α1µ
λ∗+1
1 + α2µ

λ∗+1
2

α1µ1 + α2µ2
, (C.31)

≥ 1, if λ∗ ≤ 1, by Theorem C.1.1 . (C.32)

C.2 Case of More Risk-groups

Theorem C.2.1. Let V be a positive random variable and λ be a positive

constant, such that E[V λ] = E[V λ+1]. Then:

λ Q 1⇒ E[V λ] R E[V ]. (C.33)

Proof. Case: λ = 1: It follows directly from the definition.

Case: 0 < λ < 1: Holder’s inequality states that, if 1 < p, q < ∞ where

1/p+1/q = 1, for positive random variables X, Y with E[Xp], E[Y q] <

∞:

(E[Xp])1/p(E[Y q])1/q ≥ E[XY ]. (C.34)

Setting 1/p = λ, 1/q = 1 − λ,X = V λ2 and Y = V 1−λ2 , Holder’s
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inequality gives:

(
E
[
V λ2 1

λ

])λ (
E
[
V (1−λ2) 1

1−λ

])1−λ
≥ E

[
V λ2

V 1−λ2
]
, (C.35)

⇒
(
E
[
V λ
])λ (

E
[
V λ+1

])1−λ
≥ E[V ]. (C.36)

⇒E
[
V λ
]
≥ E[V ], since E

[
V λ
]

= E
[
V λ+1

]
. (C.37)

Case: λ > 1: Young’s inequality states that, for a, b ≥ 0 and p, q > 0 such

that 1/p+ 1/q = 1:

ab ≤ ap

p
+ bq

q
. (C.38)

Setting p = λ, q = λ
λ−1 , a = V

1
λ and b = V λ− 1

λ , Young’s inequality

gives:

V
1
λV λ− 1

λ ≤ 1
λ
V

1
λ
λ + λ− 1

λ
V (λ− 1

λ
) λ
λ−1 , (C.39)

⇒V λ ≤ 1
λ
V + λ− 1

λ
V λ+1. (C.40)

⇒E
[
V λ
]
≤ 1
λ
E[V ] + λ− 1

λ
E
[
V λ+1

]
, (C.41)

⇒E
[
V λ
]
≤ E[V ], since E

[
V λ
]

= E
[
V λ+1

]
. (C.42)

Hence proved.

Theorem C.2.2. Let V be a positive random variable and f(v) be a positive

function, such that E
[
V f(V )

]
= E

[
V f(V )+1

]
. Define λlo = maxv≤1 f(v) and

λhi = minv>1 f(v). Then:

λlo < 1 and λhi ≥ λlo ⇒ E
[
V f(V )

]
≥ E [V ] . (C.43)

Proof. Holder’s inequality states that, if 1 < p, q <∞ where 1/p+ 1/q = 1,
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for positive random variables X, Y with E[Xp], E[Y q] <∞:

(E [Xp])1/p (E [Y q])1/q ≥ E[XY ]. (C.44)

For any λ, such that 0 < λ < 1, set 1/p = λ, 1/q = 1− λ, X = V λ f(V ) and

Y = V (1−λ)(f(V )+1), Holder’s inequality gives:

(
E
[
V f(V )

])λ (
E
[
V f(V )+1

])1−λ
≥ E

[
V λ f(V )V (1−λ)(f(V )+1)

]
, (C.45)

⇒E
[
V f(V )

]
≥ E

[
V f(V )+1−λ

]
, since E

[
V f(V )

]
= E

[
V f(V )+1

]
. (C.46)

The relationship in Equation C.46 holds for any positive λ < 1, Now, set

λ = λlo < 1.

Case V < 1:

λlo = max
v≤1

f(v)⇒ f(V ) ≤ λlo = λ⇒ f(V )+1−λ ≤ 1⇒ V f(V )+1−λ ≥ V.

(C.47)

Case V = 1:

V f(V )+1−λ = V. (C.48)

Case V > 1:

λhi = min
v>1

f(v)⇒ f(V ) ≥ λhi ≥ λlo = λ⇒ f(V )+1−λ ≥ 1⇒ V f(V )+1−λ ≥ V.

(C.49)

Hence, V f(V )+1−λ ≥ V for all cases, which implies

E
[
V f(V )+1−λ

]
≥ E [V ] . (C.50)
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Combining Equations C.46 and C.50, we have:

E
[
V f(V )

]
≥ E [V ] , (C.51)

⇒ C(π0) = E
[
V f(V )

]
/E [V ] ≥ 1. (C.52)
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Appendix D

Loss Coverage:

Negative-exponential Demand

D.1 Notations and Assumptions

We assume that there are two risk-groups and demand for insurance is driven

by negative-exponential demand elasticity. We use the following notations

and assumptions:

• µ1 < µ2 are the underlying risks for the low risk-group and the high

risk-group.

• p1, p2 are the population proportions such that p1 + p2 = 1.

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi exp
[{

1−
(
π

µi

)n}
λi
n

]
. (D.1)
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• The demand elasticity at premium π is given by:

εi(π) = λi

(
π

µi

)n
. (D.2)

• Equilibrium is achieved when the following condition is satisfied:

2∑
i=1

pidi(πi)πi =
2∑
i=1

pidi(πi)µi (D.3)

⇒
2∑
i=1

piτi exp
[{

1−
(
πi
µi

)n}
λi
n

]
πi =

2∑
i=1

piτi exp
[{

1−
(
πi
µi

)n}
λi
n

]
µi.

(D.4)

Each solution (π1, π2) to the above equilibrium condition represents

a specific risk-classification scheme. Special cases: (π1, π2) = (µ1, µ2)

represents full risk classification and (π1, π2) = (π0, π0) represents the

pooled equilibrium premium under no risk classification.

• Loss coverage under a specific risk-classification scheme is defined as:

LC(π1, π2) =
2∑
i=1

piτi exp
[{

1−
(
πi
µi

)n}
λi
n

]
µi, (D.5)

where (π1, π2) satisfy the equilibrium condition in Equation D.4.

D.2 Theorems and Proofs

Theorem D.2.1.

C(π0) ≤ 1, when n ≤ −1. (D.6)
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Proof. Equation 5.34 can be re-written as:

logC(π0) = log
[
α1e

λ1
n + α2e

λ2
n

]
− λ0

n
+ log π0 − log

[
α1µ1 + α2µ2

]
,

(D.7)

⇒ ∂ logC(π0)
∂π0

= 1
n

[
α1e

λ1
n + α2β

ne
λ2
n

α1e
λ1
n + α2e

λ2
n

]
dλ1

dπ0
− 1
n

dλ0

dπ0
+ 1
π0
, (D.8)

= 1
n

[
u+ (1− u)βn

]
dλ1

dπ0
− 1
n

dλ0

dπ0
+ 1
π0
, (D.9)

where u = α1
α1+α2 exp[λ1(βn−1)

n
]
.

Recall that:

λ0 = λ1

(
π0

µ1

)n
, (D.10)

⇒ dλ0

dπ0
= dλ1

dπ0

(
π0

µ1

)n
+ λ1n

π0

(
π0

µ1

)n
. (D.11)

Substitute Equation D.11 into Equation D.9 to get:

∂ logC(π0)
∂π0

= 1
n
{u+ (1− u)βn − [u+ (1− u)β]n} dλ1

dπ0
− λ0

π0
+ 1
π0
, (D.12)

because π0 = uµ1 + (1− u)µ2 by Equation 3.54.

According to Theorem B.2.2,

dπ0

dλ1
= (µ2 − µ1)u(1− u)

(
βn − 1
n

)
, (D.13)

⇒ 1 = (µ2 − µ1)u(1− u)
(
βn − 1
n

)
dλ1

dπ0
, (D.14)

⇒ 1
π0

= (µ2 − µ1)u(1− u)(βn − 1)
nπ0

dλ1

dπ0
. (D.15)
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Thus, Equation D.12 becomes,

∂ logC(π0)
∂π0

= 1
nµn1π0

dλ1

dπ0{
[uµn1 + (1− u)µn2 ]π0 − [uµ1 + (1− u)µ2]n+1 + (µ2 − µ1)u(1− u)(µn2 − µn1 )

}
− λ0

π0
, (D.16)

= 1
nµn1π0


[
uµn+1

1 + (1− u)µn+1
2

]
−
[
uµ1 + (1− u)µ2

]n+1

︸ ︷︷ ︸
A


dλ1

dπ0
− λ0

π0
.

(D.17)

We are able to prove that


A > 0 if n > 0 or n < −1;

A = 0 if n = 0 or n = −1 where n = 0 is the case of iso-elastic demand;

A < 0 if −1 < n < 0,

(D.18)

using Jensen’s inequality:

• For a real convex function g, numbers x1, x2 in its domain, and positive

weights t, then:

tg(x1) + (1− t)g(x2) ≥ g(tx1 + (1− t)x2). (D.19)

• For a real concave function g, numbers x1, x2 in its domain, and positive

weights t, then:

tg(x1) + (1− t)g(x2) ≤ g(tx1 + (1− t)x2). (D.20)
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In our case,

• the function: g = µn+1;

• x1 : µ1, x2 : µ2;

• t : u.

Note:

d2g(µ)
dµ2 = n(n+ 1)µn−1, (D.21)

⇒

 g(µ) is a convex function of µ if n ≥ 0 or n ≤ −1;

g(µ) is a concave function of µ if −1 < n < 0.
(D.22)

Therefore, in Equation D.17,


A

nµn1π0
dλ1
dπ0

> 0 if n > −1;
A

nµn1π0
dλ1
dπ0
≤ 0 if n ≤ −1,

(D.23)

because ∂π0
∂λ1

> 0 proved in Theorem B.2.2.

As a result, when n ≤ −1, in Equation D.17, ∂ logC(π0)
∂π0

≤ 0⇔ ∂C(π0)
∂π0

≤ 0

for any valid π0. This result shows that in the case of general negative-

exponential demand function, when the “the second order elasticity” is smaller

than −1, loss coverage at pooled equilibrium premium is always smaller than

the loss coverage at risk-differentiated premiums.

Theorem D.2.2.

lim
π0→α1µ1+α2µ2

C(π0) > 1, when n > −1. (D.24)
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Proof. Based on the analysis in Theorem D.2.1, we have the following com-

ments: When n > −1, whether loss coverage at pooled equilibrium premium

is higher or lower than the loss coverage at risk-differentiated premiums de-

pends on the size of A
nµn1π0

dλ1
dπ0

and λ0
π0

in Equation D.17.

We have proved in Result 3.21 in Section 3.4.1 that ∂π0
∂λ1

> 0 for all n ∈ R.

Therefore,

lim
π0→α1µ1+α2µ2

∂ logC(π0)
∂π0

= lim
λ1→0

∂ logC(π0)
∂λ1

. (D.25)

Using Equation 5.34, we have

∂

∂λ1
logC = 1

n

α1e
λ1
n + α2e

λ2
n βn

α1e
λ1
n + α2e

λ2
n

− 1
n

∂λ0

∂λ1
+ ∂

∂λ1
log π0, (D.26)

= 1
n

[u+ (1− u)βn]− 1
n

(
π0

µ1

)n
− λ0

∂

∂λ1
log π0 + ∂

∂λ1
log π0,

(D.27)

= 1
n

[{u+ (1− u)βn} − {u+ (1− u)β}n] + (1− λ0) ∂

∂λ1
log π0,

(D.28)

where

u = α1

α1 + α2e
λ1(βn−1)

n

(D.29)

defined in Equation 3.55.

And

λ1 → 0⇒ λ2 → 0, u→ α1, π0 → α1µ1 + α2µ2, λ0 = λ1π0/µ1 → 0. (D.30)
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lim
λ1→0

∂u

∂λ1
= lim

λ1→0
u
∂

∂λ1
log u = α1α2

(
1− βn
n

)
, by Equation B.40, (D.31)

lim
λ1→0

∂

∂λ1
log π0 = lim

λ1→0

1
π0

∂π0

∂λ1
= lim

λ1→0

1
π0

(µ2 − µ1) ∂u
∂λ1

= α1α2

α1 + α2β

(
βn − 1
n

)
(β − 1),

(D.32)

lim
λ1→0

∂

∂λ1
logC = lim

λ1→0

{
1
n

[{u+ (1− u)βn} − {u+ (1− u)β}n] + (1− λ0) ∂

∂λ1
log π0

}
,

(D.33)

= 1
n

[
(α1 + α2β

n)− (α1 + α2β)n + α1α2

α1 + α2β
(βn − 1) (β − 1)

]
,

(D.34)

= 1
n (α1 + α2β)

[(
α1 + α2β

n+1
)
− (α1 + α2β)n+1

]
, (D.35)

≥ 0, as n > −1, (D.36)

using similar proof as in Equations D.18, i.e. Lyapunov’s inequality. That

is,

(
α1 + α2β

n+1
)
− (α1 + α2β)n+1

 > 0 when n > 0;

< 0 when − 1 < n < 0.
(D.37)

Hence proved.

Theorem D.2.3. Given the “second-order elasticity” m > n > 0, at a given

equilibrium premium, π0, the loss coverage ratio Cm(π0) > Cn(π0).

Proof. To analyse this situation, consider two possible negative exponential

demand elasticity curves with different curvatures m and n, where m > n >
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0. So extending the notations used in Equation 3.50, we have:

ε(m)(π) = km π
m ⇒ λ1m

µm1
= λ2m

µm2
= λ0m

πm0m
= km; (D.38)

ε(n)(π) = kn π
n ⇒ λ1n

µn1
= λ2n

µn2
= λ0n

πn0n
= kn. (D.39)

Now, suppose that the equilibrium premiums under both demand elasticities

are the same, i.e. π0m = π0n, and so the weights u in Equation 3.55 have to

be the same, i.e.

λ1m
βm − 1
m

= λ1n
βn − 1
n

(D.40)

Using Equation 5.34, the loss coverage ratios under the two scenarios are

then:

Cm = α1e
λ1m
m + α2e

λ2m
m

α1µ1 + α2µ2
e−

λ0m
m π0m, (D.41)

Cn = α1e
λ1n
n + α2e

λ2n
n

α1µ1 + α2µ2
e−

λ0n
n π0n. (D.42)

Taking the ratio, gives us:

Cm
Cn

= α1e
λ1m
m + α2e

λ2m
m

α1e
λ1n
n + α2e

λ2n
n

exp
[
−λ0m

m
+ λ0n

n

]
, (D.43)

= α1 + α2e
λ1m

βm−1
m

α1 + α2e
λ1n

βn−1
n

exp
[
−λ0m − λ1m

m
+ λ0n − λ1n

n

]
, (D.44)

= exp
[
−λ0m − λ1m

m
+ λ0n − λ1n

n

]
, by Equation D.40. (D.45)
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So,

Cm R Cn (D.46)

⇔λ0n − λ1n

n
R
λ0m − λ1m

m
, (D.47)

⇔λ1n

n

[(
π0

µ1

)n
− 1

]
R
λ1m

m

[(
π0

µ1

)m
− 1

]
, by Equations D.38 and D.39,

(D.48)

⇔ (βm − 1)
[(
π0

µ1

)n
− 1

]
R (βn − 1)

[(
π0

µ1

)m
− 1

]
, by Equation D.40,

(D.49)

⇔βm − 1
φm − 1 R

βn − 1
φn − 1 , by denoting φ = π0

µ1
. (D.50)

Note that 1 ≤ φ ≤ β as µ1 ≤ π0 ≤ µ2.

If we can now prove that the following is an increasing function of x, we

would have proved Cm > Cn for m > n:

Z(x) = βx − 1
φx − 1 ; (D.51)

or, equivalently: logZ(x) = log (βx − 1)− log (φx − 1) . (D.52)

Now:
∂

∂x
logZ(x) = βx log β

βx − 1 −
φx log φ
φx − 1 > 0, (D.53)

because,

g(y) = yx log y
yx − 1 (D.54)

is an increasing function of y (and recalling β > φ). This can be proved as

follows:

∂

∂y
g(y) = yx−1 (yx − 1− log yx)

(yx − 1)2 > 0, as log a < a− 1 for a > 0. (D.55)
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Hence we have proved that for a given equilibrium premium, Cm > Cn for

m > n.

Theorem D.2.4. For any n > 0, the loss coverage ratio is maximised for:

λ∗0 = 1 + [{u+ (1− u)βn} − {u+ (1− u)β}n]
n ∂
∂λ1

log π0
, (D.56)

where

u = α1

α1 + α2e
λ1(βn−1)

n

(D.57)

defined in Equation 3.55. And

1. when 0 < n < 1, λ∗0 < 1;

2. when n = 1, λ∗0 = 1; and

3. when n > 1, λ∗0 > 1.

Proof. This theorem follows directly from Equation D.28 in Theorem D.2.2,

by setting ∂
∂λ1

logC = 0.

In particular,

1. when 0 < n < 1, λ∗0 < 1, because {u+ (1− u)βn} < {u+ (1− u)β}n,

using Jensen’s inequality in Equation D.20 and noting ∂
∂λ1

log π0 > 0;

2. when n = 1, λ∗0 = 1 as noted previously;

3. when n > 1, λ∗0 > 1, because {u+ (1− u)βn} > {u+ (1− u)β}n, using

Jensen’s inequality in Equation D.19 and noting ∂
∂λ1

log π0 > 0.
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Appendix E

Social Welfare: Iso-elastic

Demand

E.1 Notations and Assumptions

We assume that there are two risk-groups and demand for insurance is driven

by iso-elastic demand elasticity. We use the following notations and assump-

tions:

• µ1 < µ2 are the underlying risks.

• p1, p2 are the population proportions.

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi

(
µi
π

)λi
. (E.1)

Note: π ≥ 0 is an implicit assumption.

242



• Equilibrium is achieved when the following condition is satisfied:

2∑
i=1

pidi(πi)πi =
2∑
i=1

pidi(πi)µi ⇒
2∑
i=1

piτi

(
µi
πi

)λi
πi =

2∑
i=1

piτi

(
µi
πi

)λi
µi.

(E.2)

Each solution (π1, π2) to the above equilibrium condition represents

a specific risk-classification scheme. Special cases: (π1, π2) = (µ1, µ2)

represents full risk classification and (π1, π2) = (π0, π0) represents the

pooled equilibrium premium under no risk classification.

• Social welfare under a specific risk-classification scheme is approxi-

mated as:

Ŝ(π1, π2) = LC(π1, π2)− PA(π1, π2) + E[1−X], by Equation 6.17

(E.3)

where

LC(π1, π2) =
2∑
i=1

piτi

(
µi
πi

)λi
µi; (E.4)

PA(π1, π2) =
2∑
i=1

λi
λi + 1piτiµi

(
µi
πi

)λi
; (E.5)

E[1−X] = 1−
2∑
i=1

piµi; (E.6)

and (π1, π2) satisfy the equilibrium condition in Equation E.2.

Equation E.3 can then be simplified as

Ŝ(π1, π2) =
2∑
i=1

1
λi + 1piτiµi

(
µi
πi

)λi
+ 1−

2∑
i=1

piµi. (E.7)
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E.2 Theorems and Proofs

Theorem E.2.1. For the case of equal demand elasticities, i.e. λ1 = λ2 = λ,

we consider the Lagrangian function:

W (π1, π2,Λ) = 1
λ+ 1

2∑
i=1

piτi

(
µi
πi

)λ
µi + 1−

2∑
i=1

piµi

+ Λ
( 2∑
i=1

piτi

(
µi
πi

)λ
πi −

2∑
i=1

piτi

(
µi
πi

)λ
µi

)
, (E.8)

i.e. social welfare is set as the objective function with the equilibrium con-

dition as a constraint. This formulation leads to an extremum solution

(π∗1, π∗2) = (µ1, µ2).

Proof.

∂W

∂π1
= 0⇒ π1 = µ1

[
λ

1− λ

][1− (λ+ 1)Λ
(λ+ 1)Λ

]
, (E.9)

∂W

∂π2
= 0⇒ π2 = µ2

[
λ

1− λ

][1− (λ+ 1)Λ
(λ+ 1)Λ

]
, (E.10)

∂W

∂Λ = 0⇒ Λ = λ

1 + λ
⇒ π1 = µ1, π2 = µ2. (E.11)

So (π∗1, π∗2) = (µ1, µ2) provides an extremum.

Theorem E.2.2. Given a risk classification (π1, π2), when 0 < λ1 = λ2 =

λ < 1, ∂π2
∂π1

< 0, i.e. π1 and π2 have a monotonic relationship. This means

increasing the premium for low risks required a decrease in the premium for

high risks, and vice versa, to ensure that the equilibrium condition in Equa-

tion E.2 is satisfied.
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Proof. Equation E.2 gives:

∂π2

∂π1
= −

p1τ1µ
λ+1
1

πλ+1
1

[λ+ (1− λ)π1
µ1

]
p2τ2µ

λ+1
2

πλ+1
2

[λ+ (1− λ)π2
µ2

]
< 0, (E.12)

when µ1 ≤ π1, π2 ≤ µ2.

Note that this result holds if we look at ∂π1
∂π2

, i.e. for 0 < λ < 1, π2 is a

well-defined function of π1 and π1 is also a well-defined function of π2.

Theorem E.2.3. If 0 < λ1 = λ2 = λ < 1 and we assume the premium

for low risks cannot be higher than the pooled premium (and correspondingly

the premium for high risks cannot be lower than the pooled premium) i.e.

µ1 ≤ π1 ≤ π0 ≤ π2 ≤ µ2, then social welfare Ŝ(π) is maximised at the pooled

equilibrium premium π0.

Proof. When λ1 = λ2 = λ, Equation E.7 becomes

Ŝ(π1, π2) = 1
λ+ 1

2∑
i=1

piτiµi

(
µi
πi

)λ
+ 1−

2∑
i=1

piµi, (E.13)

= 1
λ+ 1LC(π1, π2) + 1−

2∑
i=1

piµi, (E.14)

where LC(π1, π2) is the corresponding loss coverage at equal demand elastic-

ity.

Therefore,

∂Ŝ(π1, π2)
∂π1

= 1
λ+ 1

∂LC(π1, π2)
∂π1

, (E.15)

> 0, (E.16)
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because we have already proved ∂LC(π1,π2)
∂π1

> 0 in Theorem F.1.3.

This implies that Ŝ(π1, π2) is an increasing function of π1 (and decreasing

function of π2 by Theorem E.2.2).

In Result 5.3, we have proved that loss coverage at pooled premium un-

der no risk classification is higher than or equal to loss coverage at risk-

differentiated premiums under full risk classification when λ < 1. And the

following relationship is also proved, i.e.

Ŝ(π1) ≥ Ŝ(π2)⇔ LC(π1) ≥ LC(π2) (E.17)

from Equation 6.28. Therefore, both measures, “loss coverage” and “social

welfare”, point to the same conclusion that pooling provides greater or equal

social efficacy of insurance compared to risk-differentiated premiums when

λ < 1; and vice versa.

Therefore, social welfare is maximised when π1 = π2 = π0 (within the

restriction that π1 ≤ π2), i.e. the case of pooled equilibrium premium.

Theorem E.2.4. If λ1 = λ2 = λ > 1, then social welfare is maximised at

the risk-differentiated premiums (µ1, µ2).

Proof. In this case, we know that Ŝ(µ1, µ2) > Ŝ(π0, π0) because C(µ1, µ2) ≥

C(π0, π0) when λ > 1 (Result 5.3) and hence the extremum Ŝ(µ1, µ2) is a

maximum. So among all risk classification schemes, the full risk classification

gives the maximum social welfare (ratio) and hence there is no meed to

explore partial risk classification further in this case.

Theorem E.2.5. When the low risks and the high risks have different de-

mand elasticities, i.e. λ1 6= λ2, under no risk classification (with pooled

equilibrium premium π0) and full risk classification (with risk-differentiated
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premiums µ = (µ1, µ2)), we have the following relationship between social

welfare ratio SW and loss coverage ratio C:

ŜW (π0) R 1⇔
(
λ2 − λ1

1 + λ1

) [
1−

(
µ1

π0

)λ1 ]
Q (C(π0)− 1)

(
α1 + α2β

α1

)
,

(E.18)

where

ŜW (π0) = Ŝ(π0)
ŝ(µ) ; (E.19)

C(π0) = LC(π0)
LC(µ) as defined in Equation 5.4 ; (E.20)

αi = piτi
p1τ1 + p2τ2

for i = 1, 2, and β = µ2

µ1
. (E.21)

Proof. Based on Equation E.7, under no risk classification and full risk clas-

sification:

ŜW (π0) = Ŝ(π0)
Ŝ(µ)

=
∑2
i=1

1
1+λidi(π0)piµi +K∑2

i=1
1

1+λidi(µi)piµi +K
, (E.22)

⇒ ŜW (π0) R 1⇔ p1τ1µ1

1 + λ1

[ (
µ1

π0

)λ1

− 1
]

+ p2τ2µ2

1 + λ2

[ (
µ2

π0

)λ2

− 1
]
R 0;

(E.23)

⇔
(

1 + λ2

1 + λ1

)
α1

[ (
µ1

π0

)λ1

− 1
]

+ α2β
[ (

µ2

π0

)λ2

− 1
]
R 0.

(E.24)

Using the definition of loss coverage ratio in Equation 5.15:

C(π0) = LC(π0)
LC(µ) =

α1
(
µ1
π0

)λ1 + α2β
(
µ2
π0

)λ2

α1 + α2β
, (E.25)

⇒ α2β
[ (

µ2

π0

)λ2

− 1
]

= (C(π0)− 1)(α1 + α2β)− α1

[ (
µ1

π0

)λ1

− 1
]
. (E.26)
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Therefore, Equation E.24 becomes:

ŜW (π0) R 1⇔
(
λ2 − λ1

1 + λ1

) [
1−

(
µ1

π0

)λ1 ]
︸ ︷︷ ︸

≥0

Q (C(π0)− 1)
(
α1 + α2β

α1

)
.

(E.27)

Therefore,

• when λ2 < λ1, left hand side of the inequality E.27 is never greater

than zero. Thus if C(π0) ≥ 1, ŜW (π0) ≥ 1;

• when λ2 > λ1, left hand side of the inequality E.27 is never smaller

than zero. Thus if C(π0) ≤ 1, ŜW (π0) ≤ 1;

Theorem E.2.6. For the case of different demand elasticities, the Lagrangian

function takes the following form:

W (π1, π2,Λ) =
2∑
i=1

1
λi + 1piτi

(
µi
πi

)λi
µi + 1−

2∑
i=1

piµi

+ Λ
( 2∑
i=1

piτi

(
µi
πi

)λi
πi −

2∑
i=1

piτi

(
µi
πi

)λi
µi

)
, (E.28)

provided πi ≥ 0 for i = 1, 2.

Case 1: When 0 < λ1, λ2 < 1, there is a single extremum solution (π∗1(Λ∗), π∗2(Λ∗))

where min( λ1
1+λ1

, λ2
1+λ2

) < Λ∗ < max( λ1
1+λ1

, λ2
1+λ2

) < 1.

Case 2: When λ1, λ2 > 1, there is a single extremum solution (π∗1(Λ∗), π∗2(Λ∗))

where min( λ1
1+λ1

, λ2
1+λ2

) < Λ∗ < max( λ1
1+λ1

, λ2
1+λ2

).
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Proof.

∂W

∂π1
= 0⇒ π1 = µ1

(
λ1

1− λ1

) [1− (1 + λ1)Λ
(1 + λ1)Λ

]
, (E.29)

∂W

∂π2
= 0⇒ π2 = µ2

(
λ2

1− λ2

) [1− (1 + λ2)Λ
(1 + λ2)Λ

]
, (E.30)

∂W

∂Λ = 0⇒ f(Λ) = p1τ1µ1

(
1− λ1

λ1

)λ1 [ (1 + λ1)Λ
1− (1 + λ1)Λ

]λ1[λ1 − (1 + λ1)Λ
(1− λ2

1)Λ

]

+ p2τ2µ2

(
1− λ2

λ2

)λ2 [ (1 + λ2)Λ
1− (1 + λ2)Λ

]λ2[λ2 − (1 + λ2)Λ
(1− λ2

2)Λ

]
= 0.

(E.31)

Case 1: When 0 < λ1, λ2 < 1,

π1 ≥ 0⇒ 0 < Λ ≤ 1
1 + λ1

, (E.32)

π2 ≥ 0⇒ 0 < Λ ≤ 1
1 + λ2

. (E.33)

For 0 < Λ ≤ min( 1
1+λ1

, 1
1+λ2

),

f(Λ) > 0, for 0 < Λ ≤ min( λ1

1 + λ1
,

λ2

1 + λ2
), (E.34)

f(Λ) < 0, for 0 < max( λ1

1 + λ1
,

λ2

1 + λ2
) ≤ Λ ≤ min( 1

1 + λ1
,

1
1 + λ2

),

(E.35)

f(Λ) is decreasing over 0 < Λ ≤ min( 1
1 + λ1

,
1

1 + λ2
), (E.36)

which is proved in Theorem E.2.15.

Hence there is exactly one root, Λ∗ where 0 < min( λ1
1+λ1

, λ2
1+λ2

) < Λ∗ <

max( λ1
1+λ1

, λ2
1+λ2

) < min( 1
1+λ1

, 1
1+λ2

) < 1 for which f(Λ∗) = 0. The

risk classification scheme (π∗1, π∗2), which corresponds to Λ∗, gives the

extremum social welfare (which can be either a minimum or a maxi-
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mum).

Case 2: When λ1, λ2 > 1,

π1 ≥ 0⇒ Λ ≥ 1
1 + λ1

, (E.37)

π2 ≥ 0⇒ Λ ≥ 1
1 + λ2

. (E.38)

For Λ ≥ max( 1
1+λ1

, 1
1+λ2

),

f(Λ) < 0 for max( 1
1 + λ1

,
1

1 + λ2
) < Λ < min( λ1

1 + λ1
,

λ2

1 + λ2
),

(E.39)

f(Λ) > 0 for λ > max( λ1

1 + λ1
,

λ2

1 + λ2
), (E.40)

f(λ) is increasing over Λ ≥ max( 1
1 + λ1

,
1

1 + λ2
), (E.41)

which is proved in Theorem E.2.16.

Hence there is exactly one root, Λ∗ where min( λ1
1+λ1

, λ2
1+λ2

) < Λ∗ <

max( λ1
1+λ1

, λ2
1+λ2

), for which f(Λ∗) = 0. The risk classification scheme

(π∗1, π∗2), which corresponds to Λ∗, gives the extremum social welfare

(which can be either a minimum or a maximum).

Theorem E.2.7. For 0 < λ1, λ2 < 1, Ŝ(π∗1, π∗2) is a minimum of social

welfare for π1 ≥ 0, π2 ≥ 0.

Proof. For the case of different demand elasticities,

∂π2

∂π1
= −

p1τ1µ
λ1+1
1

π
λ1+1
1

[λ1 + (1− λ1)π1
µ1

]
p2τ2µ

λ2+1
2

π
λ2+1
2

[λ2 + (1− λ2)π2
µ2

]
< 0, (E.42)
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for 0 < λ1, λ2 < 1.

Ŝ(π1, π2) = p1τ1

1 + λ1

µλ1+1
1

πλ1
1

+ p2τ2

1 + λ2

µλ2+1
2

πλ2
2

+ 1− (p1µ1 + p2µ2),

(E.43)

⇒ ∂

∂π1
Ŝ(π1, π2) = − λ1

1 + λ1
p1τ1

µλ1+1
1

πλ1+1
1

− λ2

1 + λ2
p2τ2

µλ2+1
2

πλ2+1
2

(
∂π2

∂π1

)
, (E.44)

= −λ1

1 + λ1
p1τ1

µλ1+1
1

πλ1+1
1

+ λ2

1 + λ2
p1τ1

µλ1+1
1

πλ1+1
1

λ1 + (1− λ1)π1
µ1

λ2 + (1− λ2)π2
µ2

 ,
(E.45)

using Equation E.42,

= p1τ1
µλ1+1

1

πλ1+1
1λ2(1 + λ1)[λ1 + (1− λ1)π1

µ1
]− λ1(1 + λ2)[λ2 + (1− λ2)π2

µ2
]

(1 + λ1)(1 + λ2)[λ2 + (1− λ2)π2
µ2

]

 ,
(E.46)

∝ A(π1, π2)B(π1, π2)
C(π1, π2) , (E.47)

where

A(π1, π2) = π
−(λ1+1)
1 , (E.48)

B(π1, π2) = λ2(1 + λ1)[λ1 + (1− λ1)π1

µ1
]− λ1(1 + λ2)[λ2 + (1− λ2)π2

µ2
], and

(E.49)

C(π1, π2) = (1 + λ1)(1 + λ2)[λ2 + (1− λ2)π2

µ2
] > 0 for λ2 < 1. (E.50)
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Therefore,

∂

∂π1
Ŝ(π1, π2) R 0⇔ B(π1, π2) R 0, (E.51)

⇔ λ2(1 + λ1)[λ1 + (1− λ1)π1

µ1
] R λ1(1 + λ2)[λ2 + (1− λ2)π2

µ2
].

(E.52)

Note:

B(π∗1, π∗2) = 0, i.e. λ2(1 +λ1)[λ1 + (1−λ1)π
∗
1
µ1

] = λ1(1 +λ2)[λ2 + (1−λ2)π
∗
2
µ2

],

(E.53)

where π∗1, π∗2 is the extremum solution to the Lagrangian function in Theorem

E.2.6.

We have proved that social welfare at (π∗1, π∗2) is an extremum, we can then

check the second derivative of social welfare with respect to π1 at (π∗1, π∗2)

to find out whether the extremum is a maximum or minimum. Note that

π1 and π2 have a monotonic relationship (based on Equation E.42) when

0 < λ1, λ2 < 1, and µ1 ≤ π1, π2 ≤ µ2.

Using Equation E.47, we can get

∂2

∂π2
1
Ŝ(π1, π2) ∝ ∂A

∂π1

B

C
+ A

∂B
∂π1
C −B ∂C

∂π1

C2 . (E.54)

Then,
∂2

∂π2
1
Ŝ(π1, π2)|π∗

1 ,π
∗
2
∝ ∂B

∂π1
|π∗

1 ,π
∗
2
, (E.55)

because B(π∗1, π∗2) = 0 from Equation E.53 and A(π∗1, π∗2) > 0, C(π∗1, π∗2) > 0.

Note:

∂B

∂π1
|π∗

1 ,π
∗
2

= λ2(1− λ2
1)

µ1
− λ1(1− λ2

2)
µ2

∂π2

∂π1
|π∗

1 ,π
∗
2
> 0, (E.56)

252



because ∂π2
∂π1

< 0 for 0 < λ1, λ2 < 1, and π1, π2 > 0.

Therefore,
∂2

∂π2
1
Ŝ(π1, π2)|π∗

1 ,π
∗
2
> 0, (E.57)

i.e. Ŝ(π∗1, π∗2) is a minimum and either pooled premium under no risk classifi-

cation or risk-differentiated premiums under full risk classification maximises

social welfare when 0 < λ1, λ2 < 1.

Note that the above analysis is still valid if we start by looking at how π1

varies with π2. This is because, for 0 < λ1, λ2 < 1, based on Equation E.42,

π2 is a well defined function of π1 and π1 is also a well defined function of π2,

as long as π1, π2 satisfy the equilibrium premium condition in Equation E.2.

Theorem E.2.8. When 0 < λ1 < λ2 < 1, no risk classification maximises

social welfare, i.e. Ŝ(π0, π0) is the maximum.

Proof. According to Theorem E.2.6, when 0 < λ1, λ2 < 1, there is a Λ∗ where

min( λ1
1+λ1

, λ2
1+λ2

) < Λ∗ < max( λ1
1+λ1

, λ2
1+λ2

) < 1, such that Ŝ(π∗1(Λ∗), π∗2(Λ∗)) is

an extremum. And Theorem E.2.7 shows that this extremum is actually a

minimum. We now decide whether full or no risk classification maximises

social welfare by comparing the position of (π∗1(Λ∗), π∗2(Λ∗)) to (µ1, µ2).

Using Equation E.29 and E.30, at Λ∗,

π∗1 R µ1 ⇔ Λ∗ Q λ1

1 + λ1
, (E.58)

π∗2 R µ2 ⇔ Λ∗ Q λ2

1 + λ2
, and (E.59)

π∗1 R π∗2 ⇔
λ1[1− (1 + λ1)Λ∗]
λ2[1− (1 + λ2)Λ∗]

(
1− λ2

2
1− λ2

1

)
R
µ2

µ1
. (E.60)
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In this case, when 0 < λ1 < λ2 < 1,

λ1

1 + λ1
< Λ∗ < λ2

1 + λ2
⇒ π∗1 < µ1 and π∗2 > µ2. (E.61)

Hence, social welfare is a monotonically increasing function of π1 for µ1 <

π1 < π0, because ∂π2
∂π1

< 0 by Equation E.42 and Ŝ(π∗1, π∗2) is a minimum by

Theorem E.2.7.

Therefore,

Ŝ(π∗1, π∗2) < Ŝ(µ1, µ2) < Ŝ(π0, π0), (E.62)

i.e. no risk classification maximises social welfare.

Theorem E.2.9. When 0 < λ2 < λ1 < 1, either full or no risk classification

maximises social welfare.

Proof. In this case, according to Theorem E.2.6, there is a Λ∗ such that
λ2

1+λ2
< Λ∗ < λ1

1+λ1
. And as a result, π∗1 > µ1 and π∗2 < µ2 (using Equation

E.58 and E.59). We need to further check the relationship between π∗1 and

π∗2.

• When λ1[1−(1+λ1)Λ∗]
λ2[1−(1+λ2)Λ∗]

(
1−λ2

1−λ2
1

)
< µ2

µ1
, i.e. π∗1 ≤ π∗2 according to Equation

E.60, because π1 and π2 have a monotonic relationship as proved in

Equation E.42, we can deduce the following relationship:

µ1 < π∗1 ≤ π0 ≤ π∗2 < µ2. (E.63)

And because Ŝ(π∗1, π∗2) is a minimum by Theorem E.2.7, we reach the

following result:

Ŝ(π∗1, π∗2) ≤ min[Ŝ(µ1, µ2), Ŝ(π0, π0)], (E.64)
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i.e. whether it is full or no risk classification maximises social welfare

depends on their relative value.

• When λ1[1−(1+λ1)Λ∗]
λ2[1−(1+λ2)Λ∗]

(
1−λ2

1−λ2
1

)
> µ2

µ1
, i.e. π∗1 > π∗2 according to Equation

E.60, and because π1 and π2 have a monotonic relationship as proved

in Equation E.42, we can deduce the following relationship:

µ1 < π0 < π∗1, and (E.65)

π∗2 < π0 < µ2. (E.66)

Because Ŝ(π∗1, π∗2) is a minimum by Theorem E.2.7, hence, social welfare

is a monotonically decreasing function of π1 for µ1 ≤ π1 ≤ π0. This

means

Ŝ(µ1, µ2) > Ŝ(π0, π0), (E.67)

i.e. in this case, full risk classification maximises social welfare.

All in all, when 0 < λ2 < λ1 < 1, either full or no risk classification max-

imises social welfare.

Theorem E.2.10. For λ1 > 1, ∂π2
∂π1

R 0 ⇔ π1 R µ1
λ1
λ1−1 . This result shows

that whether premiums for high and low risks have a monotonic relationship

depends on the value of premium for low risks, π1.

Proof. Recall that for the case of different demand elasticities,

∂π2

∂π1
= −

p1τ1µ
λ1+1
1

π
λ1+1
1

[λ1 + (1− λ1)π1
µ1

]
p2τ2µ

λ2+1
2

π
λ2+1
2

[λ2 + (1− λ2)π2
µ2

]
, (E.68)
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and

λ1 + (1− λ1)π1

µ1
R 0⇔ π1 Q µ1

λ1

λ1 − 1 for λ1 > 1, (E.69)

λ2 + (1− λ2)π2

µ2
> 0 for 0 < λ2 < 1, and (E.70)

λ2 + (1− λ2)π2

µ2
R 0⇔ π2 Q µ2

λ2

λ2 − 1 for λ2 > 1. (E.71)

(Note: µ2
λ2
λ2−1 > µ2 when λ2 > 1.)

Hence, for 0 < π2 ≤ µ2 (or 0 < π2 < µ2
λ2
λ2−1), λ2 + (1− λ2)π2

µ2
> 0, i.e. π2

is a well-defined function of π1 for µ1 ≤ π1 ≤ µ2. As a result,

∂π2

∂π1
R 0⇔ π1 R µ1

λ1

λ1 − 1 for λ1 > 1. (E.72)

Therefore,
∂π2

∂π1
< 0 (E.73)

as long as 0 < π1 < µ1
λ1
λ1−1 and 0 < π2 < µ2

λ2
λ2−1 .

Theorem E.2.11. For λ1, λ2 > 1, Ŝ(π∗1, π∗2) is a maximum of social welfare

for π1, π2 ≥ 0.

Proof. We aim to use the same approach as the one we used to prove Theorem

E.2.7, i.e. find out the second derivative of social welfare with respect to π1

at (π∗1, π∗2). But we need to check first whether π1 and π2 have a monotonic

relationship at (π∗1, π∗2).

According to Theorem E.2.6, when λ1, λ2 > 1, there is a Λ∗ where

min( λ1
1+λ1

, λ2
1+λ2

) < Λ∗ < max( λ1
1+λ1

, λ2
1+λ2

), and the corresponding Ŝ(π∗1(Λ∗), π∗2(Λ∗))
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is an extremum. In this case,

π∗1 = µ1

(
λ1

λ1 − 1

) [(λ1 + 1)Λ∗ − 1
(1 + λ1)Λ∗

]
< µ1

λ1

λ1 − 1 , (E.74)

π∗2 = µ2

(
λ2

λ2 − 1

) [(λ2 + 1)Λ∗ − 1
(1 + λ2)Λ∗

]
< µ2

λ2

λ2 − 1 . (E.75)

Hence,
∂π2

∂π1
|π∗

1 ,π
∗
2
< 0, by Theorem E.2.10 (E.76)

i.e. π1 and π2 still hold a monotonic relationship before reaching (π∗1, π∗2).

Hence we can use the same approach as the one in Theorem E.2.7.

Recall that

∂2

∂π2
1
Ŝ(π1, π2)|π∗

1 ,π
∗
2
∝ ∂B

∂π1
|π∗

1 ,π
∗
2
, from Equation E.55 (E.77)

where

B(π1, π2) = λ2(1+λ1)[λ1 +(1−λ1)π1

µ1
]−λ1(1+λ2)[λ2 +(1−λ2)π2

µ2
]. (E.78)

And,
∂B

∂π1
|π∗

1 ,π
∗
2

= λ2(1− λ2
1)

µ1
− λ1(1− λ2

2)
µ2

∂π2

∂π1
|π∗

1 ,π
∗
2
< 0, (E.79)

because ∂π2
∂π1
|π∗

1 ,π
∗
2
< 0 for λ1, λ2 > 1, and π1, π2 > 0.

Therefore,
∂2

∂π2
1
Ŝ(π1, π2)|π∗

1 ,π
∗
2
< 0, (E.80)

i.e. Ŝ(π∗1, π∗2) is a maximum and partial risk classification could maximise

social welfare when λ1, λ2 > 1.

Theorem E.2.12. When 1 < λ2 < λ1, full risk classification maximises

social welfare for µ1 ≤ π1, π2 ≤ µ2.
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Proof. Using Equation E.29 and E.30, at Λ∗ we get

π∗1 R µ1 ⇔ Λ∗ R λ1

1 + λ1
, for λ1 > 1 (E.81)

π∗2 R µ2 ⇔ Λ∗ R λ2

1 + λ2
, for λ2 > 1, and (E.82)

π∗1 R π∗2 ⇔
λ1

λ2

[(1 + λ1)Λ∗ − 1
(1 + λ2)Λ∗ − 1

] (
λ2

2 − 1
λ2

1 − 1

)
R
µ2

µ1
(E.83)

Recalling from Theorem E.2.6, when 1 < λ2 < λ1, there is a λ2
1+λ2

< Λ∗ <
λ1

1+λ1
, and as a result,

π∗1 < µ1 and π∗2 > µ2. (E.84)

Because S(π∗1, π∗2) is a maximum by Theorem E.2.11, π∗2 < µ2
λ2
λ2−1 and ∂π2

∂π1
<

0, according to Equation E.73, social welfare is a monotonically decreasing

function of π1 for µ1 ≤ π1.

Note that in this case, there might be multiple equilibria1.

Therefore,

• when there is a unique equilibrium premium, π0,

Ŝ(π∗1, π∗2) > Ŝ(µ1, µ2) > Ŝ(π0, π0). (E.85)

If we focus on the case when µ1 ≤ π1, π2 ≤ µ2 (in which case, (π∗1, π∗2)

is out of interest), then full risk classification maximises social welfare.

• When there are multiple equilibrium premiums, π0i with i ∈ Z, i ≤ 3

(because there could be at most 3 equilibrium premiums), if π01 <

1Results on multiple equilibria can be found in Section 3.6.
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π02 < π03, then

Ŝ(π∗1, π∗2) > Ŝ(µ1, µ2) > Ŝ(π01, π01) > Ŝ(π02, π02) > Ŝ(π03, π03).

(E.86)

In this case, full risk classification still maximises social welfare.

Theorem E.2.13. When 1 < λ1 < λ2 and λ1
λ2

[
(1+λ1)Λ∗−1
(1+λ2)Λ∗−1

] (
λ2

2−1
λ2

1−1

)
> µ2

µ1
(with

λ1
1+λ1

< Λ∗ < λ2
1+λ2

), no risk classification maximises social welfare.

Proof. In this case, π∗1 > π∗2 by Equation E.83. Because of Equation E.73,

we can deduce the following result:

µ1 < π0 < π∗1, and (E.87)

π∗2 < π0 < µ2. (E.88)

Because Ŝ(π∗1, π∗2) is a maximum by Theorem E.2.11, social welfare is a mono-

tonically increasing function of π1 for µ1 ≤ π1 ≤ π0.

Therefore,

Ŝ(π0, π0) > Ŝ(µ1, µ2), (E.89)

i.e. in this case, no risk classification maximises social welfare.

Theorem E.2.14. When 1 < λ1 < λ2 and λ1
λ2

[
(1+λ1)Λ∗−1
(1+λ2)Λ∗−1

] (
λ2

2−1
λ2

1−1

)
< µ2

µ1
(with

λ1
1+λ1

< Λ∗ < λ2
1+λ2

), partial risk classification maximises social welfare.

Proof. In this case, π∗1 ≤ π∗2 by Equation E.83. And we have also proved

that π1 and π2 are still monotonically related when the extremum is reached

(by Equation E.76).
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We can deduce the following relationship:

µ1 < π∗1 ≤ π0 ≤ π∗2 < µ2. (E.90)

Hence,

Ŝ(π∗1, π∗2) ≥ max[Ŝ(µ1, µ2), Ŝ(π0, π0)], (E.91)

because Ŝ(π∗1, π∗2) is a maximum by Theorem E.2.11.

Therefore, partial risk classification with (π∗1(Λ∗), π∗2(Λ∗)) maximises so-

cial welfare.

Theorem E.2.15. When 0 < λ1, λ2 < 1, the function f(Λ) = ∂W
∂Λ is a de-

creasing function of Λ where 0 < Λ < min( 1
1+λ1

, 1
1+λ2

). (W is the Lagrangian

function in Theorem E.2.6.)

Proof. Recall from Equation E.31,

f(Λ) = p1τ1µ1

(
1− λ1

λ1

)λ1 [ (1 + λ1)Λ
1− (1 + λ1)Λ

]λ1[λ1 − (1 + λ1)Λ
(1− λ2

1)Λ

]

+ p2τ2µ2

(
1− λ2

λ2

)λ2 [ (1 + λ2)Λ
1− (1 + λ2)Λ

]λ2[λ2 − (1 + λ2)Λ
(1− λ2

2)Λ

]
, (E.92)

which can be re-written as

f(Λ) = p1τ1µ1

1− λ2
1

(
1− λ2

1
λ1

)λ1

D1 + p2τ2µ2

1− λ2
2

(
1− λ2

2
λ2

)λ2

E1, where (E.93)

D1 =
[
λ1 − (1 + λ1)Λ

Λ

][ Λ
1− (1 + λ1)Λ

]λ1

, (E.94)

E1 =
[
λ2 − (1 + λ2)Λ

Λ

][ Λ
1− (1 + λ2)Λ

]λ2

. (E.95)
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Hence,

∂

∂Λf(Λ) = p1τ1µ1

1− λ2
1

(
1− λ2

1
λ1

)λ1 ∂D1

∂Λ + p2τ2µ2

1− λ2
2

(
1− λ2

2
λ2

)λ2 ∂E1

∂Λ . (E.96)

Based on Equations E.94 and E.95, we have

∂D1

∂Λ =
[ Λ
1− (1 + λ1)Λ

]λ1 λ1

Λ2

[
λ1 − 1

[1− (1 + λ1)Λ]

]
< 0, (E.97)

when 0 < λ1 < 1, (E.98)

and Λ < 1
1+λ1

(to ensure π1 > 0).

Similarly,

∂E1

∂Λ =
[ Λ
1− (1 + λ2)Λ

]λ2 λ2

Λ2

[
λ2 − 1

[1− (1 + λ2)Λ]

]
< 0, (E.99)

when 0 < λ2 < 1, (E.100)

and Λ < 1
1+λ2

(to ensure π2 > 0).

Therefore,
∂

∂Λf(Λ) < 0, (E.101)

i.e. f(Λ) is a decreasing function of Λ for 0 < Λ < min( 1
1+λ1

, 1
1+λ2

).

Theorem E.2.16. When λ1, λ2 > 1, the function f(Λ) = ∂W
∂Λ is an increas-

ing function of Λ when Λ ≥ max( 1
1+λ1

, 1
1+λ2

). (W is the Lagrangian function

in Theorem E.2.6.)
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Proof. From Theorem E.2.15,

∂

∂Λf(Λ) = p1τ1µ1

1− λ2
1

(
1− λ2

1
λ1

)λ1 ∂D1

∂Λ + p2τ2µ2

1− λ2
2

(
1− λ2

2
λ2

)λ2 ∂E1

∂Λ , (E.102)

= p1τ1µ1

[ Λ(1− λ2
1)

λ1[1− (1 + λ1)Λ]

]λ1 λ1

Λ2

[(1 + λ1)(λ1 − 1)2

(1 + λ1)Λ− 1

]

+ p2τ2µ2

[ Λ(1− λ2
2)

λ2[1− (1 + λ2)Λ]

]λ2 λ2

Λ2

[(1 + λ2)(λ2 − 1)2

(1 + λ2)Λ− 1

]
, (E.103)

> 0 when λ1, λ2 > 1, and Λ ≥ max( 1
1 + λ1

,
1

1 + λ2
). (E.104)

Hence, f(Λ) is an increasing function of Λ when Λ ≥ max( 1
1+λ1

, 1
1+λ2

).
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Appendix F

Partial Risk Classification on

Loss Coverage

F.1 Notations and Proofs for Two Risk-groups

F.1.1 Notations and Assumptions

We assume that there are two risk-groups and demand for insurance is driven

by iso-elastic demand elasticity. We use the following notations and assump-

tions:

• µ1 < µ2 are the underlying risks for the low risk-group and the high

risk-group.

• p1, p2 are the population proportions such that p1 + p2 = 1.

• The proportional demand for insurance for risk-group i = 1, 2 at pre-

mium π is given by:

di(π) = τi

(
µi
π

)λi
. (F.1)

Note: π ≥ 0 is an implicit assumption.
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• Equilibrium is achieved when the following condition is satisfied:

2∑
i=1

pidi(πi)πi =
2∑
i=1

pidi(πi)µi ⇒
2∑
i=1

piτi

(
µi
πi

)λi
πi =

2∑
i=1

piτi

(
µi
πi

)λi
µi.

(F.2)

Each solution (π1, π2) to the above equilibrium condition represents

a specific risk-classification scheme. Special cases: (π1, π2) = (µ1, µ2)

represents full risk classification and (π1, π2) = (π0, π0) represents the

pooled equilibrium premium under no risk classification.

• Loss coverage under a specific risk-classification scheme is defined as:

LC(π1, π2) =
2∑
i=1

piτi

(
µi
πi

)λi
µi, (F.3)

where (π1, π2) satisfy the equilibrium condition in Equation F.2.

F.1.2 Theorems and Proofs

Theorem F.1.1. For the particular case of equal demand elasticities, i.e.

λ1 = λ2 = λ, we consider the Lagrangian function:

W (π1, π2,Λ) =
2∑
i=1

piτi

(
µi
πi

)λ
µi + Λ

( 2∑
i=1

piτi

(
µi
πi

)λ
πi −

2∑
i=1

piτi

(
µi
πi

)λ
µi

)
,

(F.4)

i.e. loss coverage is set as the objective function with the equilibrium condition

as a constraint. This formulation leads to an extremum solution (π∗1, π∗2) =

(µ1, µ2).
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Proof.

∂W

∂π1
= 0⇒ π1 = µ1

λ(1− Λ)
Λ(1− λ) , (F.5)

∂W

∂π2
= 0⇒ π2 = µ2

λ(1− Λ)
Λ(1− λ) , (F.6)

∂W

∂Λ = 0⇒ Λ = λ⇒ π1 = µ1, π2 = µ2. (F.7)

So (π∗1, π∗2) = (µ1, µ2) provides an extremum.

Theorem F.1.2. For a given risk classification scheme (π1, π2), when 0 <

λ1 = λ2 = λ < 1, ∂π2
∂π1

< 0, i.e. π1 and π2 have a monotonic relation-

ship. This means increasing the premium for low risks required a decrease

in the premium for high risks, and vice versa, to ensure that the equilibrium

condition in Equation F.2 is satisfied.

Proof. Equation F.2 gives:

∂π2

∂π1
= −

p1τ1µ
λ+1
1

πλ+1
1

[λ+ (1− λ)π1
µ1

]
p2τ2µ

λ+1
2

πλ+1
2

[λ+ (1− λ)π2
µ2

]
< 0, (F.8)

when µ1 ≤ π1, π2 ≤ µ2.

Note that this result holds if we look at ∂π1
∂π2

, i.e. for 0 < λ < 1, π2 is a

well-defined function of π1 and π1 is also a well-defined function of π2.

Theorem F.1.3. If 0 < λ1 = λ2 = λ < 1 and we assume the premium

for low risks cannot be higher than the pooled premium (and correspondingly

the premium for high risks cannot be lower than the pooled premium) i.e.

µ1 ≤ π1 ≤ π0 ≤ π2 ≤ µ2, the pooled equilibrium premium π0 maximises loss

coverage.
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Proof.

LC(π1, π2) = p1τ1
µλ+1

1
πλ1

+ p2τ2
µλ+1

2
πλ2

, (F.9)

⇒ ∂

∂π1
LC(π1, π2) = −λp1τ1

µλ+1
1

πλ+1
1
− λp2τ2

µλ+1
2

πλ+1
2

(
∂π2

∂π1

)
, (F.10)

= −λp1τ1
µλ+1

1

πλ+1
1

+ λp1τ1
µλ+1

1

πλ+1
1

λ+ (1− λ)π1
µ1

λ+ (1− λ)π2
µ2

 , (F.11)

using Equation F.8,

= −λp1τ1
µλ+1

1

πλ+1
1

(1− λ)
(
π2
µ2
− π1

µ1

)
λ+ (1− λ)π2

µ2

 , (F.12)

> 0, since π2

µ2
< 1 < π1

µ1
. (F.13)

This implies that LC(π1, π2) is an increasing function of π1 (and decreasing

function of π2 by Theorem F.1.2), and is maximised when π1 = π2 = π0

(within the restriction that π1 ≤ π2), i.e. the case of pooled equilibrium

premium.

Theorem F.1.4. If λ1 = λ2 = λ > 1, risk-differentiated premiums (µ1, µ2)

maximise loss coverage.

Proof. In this case, we have proved in Result 5.3 that LC(µ1, µ2) > LC(π0, π0),

and hence the extremum LC(µ1, µ2) is a maximum. So among all risk clas-

sification schemes, full risk classification maximises loss coverage and hence

there is no need to explore partial risk classification further in this case.

Theorem F.1.5. For the case of different demand elasticities, provided πi ≥

0, i = 1, 2, the Lagrangian function takes the following form:

W (π1, π2,Λ) =
2∑
i=1

piτi

(
µi
πi

)λi
µi+Λ

( 2∑
i=1

piτi

(
µi
πi

)λi
πi −

2∑
i=1

piτi

(
µi
πi

)λi
µi

)
.

(F.14)
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And we have the following results on the extreme solution:

Case 1: When 0 < λ1, λ2 < 1, there is a single extremum solution (π∗1(Λ∗), π∗2(Λ∗))

where: 0 < min(λ1, λ2) < Λ∗ < max(λ1, λ2) < 1.

Case 2: When λ1, λ2 > 1, there is a single extremum solution (π∗1(Λ∗), π∗2(Λ∗))

where: 1 < min(λ1, λ2) < Λ∗ < max(λ1, λ2).

Case 3: When 0 < λ1 < 1 < λ2, loss coverage is a monotonic function of

π1.

Case 4: When 0 < λ2 < 1 < λ1, loss coverage is a monotonic function of

π1.

Proof.

∂W

∂π1
= 0⇒ π1 = µ1

λ1(1− Λ)
Λ(1− λ1) , (F.15)

∂W

∂π2
= 0⇒ π2 = µ2

λ2(1− Λ)
Λ(1− λ2) , (F.16)

∂W

∂Λ = 0⇒

f(Λ) = p1τ1

[
Λ(1− λ1)
λ1(1− Λ)

]λ1 [λ1 − Λ
1− λ1

]
µ1 + p2τ2

[
Λ(1− λ2)
λ2(1− Λ)

]λ2 [λ2 − Λ
1− λ2

]
µ2 = 0.

(F.17)

Case 1: When 0 < λ1, λ2 < 1,

π1 ≥ 0⇒ 0 < Λ < 1, (F.18)

π2 ≥ 0⇒ 0 < Λ < 1. (F.19)
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For 0 < Λ < 1,

f(Λ) > 0, for 0 < Λ < min(λ1, λ2) < 1, (F.20)

f(Λ) < 0, for 0 < max(λ1, λ2) < Λ < 1, (F.21)

f(Λ) is concave over 0 < Λ < 1 (This result is proved Theorem F.1.16) .

(F.22)

Hence there is exactly one root, Λ∗, 0 < min(λ1, λ2) < Λ∗ < max(λ1, λ2) <

1 for which f(Λ∗) = 0. The risk classification scheme (π∗1, π∗2), which

corresponds to Λ∗, gives the extremum loss coverage (which can either

be a minimum or a maximum).

Case 2: When λ1, λ2 > 1,

π1 ≥ 0⇒ Λ > 1, (F.23)

π2 ≥ 0⇒ Λ > 1. (F.24)

For Λ > 1,

f(Λ) < 0, for 1 < Λ < min(λ2, λ2), (F.25)

f(Λ) > 0, for Λ > max(λ1, λ2), (F.26)

f(Λ) is concave over Λ > 1 (This result is proved Theorem F.1.17) .

(F.27)

Hence there is exactly one root, Λ∗, 1 < min(λ1, λ2) < Λ∗ < max(λ1, λ2)

for which f(Λ∗) = 0. The risk classification scheme (π∗1, π∗2), which cor-

responds to Λ∗, gives the extremum loss coverage (which can be either

be a minimum or a maximum).
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Case 3: When 0 < λ1 < 1 < λ2,

π1 ≥ 0⇒ 0 < Λ < 1, because 0 < λ1 < 1, (F.28)

π2 ≥ 0⇒ Λ > 1, because λ2 > 1. (F.29)

Hence, there is no feasible solution to Equation F.17, which means loss

coverage is a monotonic function of π1.

Case 4: When 0 < λ2 < 1 < λ1, similar to Case 3,

π1 ≥ 0⇒ Λ > 1, because λ1 > 1, (F.30)

π2 ≥ 0⇒ 0 < Λ < 1, because 0 < λ2 < 1. (F.31)

Hence, there is no feasible solution to Equation F.17, which means loss

coverage is a monotonic function of π1.

Theorem F.1.6. For 0 < λ1, λ2 < 1, LC(π∗1, π∗2) is a minimum of loss

coverage for π1 ≥ 0, π2 ≥ 0.

Proof. For the case of different demand elasticities,

∂π2

∂π1
= −

p1τ1µ
λ1+1
1

π
λ1+1
1

[λ1 + (1− λ1)π1
µ1

]
p2τ2µ

λ2+1
2

π
λ2+1
2

[λ2 + (1− λ2)π2
µ2

]
< 0, (F.32)

for 0 < λ1, λ2 < 1.
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LC(π1, π2) = p1τ1
µλ1+1

1

πλ1
1

+ p2τ2
µλ2+1

2

πλ2
2

, (F.33)

⇒ ∂

∂π1
LC(π1, π2) = −λ1p1τ1

µλ1+1
1

πλ1+1
1

− λ2p2τ2
µλ2+1

2

πλ2+1
2

(
∂π2

∂π1

)
, (F.34)

= −λ1p1τ1
µλ1+1

1

πλ1+1
1

+ λ2p1τ1
µλ1+1

1

πλ1+1
1

λ1 + (1− λ1)π1
µ1

λ2 + (1− λ2)π2
µ2

 ,
(F.35)

using Equation F.32,

= p1τ1
µλ1+1

1

πλ1+1
1

λ2(1− λ1)π1
µ1
− λ1(1− λ2)π2

µ2

λ2 + (1− λ2)π2
µ2

 , (F.36)

∝ A(π1, π2)B(π1, π2)
C(π1, π2) , (F.37)

where

A(π1, π2) = π
−(λ1+1)
1 , (F.38)

B(π1, π2) = λ2(1− λ1)π1

µ1
− λ1(1− λ2)π2

µ2
, and (F.39)

C(π1, π2) = λ2 + (1− λ2)π2

µ2
. (F.40)

Therefore,

∂

∂π1
LC(π1, π2) R 0⇔ λ2(1− λ1)π1

µ1
R λ1(1− λ2)π2

µ2
, (F.41)

⇔ B(π1, π2) R 0. (F.42)

Note:

B(π∗1, π∗2) = 0, i.e. λ2(1− λ1)π
∗
1
µ1

= λ1(1− λ2)π
∗
2
µ2
, (F.43)

where π∗1, π∗2 is the extremum solution to the Lagrangian function in Theorem
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F.1.5.

We have proved that loss coverage at (π∗1, π∗2) is an extremum, we can then

check the second derivative of loss coverage with respect to π1 at (π∗1, π∗2)

to find out whether the extremum is a maximum or minimum. Note that

π1 and π2 have a monotonic relationship (based on Equation F.32) when

0 < λ1, λ2 < 1, and µ1 ≤ π1, π2 ≤ µ2.

Using Equation F.37, we can get

∂2

∂π2
1
LC(π1, π2) ∝ ∂A

∂π1

B

C
+ A

∂B
∂π1
C −B ∂C

∂π1

C2 . (F.44)

Then,
∂2

∂π2
1
LC(π1, π2)|π∗

1 ,π
∗
2
∝ ∂B

∂π1
|π∗

1 ,π
∗
2
, (F.45)

because B(π∗1, π∗2) = 0 from Equation F.43 and A(π∗1, π∗2) > 0, C(π∗1, π∗2) > 0.

Note:

∂B

∂π1
|π∗

1 ,π
∗
2

= λ2(1− λ1)
µ1

− λ1(1− λ2)
µ2

∂π2

∂π1
|π∗

1 ,π
∗
2
> 0, (F.46)

because ∂π2
∂π1

< 0 for 0 < λ1, λ2 < 1, and π1, π2 > 0.

Therefore,
∂2

∂π2
1
LC(π1, π2)|π∗

1 ,π
∗
2
> 0, (F.47)

i.e. LC(π∗1, π∗2) is a minimum and partial risk classification does not maximise

loss coverage when 0 < λ1, λ2 < 1.

Note that the above analysis is still valid if we start by looking at how π1

varies with π2. This is because, for 0 < λ1, λ2 < 1, based on Equation F.32,

π2 is a well defined function of π1 and π1 is also a well defined function of π2,

as long as π1, π2 satisfy the equilibrium premium condition in Equation E.2.
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Theorem F.1.7. When 0 < λ1 < λ2 < 1, no risk classification maximises

loss coverage, i.e. LC(π0, π0) is the maximum.

Proof. According to Theorem F.1.5, when 0 < λ1 < λ2 < 1, there is a Λ∗

where 0 < λ1 < Λ∗ < λ2 < 1, such that LC(π∗1(Λ∗), π∗2(Λ∗)) is an extremum.

Moreover, Theorem F.1.6 shows that this extremum is actually a minimum.

We can now decide whether the full or no risk classification maximises loss

coverage by comparing the position of (π∗1(Λ∗), π∗2(Λ∗)) to (µ1, µ2).

Using Equation F.15 and F.16, at Λ∗,

π∗1 R µ1 ⇔ λ1 R Λ∗, (F.48)

π∗2 R µ2 ⇔ λ2 R Λ∗, and (F.49)

π∗1 R π∗2 ⇔
λ1

λ2

(
1− λ2

1− λ1

)
R
µ2

µ1
. (F.50)

In this case,

λ1 < Λ∗ < λ2 ⇒ π∗1 < µ1 and π∗2 > µ2. (F.51)

Hence, loss coverage is a monotonically increasing function of π1 for µ1 <

π1 < π0, because ∂π2
∂π1

< 0 by Equation F.32 and LC(π∗1, π∗2) is a minimum by

Theorem F.1.6.

Therefore,

LC(π∗1, π∗2) < LC(µ1, µ2) < LC(π0, π0), (F.52)

i.e. no risk classification maximises loss coverage.

Theorem F.1.8. When 0 < λ2 < λ1 < 1, either full or no risk classification

maximises loss coverage.

Proof. In this case, according to Theorem F.1.5, there is a Λ∗ such that

λ2 < Λ∗ < λ1. And as a result, π∗1 > µ1 and π∗2 < µ2 (using Equation F.48

and F.49). We need to further check the value of π∗1 and π∗2:
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• When λ1
λ2

(
1−λ2
1−λ1

)
≤ µ2

µ1
, i.e. π∗1 ≤ π∗2 according to Equation F.50, because

π1 and π2 have a monotonic relationship as proved in Equation F.32,

we can deduce the following relationship:

µ1 < π∗1 ≤ π0 ≤ π∗2 < µ2. (F.53)

And because LC(π∗1, π∗2) is a minimum by Theorem F.1.6, hence

LC(π∗1, π∗2) ≤ min[LC(µ1, µ2), LC(π0, π0)], (F.54)

i.e. whether it is full or no risk classification maximises loss coverage

depends on their relative value.

• When λ1
λ2

(
1−λ2
1−λ1

)
> µ2

µ1
, i.e. π∗1 > π∗2 according to Equation F.50, and

because π1 and π2 have a monotonic relationship as proved in Equation

F.32, we can deduce the following relationship:

µ1 < π0 < π∗1, and (F.55)

π∗2 < π0 < µ2. (F.56)

And because LC(π∗1, π∗2) is a minimum by Theorem F.1.6, therefore, loss

coverage is a monotonically decreasing function of π1 for µ1 ≤ π1 ≤ π0.

This means

LC(µ1, µ2) > LC(π0, π0), (F.57)

i.e. in this case, full risk classification maximises loss coverage.

Therefore, when 0 < λ2 < λ1 < 1, either full or no risk classification

maximises loss coverage.
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Theorem F.1.9. For λ1 > 1, ∂π2
∂π1

R 0 ⇔ π1 R µ1
λ1
λ1−1 . This result shows

that whether premiums for high and low risks have a monotonic relationship

depends on the value of premium for low risks, π1.

Proof. Recall that for the case of different demand elasticities,

∂π2

∂π1
= −

p1τ1µ
λ1+1
1

π
λ1+1
1

[λ1 + (1− λ1)π1
µ1

]
p2τ2µ

λ2+1
2

π
λ2+1
2

[λ2 + (1− λ2)π2
µ2

]
, (F.58)

and

λ1 + (1− λ1)π1

µ1
R 0⇔ π1 Q µ1

λ1

λ1 − 1 for λ1 > 1, (F.59)

λ2 + (1− λ2)π2

µ2
> 0 for 0 < λ2 < 1, and (F.60)

λ2 + (1− λ2)π2

µ2
R 0⇔ π2 Q µ2

λ2

λ2 − 1 for λ2 > 1. (F.61)

(Note: µ2
λ2
λ2−1 > µ2 when λ2 > 1.)

Hence, for 0 < π2 ≤ µ2 (or 0 < π2 < µ2
λ2
λ2−1), λ2 + (1− λ2)π2

µ2
> 0, i.e. π2

is a well-defined function of π1 for µ1 ≤ π1 ≤ µ2. As a result,

∂π2

∂π1
R 0⇔ π1 R µ1

λ1

λ1 − 1 for λ1 > 1. (F.62)

Therefore,
∂π2

∂π1
< 0 (F.63)

as long as 0 < π1 < µ1
λ1
λ1−1 and 0 < π2 < µ2

λ2
λ2−1 .

There are a few remarks which worth mentioning here:

Remark 1: For µ1 ≤ π1, π2 ≤ µ2 that satisfy the equilibrium condition,

although π2 is a well defined function of π1, π1 might not always be a
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well-defined function of π2. This is because, if we take an inverse of

Equation F.58, ∂π1
∂π2

becomes undefined if π1 = λ1
λ1−1µ1.

Remark 2: The relationship between π1, π2 still holds in the presence of

multiple equilibria. (Note that multiple equilibria is possible in the

case when λ1 > 1.1) Figure F.1 is an example showing that the result

in Theorem F.1.9 still holds when there are multiple equilibria (three

equilibrium premiums π01, π02, π03 in this case). In this example, we

observe that given any π1 within [µ1, µ2], there is a π2 within [µ1, µ2]

that satisfies the equilibrium condition as in Equation F.2.

Figure F.2 is another example showing how π2 behaves with respect to

π1 in the case of multiple equilibria (in this case, π01 is very close to µ1).

One point to emphasize is that, in this example, for some values of π1,

there are corresponding π2 which can solve the equilibrium condition

as in Equation E.2. But these π2 could be beyond our interest range,

e.g. 0 < π2 < µ1 as shown in Figure F.2.

It is difficult to find out the exact conditions which lead to this scenario

analytically at this stage apart from some numerical analysis.

Theorem F.1.10. For λ1, λ2 > 1, LC(π∗1, π∗2) is a maximum of loss coverage

for π1, π2 ≥ 0.

Proof. We aim to use the same approach as the one we used to prove Theorem

F.1.6, i.e. find out the second derivative of loss coverage with respect to π1

at (π∗1, π∗2). But we need to check whether π1 and π2 have a monotonic

relationship at (π∗1, π∗2) first.
1Detailed results on multiple equilibria for iso-elastic demand can be found in Section

3.6.
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Figure F.1: Plot of premium for the high risk-group π2 as a function of

premium for the low risk-group π1 in the case of multiple equilibria with

α1 = 99.7%, α2 = 0.3%, µ1 = 0.01, µ2 = 0.04 and λ1 = 6, λ2 = 1.5.

According to Theorem F.1.5, when λ1, λ2 > 1, there is a Λ∗ where 1 <

min(λ1, λ2) < Λ∗ < max(λ1, λ2), and the corresponding LC(π∗1(Λ∗), π∗2(Λ∗))

is an extremum. In this case,

π∗1 = µ1

(
λ1

λ1 − 1

)(
Λ∗ − 1

Λ∗

)
< µ1

λ1

λ1 − 1 , (F.64)

π∗2 = µ2

(
λ2

λ2 − 1

)(
Λ∗ − 1

Λ∗

)
< µ2

λ2

λ2 − 1 . (F.65)

Hence,
∂π2

∂π1
|π∗

1 ,π
∗
2
< 0, by Theorem F.1.9 (F.66)
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Figure F.2: Plot of premium for the high risk-group π2 as a function of

premium for the low risk-group π1 in the case of multiple equilibria with

α1 = 99.7%, α2 = 0.3%, µ1 = 0.01, µ2 = 0.04 and λ1 = 6, λ2 = 0.8.

i.e. even though π1 and π2 might not be monotonically related, this situation

would not happen before the extremum is reached. Hence we can use the

same approach as the one in Theorem F.1.6.

Recall that

∂2

∂π2
1
LC(π1, π2)|π∗

1 ,π
∗
2
∝ ∂B

∂π1
|π∗

1 ,π
∗
2
, from Equation F.45 (F.67)

where

B(π1, π2) = λ2(1− λ1)π1

µ1
− λ1(1− λ2)π2

µ2
. (F.68)
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And,
∂B

∂π1
|π∗

1 ,π
∗
2

= λ2(1− λ1)
µ1

− λ1(1− λ2)
µ2

∂π2

∂π1
|π∗

1 ,π
∗
2
< 0, (F.69)

because ∂π2
∂π1
|π∗

1 ,π
∗
2
< 0 for λ1, λ2 > 1, and π1, π2 > 0.

Therefore,
∂2

∂π2
1
LC(π1, π2)|π∗

1 ,π
∗
2
< 0, (F.70)

i.e. LC(π∗1, π∗2) is a maximum and partial risk classification could maximise

loss coverage when λ1, λ2 > 1.

Theorem F.1.11. When 1 < λ2 < λ1, full risk classification maximises loss

coverage for µ1 ≤ π1, π2 ≤ µ2.

Proof. Using Equations F.15 and F.16, we get

π∗1 R µ1 ⇔ λ1 Q Λ∗, for λ1 > 1 (F.71)

π∗2 R µ2 ⇔ λ2 Q Λ∗, for λ2 > 1, and (F.72)

π∗1 R π∗2 ⇔
λ1

λ2

(
λ2 − 1
λ1 − 1

)
R
µ2

µ1
. (F.73)

Recalling from Theorem F.1.5, when 1 < λ2 < λ1, there is a λ2 < Λ∗ < λ1,

and as a result,

π∗1 < µ1 and π∗2 > µ2. (F.74)

Hence loss coverage is a monotonically decreasing function of π1 for µ1 ≤ π1

because π∗2 < µ2
λ2
λ2−1 and ∂π2

∂π1
< 0, according to Equation F.62 and LC(π∗1, π∗2)

is a maximum by Theorem F.1.10.

Note that in this case, there might be multiple equilibria2.

Therefore,
2Results on multiple equilibria can be found in Section 3.6.
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• when there is a unique equilibrium premium, π0,

LC(π∗1, π∗2) > LC(µ1, µ2) > LC(π0, π0). (F.75)

If we focus on the case when µ1 ≤ π1, π2 ≤ µ2, then full risk classifica-

tion maximises loss coverage.

• When there are multiple equilibrium premiums, π0i with i ∈ Z, i ≤ 3

(because there could be at most 3 equilibrium premium), if π01 < π02 <

π03, then

LC(π∗1, π∗2) > LC(µ1, µ2) > LC(π01, π01) > LC(π02, π02) > LC(π03, π03).

(F.76)

Full risk classification still maximises loss coverage (ratio).

Figure F.3 is an example showing how loss coverage ratio behaves with

respect to π1 in the presence of multiple equilibria. Figure F.3 uses the same

values of parameters as in Figure F.1 (i.e. in both figures, we have the same

equilibrium premiums π01, π02, π03).

In this example, although π1, π2 might not have a monotonic relationship,

loss coverage ratio is a monotonically decreasing function of π1. Therefore,

full risk classification maximises loss coverage.

Theorem F.1.12. When 1 < λ1 < λ2 and λ1
λ2

(
λ2−1
λ1−1

)
> µ2

µ1
, no risk classifi-

cation maximises loss coverage.

Proof. In this case, π∗1 > π∗2 by Equation F.73. Because of Equation F.63,
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Figure F.3: Plot of loss coverage ratio C as a function of premium for the

low risk-group π1 in the case of multiple equilibria with α1 = 99.7%, α2 =

0.3%, µ1 = 0.01, µ2 = 0.04 and λ1 = 6, λ2 = 1.5.

we can deduce the following result:

µ1 < π0 < π∗1, and (F.77)

π∗2 < π0 < µ2. (F.78)

Hence loss coverage is a monotonically increasing function of π1 for µ1 ≤

π1 ≤ π0 because LC(π∗1, π∗2) is a maximum by Theorem F.1.10.

Therefore,

LC(π0, π0) > LC(µ1, µ2), (F.79)
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i.e. in this case, no risk classification maximises loss coverage.

Theorem F.1.13. When 1 < λ1 < λ2 and λ1
λ2

(
λ2−1
λ1−1

)
≤ µ2

µ1
, a partial risk

classification maximises loss coverage.

Proof. In this case, π∗1 ≤ π∗2 by Equation F.73. And we have also proved that

π1 and π2 are still monotonically related when the extremum is reached (by

Equation F.66).

We can deduce the following result:

µ1 < π∗1 ≤ π0 ≤ π∗2 < µ2. (F.80)

Hence,

LC(π∗1, π∗2) ≥ max[LC(µ1, µ2), LC(π0, π0)], (F.81)

because LC(π∗1, π∗2) is a maximum by Theorem F.1.10.

Therefore, a partial risk classification with (π∗1(Λ∗), π∗2(Λ∗)) maximises

loss coverage in this case.

Theorem F.1.14. When 0 < λ1 < 1 < λ2, no risk classification maximises

loss coverage.

Proof. Recall that

∂

∂π1
LC(π1, π2) ∝ A(π1, π2)B(π1, π2)

C(π1, π2) from Equation F.37 , (F.82)

where

A(π1, π2) = π
−(λ1+1)
1 , (F.83)

B(π1, π2) = λ2(1− λ1)π1

µ1
− λ1(1− λ2)π2

µ2
, and (F.84)

C(π1, π2) = λ2 + (1− λ2)π2

µ2
. (F.85)
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Moreover,

C(π1, π2) > 0 for 0 < π2 < µ2 < µ2
λ2

λ2 − 1 (F.86)

by Equation F.65.

Hence,
∂

∂π1
LC(π1, π2) > 0 because B(π1, π2) > 0, (F.87)

for 0 < λ1 < 1 < λ2 and π1, π2 > 0, especially µ1 ≤ π1, π2 ≤ µ2. This result

shows that loss coverage is an increasing function of π1.

Therefore,

LC(π0, π0) > LC(µ1, µ2), (F.88)

i.e. no risk classification maximises loss coverage.

Theorem F.1.15. When 0 < λ2 < 1 < λ1, full risk classification maximises

loss coverage.

Proof. Similar to the proof for Theorem F.1.14, in this case,

∂

∂π1
LC(π1, π2) < 0 because B(π1, π2) < 0, (F.89)

for 0 < λ2 < 1 < λ1 and π1, π2 > 0. This result shows that loss coverage is a

decreasing function of π1.

Note that in this case, there might be multiple equilibria3.

Therefore,

• when there is a unique equilibrium premium π0,

LC(µ1, µ2) > LC(π0, π0), (F.90)
3Results on multiple equilibria can be found in Section 3.6.
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i.e. full risk classification maximises loss coverage.

• When there are multiple equilibrium premiums, π0i with i ∈ Z, i ≤ 3

(because there could be at most 3 equilibrium premiums), if π01 <

π02 < π03, then

LC(µ1, µ2) > LC(π01, π01) > LC(π02, π02) > LC(π03, π03). (F.91)

In this case, even though π1 and π2 might not have a monotonic rela-

tionship (by Equation F.63), the loss coverage is a monotonic function

of π1.

Figure F.4 is an example showing that loss coverage ratio monotonically

decreases with respect to π1 when there are multiple equilibria. Note

that in this example, the values of all parameters are the same as those

in Figure F.2.

Note that in this example, there might not be solutions to π2 within

[µ1, µ2] for some π1. For the purpose of illustration, if we are restricting

µ1 ≤ π1, π2 ≤ µ2, then the loss coverage ratio curve might not be

continuous for some π1.

Theorem F.1.16. When 0 < λ1, λ2 < 1, the function f(Λ) = ∂W
∂Λ is a

concave function of Λ where 0 < Λ < 1. (W is the Lagrangian function as

described in Theorem F.1.5.)

Proof. Recall from Equation F.17,

f(Λ) = p1τ1

[
Λ(1− λ1)
λ1(1− Λ)

]λ1 [λ1 − Λ
1− λ1

]
µ1 + p2τ2

[
Λ(1− λ2)
λ2(1− Λ)

]λ2 [λ2 − Λ
1− λ2

]
µ2,

(F.92)
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Figure F.4: Plot of loss coverage ratio C as a function of premium for the

low risk-group π1 in the case of multiple equilibria with α1 = 99.7%, α2 =

0.3%, µ1 = 0.01, µ2 = 0.04 and λ1 = 6, λ2 = 0.8.

which can be re-written as

f(Λ) = p1τ1µ1

1− λ1

(
1− λ1

λ1

)λ1

D1 + p2τ2µ2

1− λ2

(
1− λ2

λ2

)λ2

E1, (F.93)

where

D1 = (λ1 − Λ)
(

Λ
1− Λ

)λ1

, (F.94)

E1 = (λ2 − Λ)
(

Λ
1− Λ

)λ2

. (F.95)
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Hence,

∂2

∂Λ2f(Λ) = p1τ1µ1

1− λ1

(
1− λ1

λ1

)λ1 ∂2D1

∂Λ2 + p2τ2µ2

1− λ2

(
1− λ2

λ2

)λ2 ∂2E1

∂Λ2 . (F.96)

Based on Equation F.94 and F.95, we get

∂D1

∂Λ =
(

Λ
1− Λ

)λ1 [λ1(λ1 − Λ)
Λ(1− Λ) − 1

]
, (F.97)

⇒ ∂2D1

∂Λ2 = λ1

(
Λ

1− Λ

)λ1 (λ1 − 1)(λ1 + Λ)
Λ2(1− Λ)2 < 0 when 0 < λ1 < 1 and 0 < Λ < 1.

(F.98)

Similarly,

∂E1

∂Λ =
(

Λ
1− Λ

)λ2 [λ2(λ2 − Λ)
Λ(1− Λ) − 1

]
, (F.99)

⇒ ∂2E1

∂Λ2 = λ2

(
Λ

1− Λ

)λ2 (λ2 − 1)(λ2 + Λ)
Λ2(1− Λ)2 < 0 when 0 < λ2 < 1 and 0 < Λ < 1.

(F.100)

Hence,
∂2f(Λ)
∂Λ2 < 0, (F.101)

i.e. f(Λ) is a concave function of Λ for 0 < Λ < 1.

Theorem F.1.17. When λ1, λ2 > 1, the function f(Λ) = ∂W
∂Λ is a concave

function of Λ where Λ > 1. (W is the Lagrangian function as described in

Theorem F.1.5.)

Proof. Similar to the proof for Theorem F.1.16, in this case, the function
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f(Λ) can be re-written as

f(Λ) = p1τ1µ1

λ1 − 1

(
λ1 − 1
λ1

)λ1

D2 + p2τ2µ2

λ2 − 1

(
λ2 − 1
λ2

)λ2

E2, (F.102)

where

D2 = (Λ− λ1)
(

Λ
Λ− 1

)λ1

, (F.103)

E2 = (Λ− λ2)
(

Λ
Λ− 1

)λ2

. (F.104)

Hence,

∂2

∂Λ2f(Λ) = p1τ1µ1

λ1 − 1

(
λ1 − 1
λ1

)λ1 ∂2D2

∂Λ2 + p2τ2µ2

λ2 − 1

(
λ2 − 1
λ2

)λ2 ∂2E2

∂Λ2 . (F.105)

Based on Equation F.103 and F.104, we get

∂D2

∂Λ =
(

Λ
Λ− 1

)λ1 [
1− λ1(Λ− λ1)

Λ(Λ− 1)

]
, (F.106)

⇒ ∂2D2

∂Λ2 = −λ1

(
Λ

Λ− 1

)λ1 (λ1 − 1)(λ1 + Λ)
Λ2(Λ− 1)2 < 0 when λ1 > 1 and Λ > 1.

(F.107)

Similarly,

∂E2

∂Λ =
(

Λ
Λ− 1

)λ2 [
1− λ2(Λ− λ2)

Λ(Λ− 1)

]
, (F.108)

⇒ ∂2E2

∂Λ2 = −λ2

(
Λ

Λ− 1

)λ2 (λ2 − 1)(λ2 + Λ)
Λ2(Λ− 1)2 < 0 when λ2 > 1 and Λ > 1.

(F.109)
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Hence,
∂2f(Λ)
∂Λ2 < 0, (F.110)

i.e. f(Λ) is a concave function of Λ for Λ > 1.

F.2 Notations and Proofs for Three Risk-groups

F.2.1 Notations and Assumptions

We assume that there are three risk-groups and demand for insurance is

driven by iso-elastic demand elasticity. We use the following notations and

assumptions:

• µ1 < µ2 < µ3 are the underlying risks for the low, middle and high

risk-group.

• p1, p2, p3 are the population proportions such that p1 + p2 + p3 = 1.

• The proportional demand for insurance for risk-group i = 1, 2, 3 at

premium π is given by:

di(π) = τi

(
µi
π

)λi
. (F.111)

Note: π ≥ 0 is an implicit assumption.

• Equilibrium is achieved when the following condition is satisfied:

3∑
i=1

pidi(πi)πi =
3∑
i=1

pidi(πi)µi ⇒
3∑
i=1

piτi

(
µi
πi

)λi
πi =

3∑
i=1

piτi

(
µi
πi

)λi
µi.

(F.112)

Each solution (π1, π2, π3) to the above equilibrium condition repre-

sents a specific risk-classification scheme. Special cases: (π1, π2, π3) =
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(µ1, µ2, µ3) represents full risk classification and (π1, π2, π3) = (π0, π0, π0)

represents no risk classification.

• Loss coverage under a specific risk-classification scheme is defined as:

LC(π1, π2, π3) =
3∑
i=1

piτi

(
µi
πi

)λi
µi, (F.113)

where (π1, π2, π3) satisfy the equilibrium condition in Equation F.112.

And the loss coverage ratio is defined as

C(π1, π2, π3) = LC(π1, π2, π3)
LC(µ1, µ2, µ3) , (F.114)

=
∑3
i=1 piτi

(
µi
πi

)λi
µi∑3

i=1 piτiµi
. (F.115)

F.2.2 Additional Observations

When there are three risk-groups (i.e. a low risk-group, a middle risk-

group and a high risk-group) and they have the same demand elasticity

λ1 = λ2 = λ3 < 1, we have some additional observations on the loss coverage

ratio from the impact of partial risk classification. If the restriction that

π1 ≤ π2 ≤ π3 is relaxed, a higher loss coverage ratio (compared to C(π0))

might be achieved by a partial risk classification.

In Figure F.5 we consider an example of loss coverage ratio at different

premium strategies π = (π1, π2, π3) where (µ1, µ2, µ3) = (0.01, 0.02, 0.04),

(α1, α2, α3) = (60%, 30%, 10%) and λ1 = λ2 = λ3 = 0.8. π1 is on the x-axis

and π2 is on the y-axis with π3 being plot as the dashed dark blue indif-

ference curves. Loss coverage ratios comparing a given premium strategy

(π1, π2, π3) to risk-differentiated premiums (µ1, µ2, µ3) are plotted as black
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contours. Any combination of π1, π2 and π3 on this plot satisfies the equi-

librium condition to ensure zero expected profits for insurers. The pooled

equilibrium premium π0 at no risk classification is shown in Figure 7.2 as the

circle. (In this example, π0 = 0.02.) The other colourful contours indicating

different boundary conditions which will be discussed in Theorem F.2.4.
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Figure F.5: Plot of loss coverage ratio in terms of π1, π2 with p1 = 60%, p2 =

30%, p3 = 10%, τ1 = τ2 = τ3 = 0.5, µ1 = 0.01, µ2 = 0.02, µ3 = 0.04 and

λ1 = λ2 = λ3 = 0.8.

When demand elasticity is less than 1, if we pool two risk-groups by

charging them the same premium, and charge the other risk-group a different

premium, without any restriction on the ordering of the premiums, in some
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cases, this can maximise loss coverage. In particular:

Result F.1. If we pool the low and the middle risk-groups by charging them

the same premium, and charge the high risk-group a possibly different pre-

mium, loss coverage is maximised when the premium charged to the high

risk-group is minimised.

In Figure F.5, along the dashed grey diagonal line where π1 = π2, decreas-

ing π3 increases loss coverage ratio, i.e. moving towards the top right corner

of the plot. When π3 reaches µ1 = 0.01 (in this case), loss coverage ratio

reaches its maximum. This result is intuitive because high risks’ demand for

insurance at a very low premium can be very large such that the shift in

risk coverage towards the high risks outweighs the reduction in demand from

the low and the middle risk-groups. As a result, the aggregate loss coverage

increases. This result is proved in Theorem F.2.6 with an example given in

Theorem F.2.8.

Result F.2. If we pool the middle and the high risk-groups by charging them

the same premium, and charge the low risk-group a possibly different pre-

mium, loss coverage is maximised when the premium charged to the low risk-

group is maximised.

In Figure F.5, along the dashed red line where π2 = π3, increasing π1

increases loss coverage ratio, i.e. moving from left-hand side towards right-

hand side of the plot. When π1 reaches µ3 = 0.04 (in this case), loss coverage

ratio reaches its maximum. This result is proved in Theorem F.2.7 with an

example given in Theorem F.2.10.

However, the result is not so straightforward when pooling the low and

the high risk-groups. In particular:
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Result F.3. If µ1 ≤ π2 ≤ π1 ≤ π3 ≤ µ3 is allowed, then loss coverage is

maximised when charging the same premium for the low and the high risk-

group and minimising the premium for the middle risk-group.

In Figure F.5, the loss coverage (ratio) is maximised along the dark green

dashed curve approaching the bottom right corner of the plot where π2 →

µ1 = 0.01. This result is proved in Theorem F.2.11.

Result F.4. If µ1 ≤ π1 ≤ π3 ≤ π2 ≤ µ3 is allowed, then loss coverage is

maximised when charging the same premium for the low and the high risk-

group and maximising the premium for the middle risk-group.

In Figure F.5, the loss coverage ratio is maximised along the dark green

dashed curve approaching the top left corner of the plot where π2 → µ3 =

0.04. This result is proved in Theorem F.2.12.

Result F.3 and F.4 show some intuition. When pooling the low risk-group

and the high risk-group and charging both risk-groups a premium (π1 say)

somewhere between (µ1, µ3) (i.e. the risk-differentiated premiums for the

low and high risk-group respectively), demand from the middle risk-group

depends on how the premium charged to this group (π2) compared to its risk

(µ2). And because of the inverse relationship between π1 and π2 in terms of

satisfying the equilibrium condition, there could be different premium strate-

gies in terms of maximising loss coverage.

Partial risk classification could maximise loss coverage ratio when the

common constant demand elasticity is less than 1, and high risks are also

allowed to be charged at a lower premium than the low risks, e.g. when

insurers cannot access all information about policyholders due to restrictions

by regulators.
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Note that for the above observations in this sub-section, we know of no

empirical evidence that any such premium strategy is in place. All the results

are for the purpose of completion and are remained to be tested.

F.2.3 Theorems and Proofs

Theorem F.2.1. For the particular case of equal demand elasticities, i.e.

λ1 = λ2 = λ3 = λ, we consider the Lagrangian function:

W (π1, π2, π3,Λ) =
3∑
i=1

piτi

(
µi
πi

)λ
µi+Λ

( 3∑
i=1

piτi

(
µi
πi

)λ
πi −

3∑
i=1

piτi

(
µi
πi

)λ
µi

)
,

(F.116)

i.e. loss coverage is set as the objective function with the equilibrium con-

dition as a constraint. This formulation leads to an extremum solution

(π∗1, π∗2, π∗3) = (µ1, µ2, µ3).

Proof.

∂W

∂π1
= 0⇒ π1 = µ1

λ(1− Λ)
Λ(1− λ) , (F.117)

∂W

∂π2
= 0⇒ π2 = µ2

λ(1− Λ)
Λ(1− λ) , (F.118)

∂W

∂π3
= 0⇒ π3 = µ3

λ(1− Λ)
Λ(1− λ) , (F.119)

∂W

∂Λ = 0⇒ Λ = λ⇒ π1 = µ1, π2 = µ2, π3 = µ3. (F.120)

So (π∗1, π∗2, π∗3) = (µ1, µ2, µ3) provides an extremum.

Theorem F.2.2. When λ > 1, full risk classification, i.e. (π1 = µ1, π2 =

µ2, π3 = µ3) maximises loss coverage.

Proof. We have proved in Theorem F.2.1 that the solution from Lagrangian

function (π∗1, π∗2, π∗3) = (µ1, µ2, µ3) provides an extremum of loss coverage,

292



and we have also proved in Result 5.5 that loss coverage at risk-differentiated

premiums is higher than loss coverage at pooled equilibrium premium, i.e.

C(π0) < 1 when λ > 1. Therefore, LC(π1 = µ1, π2 = µ2, π3 = µ3) must be a

maximum.

Theorem F.2.3. When 0 < λ < 1, to maintain the equilibrium condition

defined in equation F.112,

1. given π1, ∂π3
∂π2

< 0 (or ∂π2
∂π3

< 0), i.e. π2, π3 have a monotonic relation-

ship;

2. given π2, ∂π3
∂π1

< 0 (or ∂π1
∂π3

< 0), i.e. π1, π3 have a monotonic relation-

ship;

3. given π3, ∂π2
∂π1

< 0 (or ∂π1
∂π2

< 0), i.e. π1, π2 have a monotonic relation-

ship.

Proof. In the case of partial risk classification, i.e. insurers can charge dif-

ferent premiums to different risk-groups, equation F.112 can be rewritten

as

α1

(
µ1

π1

)λ
(π1−µ1) +α2

(
µ2

π2

)λ
(π2−µ2) +α3

(
µ3

π3

)λ
(π3−µ3) = 0, (F.121)

with αi = piτi
p1τ1+p2τ2+p3τ3

, i = 1, 2, 3.

Proof of result 1: Given a π1 ≥ 0, and differentiate both sides of equation

F.121 with respect to π2 to get:

∂π3

∂π2
= −

α2µ
λ+1
2

πλ+1
2

[
λ+ (1− λ)π2

µ2

]
α3µ

λ+1
3

πλ+1
3

[
λ+ (1− λ)π3

µ3

] < 0, for 0 < λ < 1. (F.122)

(And similarly, ∂π2
∂π3

< 0.)
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Proof of result 2: Given a π2 ≥ 0, and differentiate both sides of equation

F.121 with respect to π1 to get:

∂π3

∂π1
= −

α1µ
λ+1
1

πλ+1
1

[
λ+ (1− λ)π1

µ1

]
α3µ

λ+1
3

πλ+1
3

[
λ+ (1− λ)π3

µ3

] < 0, for 0 < λ < 1. (F.123)

(And similarly, ∂π1
∂π3

< 0.)

Proof of result 3: Given a π3 ≥ 0, and differentiate both sides of equation

F.121 with respect to π1 to get:

∂π2

∂π1
= −

α1µ
λ+1
1

πλ+1
1

[
λ+ (1− λ)π1

µ1

]
α2µ

λ+1
2

πλ+1
2

[
λ+ (1− λ)π2

µ2

] < 0, for 0 < λ < 1. (F.124)

(And similarly, ∂π1
∂π2

< 0.)

Figure F.6 is an example interpreting premium for the high risk-group,

π3 in terms of π1, π2 using (µ1, µ2, µ3) = (0.01, 0.02, 0.04), (α1, α2, α3) =

(60%, 30%, 10%) and λ1 = λ2 = λ3 = 0.8. Values of π3 are plotted as the

contours with π1 on the x-axis, π2 on the y-axis. In this example, we assume

µ1 ≤ π1, π2, π2 ≤ µ3, and there is no further restriction on the relationship

between π1, π2, and π3.

The above results are presented in this figure as:

1. To keep π1 the same, i.e. moving vertically on the plot for any chosen

π1 value, increasing π2 means decreasing π3.

2. To keep π2 the same, i.e. moving horizontally on the plot for any chosen

π2 value, increasing π1 means decreasing π3.
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Figure F.6: Plot of premium for the high risks given π1, π2 with α1 =

60%, α2 = 30%, α3 = 10%, µ1 = 0.01, µ2 = 0.02, µ3 = 0.04 and λ1 = λ2 =

λ3 = 0.8.

3. To keep π3 the same, i.e. moving along one of the indifference curve,

increasing π1 means decreasing π2.

Another observation is that, because we focus on the case when µ1 ≤

π1, π2, π3 ≤ µ3, not all combinations of π1, π2 will lead to a feasible µ1 ≤

π3 ≤ µ3 such that the equilibrium condition in equation F.112 is satisfied.

For example, when π1, π2 are both very small, i.e. the bottom-left corner of

Figure F.6 where no π3 within (µ1, µ3) = (0.01, 0.04) is obtainable in this

case.

Theorem F.2.4. When 0 < λ < 1, we get the following results on the loss
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coverage ratio, C, defined in Equation F.115:

1. Given π1 ≥ 0,

∂C

∂π2
R 0⇔ π3

π2
Q
µ3

µ2
and ∂C

∂π3
R 0⇔ π3

π2
R
µ3

µ2
. (F.125)

2. Given π2 ≥ 0,

∂C

∂π1
R 0⇔ π3

π1
Q
µ3

µ1
and ∂C

∂π3
R 0⇔ π3

π1
R
µ3

µ1
. (F.126)

3. Given π3 ≥ 0,

∂C

∂π1
R 0⇔ π2

π1
Q
µ2

µ1
and ∂C

∂π2
R 0⇔ π2

π1
R
µ2

µ1
. (F.127)

These results indicate the relationship between the premiums charged to any

two risk-groups, when fixing the premium charged to the remaining risk-group.

These relationships provide a foundation built on which loss coverage can be

analysed in some later theorems.

Proof. Recalling Equation F.115:

C =
α1µ1

(
µ1
π1

)λ
+ α2µ2

(
µ2
π2

)λ
+ α3µ3

(
µ3
π3

)λ
α1µ1 + α2µ2 + α3µ3

. (F.128)

Proof of Result 1: Given a π1 ≥ 0, then differentiate both sides of Equa-
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tion F.128 with respect to π2, we can get:

∂C

∂π2
∝ −λ

[
α2

(
π2

µ2

)−λ−1

+ α3

(
π3

µ3

)−λ−1
∂π3

∂π2

]
, (F.129)

= −λ
[
α2

(
π2

µ2

)−λ−1

− α3

(
π3

µ3

)−λ−1 α2µ
λ+1
2

πλ+1
2

[
λ+ (1− λ)π2

µ2

]
α3µ

λ+1
3

πλ+1
3

[
λ+ (1− λ)π3

µ3

]]

(F.130)

using Result 1 in Theorem F.2.3

= −λα2

(
π2

µ2

)−λ−1 [(1− λ)(π3
µ3
− π2

µ2
)

λ+ (1− λ)π3
µ3

]
. (F.131)

Hence,
∂C

∂π2
R 0⇔ π3

π2
Q
µ3

µ2
when 0 < λ < 1. (F.132)

And because of the inverse relationship between π2 and π3 in Theorem

F.2.3,
∂C

∂π3
R 0⇔ π3

π2
R
µ3

µ2
. (F.133)

Proof of Result 2: Similar to the previous proof, given a π2 ≥ 0, then

differentiate both sides of Equation F.128 with respect to π1, we can

get:

∂C

∂π1
∝ −λα1

(
π1

µ1

)−λ−1 (1− λ)(π3
µ3
− π1

µ1
)

λ+ (1− λ)π3
µ3

, using result 2 in Theorem F.2.3

(F.134)

⇒ ∂C

∂π1
R 0⇔ π3

π1
Q
µ3

µ1
when 0 < λ < 1. (F.135)

And because of the inverse relationship between π1 and π3 in Theorem
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F.2.3,
∂C

∂π3
R 0⇔ π3

π1
R
µ3

µ1
. (F.136)

Proof of Result 3: Similarly, given a π3 ≥ 0, and differentiate both sides

of Equation F.128 with respect to π1, we can get:

∂C

∂π1
∝ −λα1

(
π1

µ1

)−λ−1 (1− λ)(π2
µ2
− π1

µ1
)

λ+ (1− λ)π2
µ2

, using result 3 in Theorem F.2.3

(F.137)

⇒ ∂C

∂π1
R 0⇔ π2

π1
Q
µ2

µ1
when 0 < λ < 1. (F.138)

And because of the inverse relationship between π1 and π2 in Theorem

F.2.3,
∂C

∂π2
R 0⇔ π2

π1
R
µ2

µ1
. (F.139)

Results in this theorem are shown in Figure F.5:

• Result 1 is shown as the orange dashed line. When π3
π2
> µ3

µ2
, i.e. the

area below this dashed line, at any given π1, increasing π2 decreases

loss coverage ratio, i.e. ∂C
∂π2

< 0. When π3
π2
< µ3

µ2
, i.e. the area above

this line, at any given π1, increasing π2 increases loss coverage ratio,

i.e. ∂C
∂π2

> 0. (This argument also works if we look from the perspective

of π3 instead of π2.)

• Result 2 is shown as the light green dashed line. In this example, if we
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focus on cases when µ1 ≤ π1, π2, π3 ≤ µ3, then,

π3

µ3
≤ 1 ≤ π1

µ1
, (F.140)

⇒π3

π1
≤ µ3

µ1
, (F.141)

⇒ ∂C

∂π1
≥ 0, (F.142)

i.e. at a given π2, loss coverage ratio increases with π1. (This argument

also works if we look from the perspective of π3 instead of π1.) In other

words, our main interest is in the area to the right of the light green

dashed line.

• Result 3 is shown as the light blue dashed line. When π2
π1
> µ2

µ1
, i.e. the

area to the left of this dashed line, along any given π3 (i.e. the dark

blue-dashed indifference curves), increasing π1 decreases loss overage

ratio, i.e. ∂C
∂π1

< 0. When π2
π1
< µ2

µ1
, i.e. the area to the right of this

dashed line, along any given π3, increasing π1 increases loss coverage

ratio, i.e. ∂C
∂π1

> 0. (This argument also works if we look from the

perspective of π2 instead of π1.)

Note: we have not put any restrictions on the relationship between π1, π2

and π3, as long as they are non-negative.

Theorem F.2.5. If 0 < λ < 1, and µ1 ≤ π1 ≤ π2 ≤ π3 ≤ µ3, no risk

classification maximises loss coverage (ratio), i.e. C(π1 = π2 = π3 = π0) is

the maximum.

Proof. When µ1 ≤ π1 ≤ π2 ≤ π3 ≤ µ3, we have proved in Result 2 of

Theorem F.2.4 that π3
π1
< µ3

µ1
. This indicates that at a given π2, loss coverage
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ratio increases with π1. However, max π1 = π2. Hence, the maximised loss

coverage ratio locates on the line π1 = π2 (which is the grey dashed diagonal

line in Figure F.5).

Therefore, the maximisation problem becomes to find out the maximum

loss coverage ratio by pooling the low and the middle risk-groups with one

premium, and charging the high risk-group another premium, i.e.

maxC(π1, π2, π3) becomes maxC(π1 = π2, π3) (F.143)

subject to 0 < λ < 1, and µ1 ≤ π2 ≤ π3 ≤ µ3.

In this case, the equilibrium condition in equation F.112 becomes:

α1

(
µ1

π2

)λ
(π2−µ1) +α2

(
µ2

π2

)λ
(π2−µ2) +α3

(
µ3

π3

)λ
(π3−µ3) = 0. (F.144)

Differentiate both sides of F.144 with respect to π2, we get:

α1

µ1

(
µ1

π2

)λ+1
[(1− λ)π2 + λµ1] + α2

µ2

(
µ2

π2

)λ+1
[(1− λ)π2 + λµ2]

+ α3

µ3

(
µ3

π3

)λ+1
[(1− λ)π3 + λµ3]∂π3

∂π2
= 0, (F.145)

⇒∂π3

∂π2
= −

α1
µ1

(
µ1
π2

)λ+1
[(1− λ)π2 + λµ1] + α2

µ2

(
µ2
π2

)λ+1
[(1− λ)π2 + λµ2]

α3
µ3

(
µ3
π3

)λ+1
[(1− λ)π3 + λµ3]

< 0,

(F.146)

for 0 < λ < 1, i.e. π2 and π3 have a monotonic relationship.

Then we look at loss coverage ratio. Equation F.128 becomes

C =
α1µ1

(
µ1
π2

)λ
+ α2µ2

(
µ2
π2

)λ
+ α3µ3

(
µ3
π3

)λ
α1µ1 + α2µ2 + α3µ3

. (F.147)
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Differentiate C in the above equation with respect to π2 to get:

∂C

∂π2
∝ −λ

[
α1

(
µ1

π2

)λ+1
+ α2

(
µ2

π2

)λ+1
+ α3

(
µ3

π3

)λ+1 ∂π3

∂π2

]
, (F.148)

∝ −λ(1− λ)
[
α1

(
µ1

π2

)λ+1
(
π3

µ3
− π2

µ1

)
+ α2

(
µ2

π2

)λ+1
(
π3

µ3
− π2

µ2

) ]
(F.149)

using equation F.146

⇒ ∂C

∂π2
R 0⇔ α1µ

λ+1
1

(
π3

µ3
− π2

µ1

)
+ α2µ

λ+1
2

(
π3

µ3
− π2

µ2

)
Q 0, becuase 0 < λ < 1

(F.150)

⇔ π3

π2
Q

α1µ
λ
1 + α2µ

λ
2

α1µ
λ+1
1 + α2µ

λ+1
2

µ3. (F.151)

Note: because we focus on the case when π3 ≤ µ3, in equation F.144:

α1

(
µ1

π2

)λ
(π2 − µ1) + α2

(
µ2

π2

)λ
(π2 − µ2) ≥ 0, (F.152)

⇒π2 ≥
α1µ

λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
. (F.153)

Therefore,

π3

π2
≤ α1µ

λ
1 + α2µ

λ
2

α1µ
λ+1
1 + α2µ

λ+1
2

µ3, (F.154)

⇔ ∂C

∂π2
≥ 0, (F.155)

i.e. loss coverage ratio is a non-decreasing function of π2 for 0 < λ < 1, and

µ1 ≤ π2, π3 ≤ µ3.

Remind that in our assumptions: µ1 ≤ π1 ≤ π2 ≤ π3 ≤ µ3. Hence

max π2 = π3, and therefore C(π1 = π2 = π3 = π0) is the maximum.
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Theorem F.2.6. When 0 < λ < 1, if insurers pool the low and the middle

risk-groups by charging the same premium (say π1) and charge another pre-

mium (say π3) to the high risk-group, then loss coverage ratio C is maximised

by minimising π3.

Proof. The premium π1 charged to the low and the middle risk-groups and

the premium π3 charged to the high risk-group should satisfy the equilibrium

condition given in Equation F.112, i.e.

α1

(
µ1

π1

)λ
(π1−µ1) +α2

(
µ2

π1

)λ
(π1−µ2) +α3

(
µ3

π3

)λ
(π3−µ3) = 0, (F.156)

where αi = piτi
p1τ1+p2τ2+p3τ3

, i = 1, 2, 3.

Differentiate both sides of the above equation with respect to π1 gives:

∂π3

∂π1
= −

α1
µ1

(
µ1
π1

)λ+1
[
(1− λ)π1 + λµ1

]
+ α2

µ2

(
µ2
π1

)λ+1
[
(1− λ)π1 + λµ2

]
α3
µ3

(
µ3
π3

)λ+1
[
(1− λ)π3 + λµ3

] < 0,

(F.157)

for 0 < λ < 1. This result shows that, to maintain the equilibrium position,

increasing π1 means π3 has to be reduced.
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Loss coverage ratio can be written as:

C =
α1
(
µ1
π1

)λ
µ1 + α2

(
µ2
π1

)λ
µ2 + α3

(
µ3
π3

)λ
µ3

α1µ1 + α2µ2 + α3µ3
, (F.158)

⇒ ∂C

∂π1
∝ −λ

[
α1

(
µ1

π1

)λ+1
+ α2

(
µ2

π1

)λ+1
+ α3

(
µ3

π3

)λ+1 ∂π3

∂π1

]
, (F.159)

∝ −λ(1− λ)
(1− λ)π3 + λµ3

[
α1

(
µ1

π1

)λ+1
(
π3

π1
− µ3

µ1

)
+ α2

(
µ2

π1

)λ+1
(
π3

π1
− µ3

µ2

) ]
(F.160)

using equation F.157 ,

⇒ ∂C

∂π1
R 0⇔ π3

π1
Q

α1µ
λ
1 + α2µ

λ
2

α1µ
λ+1
1 + α2µ

λ+1
2

µ3. (F.161)

Because in Equation F.157, we have proved that ∂π3
∂π1

< 0, therefore,

∂C

∂π3
R 0⇔ π3

π1
R

α1µ
λ
1 + α2µ

λ
2

α1µ
λ+1
1 + α2µ

λ+1
2

µ3. (F.162)

Note: if we restrict µ1 ≤ π1, π2, π3 ≤ µ3, then in Equation F.156:

α1

(
µ1

π1

)λ
(π1 − µ1) + α2

(
µ2

π1

)λ
(π1 − µ2) ≥ 0, (F.163)

⇒π1 ≥
α1µ

λ+1
1 + α2µ

λ+1
2

α1µλ1 + α2µλ2
. (F.164)

Therefore,
π3

π1
≤ α1µ

λ
1 + α2µ

λ
2

α1µ
λ+1
1 + α2µ

λ+1
2

µ3 ⇒
∂C

∂π3
≤ 0, (F.165)

when pooling the low and the middle risk-groups, loss coverage ratio is a

decreasing function of the premium charged to the high risk-group.

Therefore, when the low and the middle risk-groups are pooled together,

loss coverage ratio is maximised when the premium charged to the high risk-

groups is minimised.
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Theorem F.2.7. When 0 < λ < 1, if insurers pool the middle and the

high risk-groups by charging the same premium (say π2) and charge another

premium (say π1) to the low risk-group, the loss coverage ratio C is maximised

by maximising π1.

Proof. The premium π2 charged to the middle and the high risk-groups and

the premium π1 charged to the low risk-group should satisfy the equilibrium

condition given in Equation F.112, i.e.

α1

(
µ1

π1

)λ
(π1−µ1) +α2

(
µ2

π2

)λ
(π2−µ2) +α3

(
µ3

π2

)λ
(π2−µ3) = 0, (F.166)

where αi = piτi
p1τ1+p2τ2+p3τ3

, i = 1, 2, 3.

Differentiate both sides of the above equation with respect to π2 gives:

∂π1

∂π2
= −

α2
µ2

(
µ2
π2

)λ+1
[
(1− λ)π2 + λµ2

]
+ α3

µ3

(
µ3
π2

)λ+1
[
(1− λ)π2 + λµ3

]
α1
µ1

(
µ1
π1

)λ+1
[
(1− λ)π1 + λµ1

] < 0,

(F.167)

for 0 < λ < 1. This result shows that, to maintain the equilibrium position,

increasing π1 means π2 has to be reduced.

Loss coverage ratio can be written as:

C =
α1
(
µ1
π1

)λ
µ1 + α2

(
µ2
π2

)λ
µ2 + α3

(
µ3
π2

)λ
µ3

α1µ1 + α2µ2 + α3µ3
, (F.168)

⇒ ∂C

∂π2
∝ −λ(1− λ)

(1− λ)π1 + λµ1

[
α2

(
µ2

π2

)λ+1
(
π1

π2
− µ1

µ2

)
+ α3

(
µ3

π2

)λ+1
(
π1

π2
− µ1

µ3

) ]
(F.169)

using equation F.167 ,

⇒ ∂C

∂π2
R 0⇔ π1

π2
Q

α2µ
λ
2 + α3µ

λ
3

α2µ
λ+1
2 + α3µ

λ+1
3

µ1. (F.170)
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Because in Equation F.167, we have proved that ∂π1
∂π2

< 0, therefore,

∂C

∂π1
R 0⇔ π1

π2
R

α2µ
λ
2 + α3µ

λ
3

α2µ
λ+1
2 + α3µ

λ+1
3

µ1. (F.171)

Note: if we restrict µ1 ≤ π1, π2, π3 ≤ µ3, then in Equation F.156:

α2

(
µ2

π2

)λ
(π2 − µ2) + α3

(
µ3

π2

)λ
(π2 − µ3) ≤ 0, (F.172)

⇒π2 ≤
α2µ

λ+1
2 + α3µ

λ+1
3

α2µλ2 + α3µλ3
. (F.173)

Therefore,
π1

π2
≥ α2µ

λ
2 + α3µ

λ
3

α2µ
λ+1
2 + α3µ

λ+1
3

µ1 ⇒
∂C

∂π1
≥ 0, (F.174)

when pooling the middle and the high risk-groups, loss coverage ratio is an

increasing function of the premium charged to the low risk-group.

Therefore, when the middle and the high risk-groups are pooled together,

loss coverage ratio is maximised when the premium charged to the low risk-

groups is maximised.

Theorem F.2.8. If 0 < λ < 1, and µ1 ≤ π3 ≤ π1 ≤ π2 ≤ µ3 is allowed,

a premium strategy that pools the low and the middle risk-groups, and min-

imises the premium for the high risk-group maximises loss coverage ratio.

Proof. Given π2,

π3 ≤ π1 ⇒
π3

π1
≤ 1 < µ3

µ1
⇒ ∂C

∂π1
> 0 by Equation F.126 . (F.175)

Thus, given a π2, loss coverage ratio is an increasing function of π1.

Because max π1 = π2, maximising C(π) becomes maximising C(π1 =

π2, π3), which means the maximum loss coverage ratio locates on the diagonal
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line π1 = π2. Thus we are pooling the low and the middle risk-groups. Using

the result in Theorem F.2.6, loss coverage ratio is maximised by minimising

π3.

Theorem F.2.9. If 0 < λ < 1, and µ1 ≤ π3 ≤ π2 ≤ π1 ≤ µ3 is allowed,

a premium strategy that pools the low and the middle risk-groups, and min-

imises the premium for the high risk-group maximises loss coverage ratio.

Proof. Given a π1,

π3 ≤ π2 ⇒
π3

π2
≤ 1 < µ3

µ2
⇒ ∂C

∂π2
> 0 by Equation F.125 . (F.176)

Thus, given a π1, loss coverage ratio is an increasing function of π2.

Because max π2 = π1, maximising C(π) becomes maximising C(π1 =

π2, π3), i.e. the maximised loss coverage ratio locates on the diagonal line

π1 = π2. Thus we are pooling the low and the middle risk-groups. Using the

result in Theorem F.2.6, loss coverage ratio is maximised by minimising π3.

Both Theorem F.2.8 and F.2.9 leads to the same results in terms of max-

imising loss coverage ratio. In Figure F.5, the maximised loss coverage ratio

is achieved towards the top right corner of the plot where π3 is minimised

towards µ1 = 0.01, and π1, π2 are towards µ3 = 0.04.

Theorem F.2.10. If 0 < λ < 1, and µ1 ≤ π2 ≤ π3 ≤ π1 ≤ µ3 is allowed,

a premium strategy that pools the middle and the high risk-groups, and max-

imises the premium for the low risk-group maximises loss coverage ratio.

Proof.

π3 ≤ π1 ⇒
π3

π1
≤ 1 < µ3

µ1
⇒ ∂C

∂π3
< 0 given a π2, by Equation F.126 .

(F.177)
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In this case, min π3 = π2. So the maximised loss coverage ratio locates on the

line π2 = π3. Therefore, the maximisation problem becomes to find out the

maximum loss coverage ratio by pooling the middle and the high risk-groups

with one premium, and charging the low risk-group another premium. This

is saying that,

maxC(π) becomes maxC(π1, π2 = π3), (F.178)

subject to 0 < λ < 1. Using the result in Theorem F.2.7, loss coverage ratio

is maximised by maximising π1. In Figure F.5, the maximised loss coverage

ratio locates on the far-right end of the red dashed curve (where π2 = π3) in

which case, π1 → µ3 = 0.04.

Theorem F.2.11. If 0 < λ < 1, and µ1 ≤ π2 ≤ π1 ≤ π3 ≤ µ3 is allowed, a

premium strategy that pools the low and the high risk-groups, and minimises

the premium for the middle risk-group maximises loss coverage ratio.

Proof. At a given π3,

π2 ≤ π1 ⇒
π2

π1
≤ 1 < µ2

µ1
⇒ ∂C

∂π1
> 0, by equation F.127 , (F.179)

i.e. at a given π3, C is an increasing function of π1.

Because max π1 = π3, maximising C(π) becomes maximising C(π1 =

π3, π2), i.e. the maximised loss coverage ratio locates on the dark green

dashed curve π1 = π3 in Figure F.5.

The equilibrium condition in Equation F.112 becomes:

α1

(
µ1

π1

)λ
(π1−µ1) +α2

(
µ2

π2

)λ
(π2−µ2) +α3

(
µ3

π1

)λ
(π1−µ3) = 0. (F.180)

307



Differentiate both sides of the above equation with respect to π1, gives:

∂π2

∂π1
= −

α1
µ1

(
µ1
π1

)λ+1
[(1− λ)π1 + λµ1] + α3

µ3

(
µ3
π1

)λ+1
[(1− λ)π1 + λµ3]

α2
µ2

(
µ2
π2

)λ+1
[(1− λ)π2 + λµ2]

< 0,

(F.181)

when 0 < λ < 1. This result indicates that, to maintain the equilibrium

position, increasing π1 means π2 has to be reduced.

Note that at a given π3 (which equals π1 in this scenario), π2
π1
< µ2

µ1
also

indicates that ∂C
∂π2

< 0 (by Equation F.127). Therefore, the maximisation

problem turns out to be to find out the maximum loss coverage ratio by

pooling the low and the high risk-groups with one premium, and minimising

the premium charged to the middle risk-group; while at the meantime, the

equilibrium position is maintained (because decreasing π2 will automatically

increase π1).

Note that in this case, π2 ≤ π1 = π3, thus loss coverage (ratio) is max-

imised by minimising π2, i.e. when π2 → µ1. In Figure F.5, the maximised

loss coverage ratio locates on the far-right end of the dark green dashed curve

(where π1 = π3) in which case, π2 → µ1 = 0.01.

Theorem F.2.12. If 0 < λ < 1, and µ1 ≤ π1 ≤ π3 ≤ π2 ≤ µ3 is allowed, a

premium strategy that pools the low and the high risk-groups, and maximises

the premium for the middle risk-group maximises loss coverage ratio.

Proof.

π3 ≤ π2 ⇒
π3

π2
≤ 1 < µ3

µ2
⇒ ∂C

∂π3
< 0 by Equation F.125 . (F.182)

So, given a π1, loss coverage ratio C is a decreasing function of π3.
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Because min π3 = π1, maximising C(π) becomes maximising C(π1 =

π3, π2), i.e. the maximised loss coverage ratio locates on the dark green

dashed curve π1 = π3 in Figure F.5.

The equilibrium condition in Equation F.112 becomes:

α1

(
µ1

π1

)λ
(π1−µ1) +α2

(
µ2

π2

)λ
(π2−µ2) +α3

(
µ3

π1

)λ
(π1−µ3) = 0. (F.183)

Differentiate both sides of the above equation with respect to π1, gives:

∂π2

∂π1
= −

α1
µ1

(
µ1
π1

)λ+1
[(1− λ)π1 + λµ1] + α3

µ3

(
µ3
π1

)λ+1
[(1− λ)π1 + λµ3]

α2
µ2

(
µ2
π2

)λ+1
[(1− λ)π2 + λµ2]

< 0,

(F.184)

when 0 < λ < 1. This result indicates that, to maintain the equilibrium

position, increasing π1 means π2 has to be reduced.

Note that at a given π1 (which equals π3 in this scenario), π3
π2
< µ3

µ2
also

indicates that ∂C
∂π2

> 0 (by Equation F.127). Therefore, the maximisation

problem turns out to be to find out the maximum loss coverage ratio by

pooling the low and the high risk-groups with one premium, and maximising

the premium charged to the middle risk-group; while at the meantime, the

equilibrium position is maintained (because decreasing π2 will automatically

increase π1).

Note that in this case, π2 ≥ π1 = π3, thus loss coverage (ratio) is max-

imised by maximising π2, i.e. when π2 → µ3. In Figure F.5, the maximised

loss coverage ratio locates on the far-left end of the dark green dashed curve

(where π1 = π3) in which case, π2 → µ3 = 0.04.
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