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“Every great improvement… has come after repeated failures… Virtually nothing comes out right 

the first time.  Failures, repeated failures, are finger posts on the road to achievement. “ 
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ABSTRACT 

In the present technological age, where cyber-risk ranks alongside natural and man-made 

disasters and catastrophes – in terms of global economic loss – businesses and insurers alike 

are grappling with fundamental risk management issues concerning the quantification of 

cyber-risk, and the dilemma as to how best to mitigate this risk. 

To this end, the present research deals with data, analysis, and models with the aim of 

quantifying and understanding cyber-risk – often described as ‘holy grail’ territory in the 

realm of cyber-insurance and IT security.  In this dissertation, nonparametric severity 

models associated with cyber-related loss data – identified from several competing sources 

– and accompanying parametric large-loss components, are determined, and examined.  

Ultimately, in the context of analogous cyber-coverage, cyber-risk is quantified through 

various types and levels of risk adjustment for (pure-risk) Increased Limit Factors, based 

on applications of actuarially founded aggregate loss models in the presence of various 

forms of correlation. 

By doing so, insight is gained into the nature and distribution of volatile severity risk, 

correlated aggregate loss, and associated pure-risk limit factors.  Original contributions 

include:  

• Application of versatile loss models with empirical support and the development of 

practical model selection techniques  

• Derivation of model confidence sets for large cyber-losses  

• Applications of existing techniques and models that, according to models identified as 

part of a systematic review and, to the best knowledge of the author, have not featured 

in cyber related academia 
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Chapter 1  

1Introduction 

“Cyberspace is real … so are the risks that come with it.  It’s the great irony of our Information 

Age … the very technologies that empower us … also empower those who would disrupt and 

destroy… “ 

    (Obama, 2009) 

1.1 Background 

Cyber-risk, an umbrella term for risks associated with technology and information (CRO 

Forum, 2014: 3), is a significant threat with an estimated cost to the worldwide economy 

of over $600bn (McAfee & Center for Strategic and International Studies, 2018: 4).  It 

encompasses a wide host of events caused by inadvertent activities (e.g. loss of data by 

employees, failure to maintain IT security to protect systems against unauthorised access, 

use, disruption, destruction, etc.), and criminal threats (e.g. phishing, social engineering, 

etc.) that can lead to various types of loss (e.g. remediation costs, business interruption, 

etc.), damage (from physical hardware all the way to diminished reputation) and liability 

(e.g. media, privacy, security, etc.).  Notable examples of publicised events range from 

targeted breaches (e.g. Sony Pictures – Gara & Warzel (2014)) to large scale cyber-attacks 

such as WannaCry, ransomware that holds a computer hostage for bitcoins and ultimately 

disrupts "critical and strategic infrastructure across the world..." (World Economic Forum, 

2018: 15). 
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There are a number of challenges to surmount: unilateral efforts in regard to managing 

cyber-risk are apparently futile (World Economic Forum, 2016: 78), whilst industrywide 

efforts require a consensus among many who remain divided as how best to contend with 

cyber-risk (e.g. polarised views concerning IT security and cyber-insurance (Böhme & 

Kataria, 2006: 3)).  Uncertainty in the realm of a nascent insurance market has led to 

conservative underwriting; premiums are perceived to be large in relation to the level of 

cover – and thus low product penetration (UK Government and Industry, 2015: 22); and 

restricted coverage (high deductibles, low policy limits) that fails to protect firms against 

low frequency events with volatile severity (Solomon, 2017: 7).   Similarly, cyber-insurers 

have to contend with a “reinsurance barrier” (Baer & Parkinson, 2007) – proposals include 

risk-linked securities and other forms of alternative risk transfer (CRO Forum, 2014: 39; 

BNY Mellon, 2016: 13).  Many of these obstacles have been attributed to the following 

characteristics associated with cyber-risk: 

1. Lack of reliable (frequency, but mainly severity) data for modelling and quantifying 

cyber-risk in an ‘actuarial pricing’ context (Radcliff, 2001; Cashell et al., 2004; Kesan, 

Majuca & Yurcik, 2005; Böhme & Schwartz, 2010) 

2. The correlated nature of cyber-risk (Böhme & Schwartz, 2010; Baldwin et al., 2012; 

Mukhopadhyay et al., 2013), which has kindled fears of a global cyber-storm (US 

Department of Homeland Security, 2012: 1) precipitated by: widespread use of the 

internet, relatively few Internet Service Providers (ISPs), and reliance upon common 

IT software (Böhme, 2005; Böhme & Kataria, 2006; Wang & Kim, 2009; Laszka, 

Felegyhazi & Buttyan, 2014) 

3. Other features associated with cyber-risk such as interdependence (i.e. degree of 

‘interconnectedness’ between networks and systems) – (Kunreuther & Heal, 2002; Heal 

& Kunreuther, 2004; Ogut, Raghunathan & Menon, 2005a; Secretariat of the Security 

and Defence Committee Eteläinen, 2013; Laszka, Felegyhazi & Buttyan, 2014) and 

information asymmetry (Bandyopadhyay, Mookerjee & Rao, 2010; Böhme & 

Schwartz, 2010) 

In academic circles, these factors have evidently influenced the development of cyber-risk 

models in several ways.  Due to data related issues, frequency models appear to be more 

prevalent than severity (i.e. cost) models; aggregate loss models often assume constant 

severity leading to (possibly mixed) binomial distributions.  Overall, the level of empirical 
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support is egregiously low.  Correlation and interdependence have led to the consideration 

of copula (H. Herath & T. Herath, 2011), Markov processes (Barracchini & Addessi, 2014), 

and Bayesian belief nets (Mukhopadhyay et al., 2013).  Many of these models, having been 

developed beyond the framework of economics and computer science, are abstracted from 

several peculiarities associated with aggregate cyber-risk – especially in the context of 

cyber-insurance and risk quantification: 

• Aggregate loss distributions, risk measures (e.g. variance and value at risk), tail 

dependence, and the effects of correlation and interdependence in terms of different 

sections of insurance cover (e.g. business interruption, data breach remediation, etc.) 

have received little attention 

• Loss models are generally underdeveloped in the field of cyber-science – applications 

concerning (much required) risk theory and aggregate loss modelling techniques have 

been largely neglected 

• There is very little evidence in academic cyber related research of Increased Limit 

Factors (ILFs) which, in terms of import, are highly relevant given concerns in regard 

to ‘low policy limits’ and ‘accurate pricing’  

Nominal (academic) contributions from the actuarial domain can be found – despite the 

potential value that can be demonstrated when data is sparse (Solomon, 2017).  

1.2 Research problem and objectives 

The research problem appertains to key criticisms in respect of the present state of the 

cyber-insurance market, specifically regarding data and pricing issues, coverage limits, and 

correlated risks.  The points at issue are apparent market deficiency in respect of coverage 

that is predominantly regarded as being inadequate with low policy limits which fail to 

provide the level of protection firms require, sparse data, and the related pricing concerns.  

This appears to correspond with a lack of academic loss models for determining ILFs in 

respect of correlated portfolios of cyber-risk, and primarily limited empirical support.  

Accordingly, in the context of cyber-risk, the present research objectives are as follows:  

1. To review relevant sources of information and data, and, based on this, identify sources 

most suitable for deriving severity and aggregate loss distributions, and determining 



Chapter 1   Introduction  

James Bardopoulos   1.4 

implied ILFs 

2. To model and explore key attributes associated with underlying loss distributions and 

the effect of correlation on these and associated risk adjustments 

1.3 Notational and other conventions 

In the matter of this research terms with a specific meaning or definition are generally 

italicised (e.g. limit factor, ILF, and discount factor).  The prefix ‘cyber-’ typically serves 

as a hyphenated modifier that relates the meaning of a word to information (e.g. storage, 

processing, communication) or technology (e.g. network, computer) – (Secretariat of the 

Security and Defence Committee Eteläinen, 2013: 12).  Examples include cyber-risk, 

cyber-insurance; and cyber-attack.   

In terms of notation, upper case font is typically used for variables and distributions, 

observations and density functions are in lower case, matrices and vectors are in bold font.  

The set of integers greater than zero is denoted by .+   For random variable X  with 

distribution, ,F  ~X F  may be used (depending on the context, ' ~ '  may also be used to 

indicate approximate or rounded calculations); ~dX Y  implies random variables X  and Y  

have the same distribution whilst X Y⊥  implies they are independently distributed.  The 

indicator 
{ }1 1A =  if a given event A  occurs (failing which, 

{ }1 0A = ).   

1.4 Scope and capacity of research 

Many of the results produced (including ILFs, distributions, etc.) and assumptions made 

(e.g. loss count parameters, inflation) within the present research have been formulated 

based on specific interpretations, and purely for academic interests.  There is no warranty 

for the applicability (or reliability) in other situations or contexts – the results depend 

critically upon the accuracy of the underlying data collated – details of those responsible 

for the collection and preparation of such data, in the first instance, are described 

accordingly in the relevant data section.  This research has not been commissioned – there 

is no designation of any recipient, or entitlement to rely upon any of the results.  The views 
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and opinions expressed in the present research are purely those of the author, and do not 

necessarily reflect those of any other individuals, professional body or organisation. 

1.5 Outline of research 

Chapter 2 reviews implemented cyber-risk models (and accompanying data, if utilised), in 

the context of a model taxonomy by field of study and design.  Existing methods for 

incorporating special features associated with cyber-risk (e.g. information asymmetry, 

correlation, etc.) into models are described, followed by respective summaries in terms of 

relevant underlying variables (loss count or frequency of attacks, severity of cyber-losses 

and associated aggregate loss variables) and distributions.  A wider investigation of data 

sources is performed for the purpose of identifying a source most suitable for ILF related 

analysis.  This data source is taken forward into Chapter 3 for further scrutiny and 

preparation.   

Chapter 3 describes the data identified in Chapter 2 – data fields are defined in terms of 

underlying cost activities, accompanied by examples of plausible cyber-insurance products 

that might cover such costs.  These are revisited to formulate a hypothetical cyber-policy 

after considering regulation, specific correlations pertaining to the data, and after describing 

survey methodology and inflation adjustments.  Once collated and prepared, and the data 

is ready for subsequent ILF related analyses, a preliminary exploration is performed, 

highlighting key statistics, comparing data before and after the application of inflation 

adjustments, with consideration of the extent of correlation between various cost categories. 

Chapter 4 introduces by Risk Theory, followed by ILFs and underlying variables that form 

part of mathematical expressions to reflect risk and inflation.  Attention is then turned to 

severity models, which are described in terms of composite distributions, model selection 

procedures, and tail behaviour, followed by a description of fundamental tools relating to 

aggregate loss models, including characteristic functions and related transforms.  This 

precedes the description of the aggregate loss models with special consideration of 

associated ILFs, before closing with a simulation algorithm that is utilised as part of the 

validation in Chapter 5. 
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Chapter 5 provides the results of models in Chapter 4, based on ‘empirical’ data from 

Chapter 3, and is divided into two key sections:  

1. Specification of severity distributions 

2. Results and analysis, that include derivation of ILFs, aggregate loss distributions, and 

accompanying investigations pertaining to risk adjustments and correlation scenarios, 

and validations that consider internal and external consistency of results  

Chapter 6 evaluates outcomes against initial objectives (§1.2); summarises contributions 

and limitations; followed by conclusions, recommendations, and, in finality, proffers 

direction in terms of future research.   

Appendix A describes the search strategy utilised in Chapter 2 for the model review; 

Appendix B includes supporting material for the data in Chapter 3;  Appendix C provides 

supplementary theory that is related to Chapter 4; Appendix D pertains to the models and 

results in Chapters 4–5; Appendix E provides information regarding cyber-risk and cyber-

insurance. 
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Chapter 2   

2Review of models and data sources 

“You have to know the past to understand the present.”   

    (Sagan, 1983: 41)  

 

Distinguishing features of cyber-risk are discussed in §2.1, followed by a review of 

deployed cyber-risk models in §2.2–§2.3, and accompanying data sources which, in the 

closing of this chapter, are considered in §2.4 as part of a data identification exercise and 

precursor to Chapter 3.   

In terms of the review, Figure 2.1 is a chronological taxonomy that depicts cyber-risk 

models under the following four broad headings: 

• Economic – models that consider the decisions and behaviours of individuals and 

organisations in the context of IT security and cyber-insurance, which are often brought 

under the lens of insurance economics for “decision making under risk, risk 

management, and demand for insurance” (Zweifel & Eisen, 2012).  These typically 

focus on the “demand-side” (Böhme & Schwartz, 2010: 2) of trade-off decisions (e.g. 

for allocating resources between insurance and IT security) using Utility or Decision 

theory; in a few cases, insurance premiums are modelled as an output as opposed to an 

input alone (Kesan, Majuca & Yurcik, 2008; Yannacopoulos et al., 2008) 

• Correlation based – models that include copula and regression techniques, with some 

models that straddle the Economic sphere (Böhme, 2005; Böhme & Kataria, 2006; Liu, 

Tanaka & Matsuura, 2007) 
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• Operational Risk (OR) – models that stem from OR quantification techniques such as 

those used to determine regulatory capital requirements, (European Commission, 

2017).  These encompass Extreme Value Theory (EVT) and risk theory (§4.2.1) 

• Epidemic (and related) – models that utilise Markov processes and regression 

techniques, and are analogous to epidemiological compartmental (van Mieghem, Omic 

& Kooij, 2009; Parker & Farkas, 2011) or health insurance (Barracchini & Addessi, 

2014) models 

Furthermore, models and supporting data are subclassified according to the accompanying 

icon key.  In particular, the type (e.g. aggregate loss, frequency model, etc. – icon shape) 

and focus area (e.g. demand-side, financial loss, etc. – icon colour) of models are indicated, 

as is the nature of any supporting data (icon fill type), which shall be considered in further 

detail in terms of the following factors: 

• Content: frequency (e.g. cyber-attack or loss count) and severity (cost associated with 

cyber-incident) and exposure to risk (e.g. internet revenue per year; number of network 

connections: Appendix E.7).  When summarised in respect of individual units of 

exposure, such content is referred to as being at an individual level of detail (otherwise 

it is regarded as being at an aggregate level) 

• Span: number of years between the earliest and most recent year of data 

• Age: number of years between the most recent year of data and a given reference date 

which is taken as the publication date of literature in the model review 

These factors are used in §2.4 (with a modified ‘reference’ date) to gauge the potential 

suitability of various data sources; specific definitions (e.g. frequency, severity, loss, etc.) 

are then considered in the context of the data identified in this way.  The scope of the model 

review includes mathematical models and supporting data in peer-reviewed studies (i.e. 

articles, journals, books, etc.), published between 1st January 2000 and 1st July 2016 

(hereafter, review period), on the topics of (cyber-risk) management (e.g. IT security, 

insurance, regulatory intervention, etc.) and statistical assessment and modelling (e.g. risk 

measures, distributions, etc.).  Library journals considered for this purpose are specified in 

Appendix A.1, together with the underlying search strings that are used to identify studies 

for full text review.  Select studies that are related to, or serve as, predecessors for 

subsequent cyber-risk models are also included in the model review.  
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Figure 2.1 Overview of cyber-risk models Text colour: common model types. Abbreviations: Bank for 

International Settlements [BIS] (2003); Honeypot – Pouget, Dacier & Pham (2005); ICSA: International 

Computer Security Association – Bridwell (2004); Ministry of Economy Trade Industry [METI] (2004); 

Operational Riskdata eXchange Association [ORX] (2017); SysAdmin, Audit, Admin and Security [SANS] 

(2019); World Development Indicators Database (WDID): World Bank (2019).  SEIR: Susceptible-Exposed-

Infected-Recovered, SIS: Susceptible-Infected-Susceptible.  Note (1): undisclosed source. 
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Soo Hoo (2000)
Models: Decision Analysis, 

Utility theory

Data: None

Gordon & Loeb (2002)
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model, Utility theory

Data: None

Mukhopadhyay et al. 
(2005) 

Model: Utility theory

Data: None

Böhme (2005)
Models: Mixed model, 

Utility theory

Data: None

Mukhopadhyay et al. 
(2013) Models: BBN, 

Compound, Copula.  

Data: Security log files(1)

Baldwin et al. (2012)
Model: Brownian motion

Data: SANS (2019)

Böhme & Kataria (2006)
Models: Beta-Binomial, 

Copula, Mixed model

Data: Honeypot, 2005

Liu, Tanaka & Matsuura 
(2007)

Model: Regression

Data: METI (2004)

Wang & Kim (2009)
Model: Regression

Data source: SANS (2019), 
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Cope & Antonini (2008)
Model: Compound

Data: ORX (2017)

Rachev, Chernobai & 
Menn (2006)

Model: Compound

Data: BIS (2003)

Biener, Eling & Wirfs 
(2015). Models: EVT, 
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Data: SAS (2015)

Laube & Böhme (2016)
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Data: None

Hess (2011)
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Data: SAS (2015)
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Data: None
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Models: Markov, 
Compound Data: None

van Mieghem, Omic & 
Kooij (2009)
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Data: None

Parker & Farkas (2011)
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Data: None
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Data: None

Yannacopoulos et al. 
(2008)

Models: Utility theory, 
Compound Data: None



Chapter 2  Review of models and data sources  

James Bardopoulos   2.4 

In this figure, common font colour (unrelated to icon colour) indicates similar techniques 

(e.g. copula, regression, etc.) or theory (e.g. risk theory, utility theory, etc.); connecting 

lines show methods that have been incorporated into subsequent models; and years 

associated with data sources are not necessarily related to underlying data periods (e.g. 

SysAdmin, Audit, Admin and Security [SANS] (2019) data relates to years 2003–2007).  

Where available, archived webpages have been referenced in R.1; refer to Table A.2 for 

data sources and corresponding references.  

As can be seen, most economic (and all epidemic) models have not incorporated empirical 

data (hence icons with empty fill); in contrast, data has featured in all OR models (i.e. solid, 

striped fill colour), however, only Biener, Eling & Wirfs (2015) focussed on cyber-specific 

data (i.e. solid).  A blue-green icon is used for Yannacopoulos et al. (2008) – (i.e. demand-

side model with consideration for statistical distributions).   

2.1 Special features 

This section provides an overview of key cyber-risk features which sets the context for the 

models concerned (Figure 2.1: orange icons; §2.2).  These features have been described as 

being central to cyber-insurance (Romanosky et al., 2017), some of which include causes 

of “classic market failures in economics” (Laszka, Felegyhazi & Buttyan, 2014: 3); whilst 

others (in isolation or combination) are more unique to cyber-insurance and IT security.   

Information asymmetry 

Information asymmetry, an imbalance of knowledge or information, stems from economic 

theory on quality uncertainty (Akerlof, 1970) and forms the basis of several studies in the 

model review.  It incorporates phenomena that underpin a number of rudimentary actuarial 

principles (Allaben et al., 2008: 6); examples, commonplace in insurance and associated 

cyber-literature, include: 

• Moral hazard, such as the potential for an insured party to alter its behaviour, upon 

insurance, in a way that adversely affects the insurer.  This tends to increase the 

probability or severity (or both) of an insured loss.  Security, in the context of cyber-

risk, can have a similar effect (e.g. careless browsing, induced by online protection 
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software) – (Laszka, Felegyhazi & Buttyan, 2014: 5).  Key tools for managing this 

include risk sharing mechanisms such as insurance deductibles (described further in 

§4.2.2) and premium ‘incentives’.  In terms of cyber-risk, security measures might be 

encouraged through partnerships – refer to Gordon, Loeb & Sohail (2003: 83) for 

examples in this regard  

• Adverse selection is when material information is not fully accounted for (prior to 

insurance) due to certain restrictions (e.g. legal, regulatory, etc.) or asymmetric 

information.  This can lead to an imbalance within an exposure group.  Risk assessments 

and differentiated premiums are typically used by insurers to manage this, however, the 

ability to do so in terms of cyber-risk is impeded by the apparent ‘under reporting’ of 

security incidents (Gordon, Loeb & Sohail, 2003; Laszka, Felegyhazi & Buttyan, 

2014).  Whilst regulatory developments regarding disclosure (p3.3) have presumably 

narrowed the extent of this, they do not appear to have completely resolved the issue 

Interdependence 

Interdependence associated with cyber-risk can manifest in several ways.  When claimed 

to be at the root of IT security (hereafter, security) issues (Laszka, Felegyhazi & Buttyan, 

2014: 3), it typically refers to the degree of interconnectedness – the situation in which the 

security of one network (or ‘player’, in the context of game theory) is influenced by that of 

another.  This has been attributed to some of the following:  

• Increased probability of an incident (e.g. security breach) leading to increased 

premiums and demand for insurance (Ogut, Raghunathan & Menon, 2005b: 3–4); and 

exacerbated effects of accumulations of risk (e.g. by vulnerability: Distributed Denial 

of Service, DDoS attacks) – (Romanosky et al., 2017), leading to similar outcomes 

• Positive ‘externalities’, whereby actions are beneficial to both the enactor and others, 

which reduce firms’ incentives to invest in security as a means of self-protection (i.e. 

‘free-rider’ problem), leading to general under-investment in this regard (Laszka, 

Felegyhazi & Buttyan, 2014, sec. 2.1) 

Interdependence can also relate to organisational structures, for instance, vertically 

integrated processes and activities.  This can have singular implications for business 

interruption coverage in the realm of cyber-insurance (e.g. losses across several firms can 

erode a common policy limit), which is an area of increasing concern (Marsh, 2015: 10). 



Chapter 2  Review of models and data sources  

James Bardopoulos   2.6 

Correlation  

Various forms of correlation have been considered in the context of cyber-risk.  Earlier 

studies have explored the effects of correlated attacks and failures within and across firms 

with extensions to aggregate correlation within insurance portfolios (Böhme & Kataria, 

2006).  Other models have focussed on correlation between IT assets (number of 

computers) and severity of loss (H. Herath & T. Herath, 2011), and the incidence of targeted 

attacks at the level of individual ports (Baldwin et al., 2012).   

Peculiarities associated with correlation pertain to aspects such as self-propagating code, 

standardised software with common vulnerabilities, and the culture of monopolistic IT 

markets.  Consider the example of antivirus software that can screen for and quarantine 

viruses before they spread to other computers, preventing damage such as deletion or 

corruption of files.  In this way, the rate of computer failure due to viruses may successfully 

be reduced; however, this can also lead to accumulations (Böhme & Kataria, 2006: 3): 

• The same code can be used to attack computers that are installed with the same version 

of software, due to common vulnerabilities (i.e. flaws, 'bugs') in that software (news of 

which often spreads quickly) 

• Antivirus updates can usually be downloaded from a common website (e.g. hosted by 

the software vendor).  If this website is compromised it can be used as a host for 

launching attacks against many users 

2.2 Model review 

The earliest cyber-risk models that fall within the review period can be seen in Figure 2.1 

to have originated from the economic field: 

• Soo Hoo (2000) formulated scenarios in a decision analysis with point estimates (i.e. 

as opposed to ‘data’) based on computer security surveys and considered stochastic 

dominance in respect of various utility curves.  Count and severity variables were 

modelled using simplistic bounded distributions (e.g. uniform, triangular); assumptions 

were required in respect of initial wealth, utility functions, and the various outcomes 

and probabilities associated with decision trees 

• Gordon & Loeb (2002) developed a seminal model for determining the optimal level 
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of investment security to protect a given set of information technology assets  

• Mukhopadhyay et al. (2005: 168) used a decision tree approach in a “utility method 

backed premium calculation” where claim frequency and severity were assumed to be 

stochastic variables (with unspecified distributions) 

One of the first (and few) pricing models with empirical support was developed as follows:  

• Böhme (2005, sec. 3) proposed a ‘supply-side’ model for insurance premiums, based 

on an aggregate loss distribution (mixed binomial, Example 4.6 later) associated with 

Bernoulli risks with latent correlation and a constant claim severity of one (hereafter, 

‘unitised’ severity).  This was combined with a ‘demand-side’ perspective based on 

Constant Relative Risk Aversion (CRRA) utility curves, to explore conditions for a 

market to be feasible.  No data was modelled 

• Böhme & Kataria (2006) expanded upon this work by exploring correlation within a 

firm (beta binomial failures) and across firms (using a t-copula), based on honeynet 

data (Pouget, Dacier & Pham, 2005) – courtesy Leurre.com, Eurecom – in respect of 

count (attacks) and exposure (total active ‘sensors’) which spanned less than 3 years 

(1st February 2003–30th September 2005) but was relatively up to date 

This data was collected using honeypots (decoy computer systems) which are dedicated 

online hosts that simulate the activities of vulnerable systems and track network activity.  

A premium formula was considered in both cases – this incorporated a margin for “safety 

capital” (Böhme, 2005: 7; Böhme & Kataria, 2006: 10) which was based on the opportunity 

cost of capital (e.g. to protect against a 1 in 200 year event).   

Loss distributions were evidently more established in the OR field, presumably due to the 

greater availability of relevant data: 

• Rachev, Chernobai & Menn (2006, sec. 6.2) fitted various severity distributions and a 

homogeneous Poisson distribution (i.e. for count) to operational losses that were 

obtained from an undisclosed “major European” data provider.  An empirical analysis 

was also performed in respect of Bank for International Settlements [BIS] (2003) OR 

data that spanned 1 year and was 4 years out of date.  Exposure data (e.g. gross income, 

employees, etc.), which was available in BIS (2003), was not incorporated.  Aggregate 

loss models were considered, however, these were not applied to the data 
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• Cope & Antonini (2008) measured empirical tail correlation in respect of different 

‘business lines’ (e.g. finance, banking) and event types (e.g. malicious damage, failure), 

based on Operational Riskdata eXchange Association [ORX] (2017) data which 

covered 6 years (2002–2007) and was under 1 year old.  Count and severity data were 

not modelled, although an empirical distribution was considered for aggregate loss 

BIS (2003) data was based on a loss collection exercise that was carried out in the year 

2001 across 89 banking firm members; ORX (2017) represented a collection and mutual 

exchange of operational loss information.   

Concurrent to the formation of this groundwork for cyber-specific OR models, progress 

continued to be made in the Economic field where premiums were considered in the context 

of demand-side models based on utility theory:  

• Kesan, Majuca & Yurcik (2008) constructed an ‘asset pricing’ model to measure 

welfare gains associated with cyber-insurance, based on CRRA utility; this was used to 

express the total premium (per dollar cover) a company would be ready to pay as a 

function of its aversion to risk (i.e. curvature of utility curve) and income level 

• Yannacopoulos et al. (2008) proposed an aggregate loss model in a Collective Risk 

framework (§4.2.1) that utilised a Random Utility Model (RUM) to reflect subjectivity 

associated with the ‘value’ (i.e. severity) of privacy violations in the context of 

indemnity insurance.  Simulation was used to illustrate this in the absence of data 

Economic models started to place greater emphasis on correlation with techniques such as 

regression; unlike  demand-side models (Kesan, Majuca & Yurcik, 2008; Yannacopoulos 

et al., 2008) many of these had empirical support: 

• Liu, Tanaka & Matsuura (2007), motivated by Gordon & Loeb (2002),  used regression 

to analyse the effect of the number of email accounts on breach probability.  This was 

based on Ministry of Economy Trade Industry [METI] (2004) survey data which was 

4 years out of date and reportedly spanned 2 years (but, in actuality, only spanned 1 

year: Apr 2002 – Mar 2003).  Aggregate count alone was modelled 

• Wang & Kim (2009) used regression to describe spatial autocorrelations and the effect 

of the status and timing of joining an IT security convention.  Count data (number of 

attacks) was sourced from a community-based firewall log system, DShield (SANS, 
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2019).  This was between 1–2 years old and spanned 5 years (i.e. 2003–2007).  Severity 

data was not explicitly modelled.  Several exposure parameters (e.g. Gross Domestic 

Product, GDP, per capita) were based on World Development Indicators Database 

(WDID) of the World Bank (2019).  It is unclear as to what period this data related; 

however, such indicators are available from as far back as 1960 

METI (2004) data (internet archive; in Japanese) concerned the conditions of IT usage for 

businesses; DShield is the data collection engine underlying the so-called ‘early warning 

system’ for the internet, ‘Internet Storm Centre’, operated by SANS (2019).   

Other progress in this field included an interesting model for depicting information 

asymmetry in the context of insurance and secondary losses:  

• Bandyopadhyay, Mookerjee & Rao (2010) used decision analysis and utility theory to 

illustrate information asymmetry as the propagation of information levels between the 

parties (first, second) of insurance contracts.  No data was modelled, and the severity 

of loss was assumed to have a uniform distribution.  The probability of loss (frequency) 

was considered, however, no distributions were mentioned in this regard; aggregate loss 

did not come into question 

Within this framework the existence of secondary losses, attributable to the disclosure of 

cyber-attacks (e.g. loss of stakeholder confidence), was portrayed as having a similar effect 

on the expected cost of claims (and thus risk premium) as a deductible of equal value.  

Accordingly, it was argued that information asymmetry between the insured and an 

‘uninformed’ insurer (in terms of breach probability and secondary loss) generally leads to 

overstated premiums.  This assumed that (said) nondisclosure was within the “bounds of 

accounting norms and…regulatory obligations” (Bandyopadhyay, Mookerjee & Rao, 

2010: 7).   

Attempts to model the peculiarities associated with cyber-risk started to emanate from the 

epidemiological field: 

• Parker & Farkas (2011) depicted cyber-risk models as being analogous to 

compartmental models such as Susceptible-Exposed-Infected-Recovered (SEIR).  

However, concepts and approaches were purely descriptive; no mathematical 

representations were made.  Refer to van Mieghem, Omic & Kooij (2009) for a 
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variation (Susceptible-Infected-Susceptible, SIS) that assumed a Poisson arrival process 

and theoretical underpinnings (e.g. Markov; mean field) in this regard 

• Barracchini & Addessi (2014) described an analogous health-insurance model based on 

Markov processes and Kolmogorov (forward, backward) equations to capture the effect 

of computer components that transition between different states of operability 

Neither of these (Parker & Farkas, 2011; Barracchini & Addessi, 2014) made use of 

supporting data.  Indeed, one of the few examples of the use of ‘empirical data’ for 

modelling cyber-insurance premiums can be found in the following (‘correlation’) model: 

• H. Herath & T. Herath (2011) estimated “actuarial premiums” for different levels of 

cover by simulating bivariate outcomes (count of computers infected by viruses; 

associated costs) with the aid of a copula.  Data was based on the International 

Computer Security Association (ICSA) survey, reported by Bridwell (2004) – hereafter, 

ICSA 2004 – which covered a single year (2003) and was 9 years out of date 

A Poisson process was considered for this, however, aggregate loss was not due to 

simplifying assumptions in respect of insured events (certain) and coverage (single claim 

per policy period).  Data deficiency was highlighted as one of the key limitations – this is 

evident given that only 15 data points were used to fit distributions (with little information 

as to how costs were estimated).  

Progression towards the development of a cyber-specific OR model gained momentum as 

proponents of OR modelling techniques (Rachev, Chernobai & Menn, 2006; Cope & 

Antonini, 2008) aimed their sites at an operational loss database much larger than 

previously considered: 

• Hess (2011) simulated firm-level aggregate loss with a compound Poisson model 

(§4.2.4) to evaluate the impact of a financial crisis in terms of distributional 

characteristics (e.g. VaR99.9%).  Severity was modelled using a spliced density approach 

(§4.2.3.1) in respect of individual years (2007, 2009) of SAS (2015) OR data that was 

at least 2 years out of date 

This data source is purportedly the largest of its kind, featuring disclosed operational losses 

in excess of $100k, and has been considered (alongside the spliced-severity model) in 

subsequent studies (Biener, Eling & Wirfs, 2015; Eling & Wirfs, 2015, 2019).   
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At the other end of the diverse pool of cyber-risk models, relationships between 'contagious' 

threats to different security attributes were contemplated: 

• Baldwin et al. (2012) modelled temporal relationships in respect of attack count and 

variations in frequency (i.e. jumps) and intensity based on Brownian motion with the 

assumption that jumps follow a Hawkes (1971) process 

Correlation matrices were used to describe the interrelationship and behaviour between 

activities of cyber-crime on Internet Protocol services (e.g. Domain Name Setting: DNS; 

Hyper Text Transfer Protocol Secure: HTTPS) and a contagion matrix based on empirical 

data from SANS (2019), the same source considered by Wang & Kim (2009) which does 

not appear to feature severity data. 

Model complexity continued to increase within the ‘correlation based’ Economic field:  

• Mukhopadhyay et al. (2013) modelled the number of failures associated with different 

forms of security (e.g. firewall, security policy, etc.) as a multivariate normal 

distribution (i.e. Gaussian copula) from which posterior densities were determined, 

based on expert opinion and security log data (the source of which was not disclosed).   

Aggregate loss moments were based on a collective risk model in respect of a binomial 

distribution, on account of unitised severity  

As for earlier correlation models (Böhme, 2005; Böhme & Kataria, 2006), premiums 

incorporated a risk margin; however, in this case, a variance adjustment was applied (risk 

adjustments are described later, §4.11).  Premiums were also modelled in relation to 

expected utility for various degrees of risk aversion. 

Following on from previous work in the OR space (Hess, 2011), one of the first analyses 

of empirical severity data, specific to cyber-risk, was performed.  In doing so, an attempt 

to define cyber-risk was made and insurability from an Actuarial and Economic perspective 

was considered: 

• Biener, Eling & Wirfs (2015) analysed SAS (2015) operational loss incidents that 

spanned 38 years (1971–2009), although the most recent year was over 6 years out of 

date.  Whilst severity was explicitly modelled (using spliced densities, §4.2.3.1), count, 

exposure (e.g. revenue, equity), and aggregate loss data were not 
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This data comprised over 22k losses (in excess of $100k), however, less than 5% of these 

(~1k) were identified as being cyber-related and were analysed separately.  Based on this, 

Biener, Eling & Wirfs (2015: 139) concluded that cyber and non-cyber severity 

distributions were “considerably” different (in terms of their distributions).  In particular, 

the latter was claimed to be far heavier tailed than the former.  However, the veracity of 

this claim cannot be substantiated due to there being insufficient information (e.g. regarding 

treatment of inflation; effect of excess; changes in mix with respect to cyber, non-cyber 

risks; etc.).  Indeed, similar analyses based on larger samples of more recent data have 

indicated a larger Value at Risk (VaR – inverse of survival function at (0,1)  , 4.68)  at 

the 95% level for cyber-risk (Eling & Wirfs, 2019, sec. 3).   

Further, spliced densities appear to have been determined in a fashion that led to sizeable 

discontinuities (alternative approaches are considered in §4.3.2).  It can also be noted that 

whilst Biener, Eling & Wirfs (2015, n. 41) promised additional information in regard to 

certain analyses (upon request), this has not been forthcoming due to the proprietary nature 

of SAS (2015) data which typically requires licensed software (accessibility and other 

suitability criteria concerning data are considered in §2.4.2).  

In the Economic field, models were further refined in terms of several cyber-risk features: 

• Laube & Böhme (2016) explored the effect of disclosure requirements for an economy 

that comprised two (interdependent) firms (‘agents’) and a regulator (‘principal’), in 

terms of an expected cost model.   Breach probability was depicted as a function of 

security investment and incorporated parameters for interdependence and propagation 

of information (based on its effectiveness, firms’ compliance, and detection error rate).  

Costs accounted for breach, disclosure, and security investment; data was not modelled 

Concepts that came under consideration included the principal-agent problem, Nash 

equilibria, and social optima – refer to Laffont & Martimort (2009) for descriptions. 

Other models 

The following falls outside the review period (published by the Journal of Cybersecurity 

in December of 2016), however, it is included here due to its relevance for Chapter 3: 

• Edwards, Hofmeyr & Forrest (2016) fitted distributions to Privacy Rights 



Chapter 2  Review of models and data sources  

James Bardopoulos   2.13 

Clearinghouse [PVC] (2016) data to gain insight into trends, large breaches, and 

associated costs   

This data spanned 10 years (2005–2015) and was less than 1 year out of date (annual 

updates have since been provided); it includes several records, but neither exposure nor 

(reliable) severity information.  As such, a pre-parameterised log-log regression model 

(Jacobs, 2014) was utilised to model costs as a function of records. 

2.3 Summary of cyber-risk models  

Table 2.1 summarises all the models from the model review (§2.2), together with that 

proposed by Jacobs (2014) for completeness, in terms of frequency (i.e. count), severity, 

and aggregate loss distributions and models (several of which are considered further 

shortly).  Colour coded markers highlight where models or distributions are as follows: 

unnecessary due to the approach taken (e.g. Markov) or unspecified (grey); likely to 

misrepresent true underlying distribution (red); ‘data dependent’ (Klugman, Panjer & 

Willmot, 2004, sec. 4.2.4), having as many parameters as observations  (orange); or 

plausible or conventional in general insurance practice (green).  Also indicated are key 

outputs (e.g. risk premium, distributional parameters), type of exposure measure, and 

special features (§2.1).     

Counting processes and related distributions 

As this table shows, a variety of stochastic processes have been considered for count (e.g. 

number of cyber-related incidents, losses, etc.) and associated interarrival times.  The 

homogeneous Poisson process (i.e. constant rate of arrival; independent, exponentially 

distributed interarrival times) is one common example (van Mieghem, Omic & Kooij, 

2009: 2; H. Herath & T. Herath, 2011: 10).  Variations (e.g. pareto, lognormal distributed 

interarrival times) have also been proffered in the context of privacy incidents 

(Yannacopoulos et al., 2008: 211–212).   

The Bernoulli process is another example (Gordon & Loeb, 2002: 441; Böhme, 2005: 6; 

Böhme & Kataria, 2006: 6).  Non-homogeneous processes (e.g. Poisson-gamma mixture: 

negative binomial: §4.2.5.3, Table D.3 (D.4)) have also been utilised (Edwards, Hofmeyr 

& Forrest, 2016: 5).   
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Table 2.1 Extant cyber-risk models Distributions, models  ̶  green (recognised or plausible in the context of general insurance), orange (data dependent), red 

(unrealistic, misrepresentative), grey (out-of-scope, not applicable, unspecified).  Notes: 1) only moments considered.  2a) Homogeneous; non-homogeneous: 

lognormal, log-Weibull based functions; b) exponential, lognormal, Weibull, log-Weibull, Pareto αStable (log, symmetric); c) compound processes (e.g. Poisson, 

Cox) described but not applied.  3) EM – Expectation Maximisation.  4a–c) Per simulation example, RUM (utility – Pareto, random term – Normal).  5) GPD – 

Generalised Pareto Distribution. 6) Per simulation example (single claim per period, with certainty).  7) SEIR – Susceptible-Exposed-Infectious-Recovered.  8) Spliced 

(exponential, GPD), Weibull, gamma, lognormal.  9a) With parameters for interdependence, disseminated information; b) direct and disclosure costs, security 

investment.  10a) ‘Daily’ and ‘large’ respectively;   b) log-log (Jacobs, 2014).  Outputs: non-exhaustive examples.  Exposure (*): conditional (e.g. given breach).  

Features:  (considered)  (otherwise).  
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Other counting processes that have been considered (Table 2.1) include the ‘self-exciting’ 

Hawkes (i.e. ‘arrival’ rate increases due to previous arrivals), to reflect the effect of 

correlated attacks directed at systems and ports within a network (Baldwin et al., 2012), 

and the Markov, in relation to the state of damage of a device with internet connection 

(Barracchini & Addessi, 2014).  Count models have also harnessed the Poisson-gamma 

mixture (i.e. negative binomial, §4.2.5.3; Table D.3 (D.4)) to reflect serial dependence 

between loss count distributions, albeit in the context of OR as opposed to cyber-risk (Cope 

& Antonini, 2008).     

Severity and aggregate loss distributions 

Constant severity has often been assumed (Böhme, 2005: 9; Böhme & Kataria, 2006: 16; 

Mukhopadhyay et al., 2013, sec. 5.2), which has resulted in several impractical aggregate 

loss models (characterised by binomial distributions, Example 4.6).  In the case of Edwards, 

Hofmeyr & Forrest (2016: 10–11), aggregate loss was estimated using an independent 

regression model (Jacobs (2014), log skew-normal breach size) and a negative-binomial 

distributed breach count variable.  Indeed, few severity models have been based on genuine 

cyber-related loss data – in the case of (Biener, Eling & Wirfs, 2015), this entailed an 

extensive classification exercise in respect of OR data SAS (2015).  Other cases (Eling & 

Wirfs, 2015, 2019) have invariably involved similar (or identical) data and techniques such 

as spliced distributions (§4.2.3, §4.3), EVT, and bootstrap goodness-of-fit tests (Villaseñor-

Alva & González-Estrada, 2009).   

Correlation 

Copulas have been a popular choice for modelling correlation, for instance:  

• t-copula (elliptical: tail dependence) – Böhme & Kataria (2006) utilised this to model 

the dependence structure associated with a multivariate beta-binomial 

• Gumbel (Archimedean: extreme distributions) – Herath & Herath (2011) modelled a 

bivariate Weibull distribution with this type of copula 

• Gaussian (elliptical, multivariate normal: linear correlation) – Mukhopadhyay et al. 

(2013) used this to combine normal densities in respect of the number of failures 

associated with different vulnerabilities (e.g. firewall, security policy, etc.) 
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The present research, however, shall focus on the following areas that appear to have been 

neglected in terms of cyber-specific models (§2.2, Table 2.1): 

1. ILFs have yet to be produced or modelled for different types of (correlated) loss 

2. Spliced severity has yet to be considered in the context of an aggregate loss model 

3. Characteristic functions (and related transforms) have yet to be utilised as a means of  

reconstructing aggregate loss distributions (§4.2.4.4: Algorithm 4.1) 

2.4 The quest for data 

Highly desirable data for the present research includes individual severities associated with 

cyber-incidents, as this can be used to fit severity distributions, model aggregate losses (for 

given loss count assumption or process), and, ultimately, calculate ILFs (at given limits).   

Two sources considered thus far (§2.2) appear to have such information (at the desired level 

of detail):  

• SAS (2015) – as described, this source is not feasibly accessible 

• PVC (2016) – severity data, contained within text descriptions, is unreliable 

Other data that may be of use for subsequent aggregate loss models include count and 

exposure (Klugman, Panjer & Willmot, 2004, sec. 4.6.11).  In terms of the data sources 

depicted in Figure 2.1, such information is generally not sufficiently current (e.g. METI 

(2004), ICSA, Bridwell (2004)).  Further, data that can be used to validate results (e.g. 

ILFs) is of interest.  None of the sources considered thus far appear to have such 

information.  This motivates the quest for alternative (hereafter, ‘untapped’) sources. 

2.4.1 Untapped data sources 

The following sources (severity: 1–5, count: 6–8, exposure: 9–10, validation: 11) are 

identified through online searches (e.g. industry studies, insurer filings, government and 

other reports, internet traffic websites, etc.): 

1. The Internet Crime Complaint Centre (IC3) is a tool that has been in operation since 

the year 2000 for reporting internet crime complaints to the Federal Bureau of 
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Investigation [FBI] (2006).  Annual reports are published with information pertaining 

to aggregate frequency (i.e. number) and severity (i.e. cost) of internet related crimes in 

the USA, often split geographically by state; some feature exposure information (e.g. 

number of website visits).  The level of detail reported from year to year is not always 

consistent 

2. The Inter-university Consortium for Political and Social Research [ICPSR] (2012) is a 

large archive of digital social science information and can be used to analyse online 

data from the National Crime Victimisation Surveys (NCVS), in particular, the 

concatenated files of interviews (claimed to be nationally representative sample sizes 

of households in the US) conducted between 1992 to 2014.  Online queries can be used 

to retrieve frequency (e.g. number of incidents), severity (e.g. financial loss suffered), 

and exposure (e.g. number of computers or persons effected) data relating to identity 

theft crime incidents from mid-2004 to 2007 (year-end) 

3. Ponemon Institute [PON] (2019) cost of data breach survey reports feature individual 

(years 2012–2015) and aggregate level severity, representing data breach cost 

estimates; frequency information (e.g. number of attacks per period, breach probability) 

is available at an aggregate level (country-year).  Exposure is not explicitly reported, 

however, it appears to be implicitly available at an aggregate level, although various 

assumptions would be required for its estimation (e.g. dividing probability of breach 

and customer churn into customer lifetime value, associated with extrapolated lost-

business costs) 

4. NetDiligence [NetD] (2016) regards its analyses of claims data, underlying annual 

cyber-claim study reports published since 2011, as being the most comprehensive to 

date.  Reports include summary statistics (extrema, mean, median) for aggregate claim 

payment amounts and numbers, and number of company records, grouped by claim 

type (e.g. crisis service, regulatory action, legal damages, etc.), type of data (e.g. trade 

secrets, non-card financial, etc.), and year.  In this way, aggregate severity, frequency, 

and exposure data are available.  According to NetD (2016), however, claim payment 

data has been collected from underwriters of various insurers, and comprises a mixture 

of open and closed claims that do not appear to have been adjusted to allow for any 

differences in coverage terms (e.g. policy and retention limits) 

5. Lloyd’s Market Association [LMA] (2008) provides technical and professional advice 

to its members, making available to them reports of market statistics and data (e.g. loss 

ratio triangulations, premium settlement and performance reports).  Triangulation 
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reports are split by risk codes that LMA (2008) has mapped to various business and 

Organisation for Economic Co-operation and Development [OECD] (2018) classes, 

and includes information such as written premium, rates, and paid and outstanding 

claims, by quarter, for each Year of Account (YOA).  Risk codes include CY (i.e. data 

and privacy breaches) and CZ (i.e. physical property damage, which excludes data and 

other electronic IT assets) in respect of cyber-security.  Data for CY and CZ risk codes 

in triangulation reports are available for each Year of Account since 2013 and 2015 

respectively.  As such, aggregate severity (i.e. claim amounts) and exposure (i.e. 

assuming premium is a suitable proxy for this) are available to LMA (2008) members, 

however, frequency data (e.g. claim count) is apparently unavailable 

6. Identity Theft Resource Center [ITRC] (2018) has, since 2005, provided annual data 

breach information that includes the name, location, and type (e.g. financial services, 

retail, etc.) of organisation, and the date, type (e.g. payment fraud, inside attack, etc.) 

and intensity (i.e. records) of breach.  Exposure and severity, however, are lacking 

7. Verizon Data Breach Incident Response [VER] (2019), since 2008, has produced 

annual reports of analyses of Information Security incidents based on contributions 

from a number of private and public enterprises that have included ITRC (2018) and  

NetD (2016).  Interesting infographics are used to depict relationships and patterns 

between different types of threats and organisations affected, and security controls.  

However, the level of detail of information usually varies from one year to the next.  

Whilst aggregate frequency data (i.e. number of attacks and conditional attack 

probabilities for a given number of incidents) is typically available, unconditional 

exposure and cost (i.e. severity) are not 

8. Digital Attack Map [DIG] (2013) was formed through a collaboration between Jigsaw 

(Google, 2016), formerly known as Google Ideas, and ArborNetworks (2019).  DIG 

(2013) claims to host live visualisations of DDoS attacks from around the world that 

can be viewed from the 2nd of January 2015 onwards, and includes information about 

individual attacks such as occurrence date, type of attack (e.g. Transmission Control 

Protocol connection, fragmentation, etc.), their sizes (i.e. bandwidth), and the country 

source and destination of attacks.  Several other websites exist with similar cyber-attack 

visualisations (Kumar, 2017) 

9. Bureau of Economic Analysis (BEA) is an agency of the US Department of Commerce 

(2019), hereafter BEA (2019), that provides relevant exposure data (GDP by industry).  

However, count and severity data do not appear to be available.  Annual records from 
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as far back as 1930 can be found, and an online query tool exists for sourcing more up-

to-date, monthly, statistics 

10. OECD (2018) has 35 participant member countries and provides country and sector 

level exposure (e.g. GDP and internet ‘value’), as well as other potentially useful 

measures such as Product Market Regulation (PMR) in respect of Information and 

Communication Technology (ICT) which can be queried online.  Frequency and 

severity data do not appear to be available.  Depending on the query, data may span 

from between 1 year (e.g. ICT value added for the year 2011) to 57 years (e.g. GDP for 

the years 1960 to 2016, inclusive) 

11. The System for Electronic Rate and Form Filing (SERFF) was developed by the 

National Association of Insurance Commissioners [NAIC] (2019) in the mid-1990s, 

and is regularly updated with new product filings submitted by insurers to regulators 

with information such as base rates, policy wordings, ILFs, rating factors, development 

factors, and financial indicators.  As such, it may be regarded as implicitly consisting 

of a medley of frequency, severity, aggregate loss, and exposure related information 

(refer to Romanosky et al. (2017) for a content analysis)  

Untapped data sources (blue stripes), together with previously modelled sources (grey 

stripes) are illustrated in Figure 2.1 according to their age and span (reference date: 31-

Dec-16).  These factors are used, together with the content and level of detail of underlying 

data, to determine the potential suitability (in respect of the present research objectives, 

§1.2) of each data source.  One of the key features illustrated in this figure is the number of 

years that are spanned.  This is factored into account in a more detailed comparison that 

assigns objectively measurable scores in relation to desirable features (i.e. content and level 

of detail, credibility: span, and relevance: age).  Overall points are then used as a relative 

indicator of the potential suitability of data sources.   

CAS Data Management Educational Materials Working Party (2008) proffers one such 

illustration which incorporates additional factors based on Dasu & Johnson (2003: 130). 

Some of these (e.g. completeness, accessibility, accuracy) shall be considered separately 

(§2.4.3), whilst others (e.g. conformity to business rules and schema) are extraneous to 

PSSs and, therefore, are beyond the parameters of the present research. 
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Figure 2.2 Data sources: span and age Years (horizontal, top): full period each data source spans (reference date is 31st December 2016).  Blue 

bars: data sources used in literature reviewed (i.e. ‘model review’); grey: ‘untapped’ data sources.  Notes: (1) WDID of the World Bank (2019).  

(2)  (NAIC, 2019).  (3) (FBI, 2006). (4) ICSA reported by Bridwell (2004).  (5) (Pouget, Dacier & Pham, 2005). 
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2.4.2 Measuring Potential Suitability Scores (PSSs) 

Relative PSSs are derived in respect of each data source by awarding objectively 

measurable points to the following three factors:  

1. Content and level of detail 

For a given data source, a single point is awarded if severity data is available at an individual 

level of detail; if only available at an aggregate level, then half a point is awarded (if 

unavailable, no points are awarded).  The level of detail (i.e. individual or aggregate) is 

determined on the same basis as before.  Points are awarded for frequency and exposure 

data in a similar fashion; the total number of points for this factor can, therefore, range 

between zero and three.  Note that if severity data is available at an individual level of 

detail, then so too is frequency (the opposite, however, is not necessarily true).  Thus, 

sources with individual severities automatically score at least two points (one for each of 

severity and of frequency content).  This is reasonable given that individual severity data is 

deemed to be the most desirable data (and level of detail) for the intended purpose.   

Thus, this factor contributes up to three points.  The span and age of relevant data 

underlying each data source (Figure 2.1) feed into factors 2 (credibility) and 3 (relevance).  

2. Credibility factor 

Generally, more data reduces the volatility associated with estimation errors.  Campbell et 

al. (2006) perform experiments in this regard, and find that, as one could expect, datasets 

with more historical years of experience produce better estimates (i.e. in terms of accuracy) 

than those with fewer.  At least three historical years of data are generally accepted as the 

minimum for an ‘experience-based’ Actuarial pricing exercise; for ILFs, which are 

oftentimes derived in respect of broader, less homogenous risks, more years are generally 

preferable. Thus, credibility points are awarded here by considering the span (in years) of 

relevant severity, frequency, or exposure data associated with each source.  In particular, 

one point is awarded to a given source if relevant underlying available data spans at least 

five years, and half a point for three to five years; if span is less than three years, underlying 

data is deemed as failing admissibility requirements for further analysis in the present 

research (hereafter, ‘inadmissible’).   
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Thus, this factor contributes up to one point.  

3. Relevance factor 

Sufficiently current data is typically required for Actuarial analyses (e.g. experience-based 

rating, risk assessment, etc.).  Especially so when dealing with cyber-risk given the rapid 

evolution and, therefore, ‘current’ nature of technology, and the dynamic nature of business 

and regulatory environments (Kardoulaki, 2018).  Indeed, Actuarial cyber-risk assessment 

has been likened to assessing a moving target (Cullina, 2017).  As such, a given data source 

is deemed inadmissible if the age of underlying data is over two years; if age is between 

one and two years, half a point is awarded; if age is less than one year, a full point is given.   

This factor, therefore, has a similar range of points as factor 2, as can be seen in Figure 2.4.   

  

Figure 2.4 Composition of Potential Suitability Scores (PSSs) Span (for 2) based on 

number of consecutive historical years of data, subject to a maximum of years between 

the earliest such historical year, and the reference date (i.e.  31st December 2016). 
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Overall relative PSS 

For a given data source, the overall PSS is determined by summing up the points awarded 

to factors 1–3 (Figure 2.4).  This provides a useful way to initially screen all data sources 

using minimal information pertaining to relevant underlying data.  Figure 2.5 illustrates 

relative PSSs (y-axis) for all data sources shown in Figure 2.1, by year last modelled (x-

axis); ‘untapped’ data sources (§2.4.1) are grouped together as ‘previously unmodelled’.  

The PSS for SERFF (NAIC, 2019) is calculated by assigning half a point to each type of 

data (i.e. severity, frequency, and exposure), which, in terms of Figure 2.4, equates to a total 

of one and a half points for factor 1.  The underlying table used to calculate PSSs for every 

data source is provided in Table A.1). 

The accompanying icon key in Figure 2.5 indicates the following additional information: 

• Marker shape (circle, square, triangle, or diamond): for the three types of data 

considered, severity (circle) trumps exposure (square) which trumps frequency 

(triangle).  Thus, any source with severity data has a circle marker; sources with 

exposure (or both exposure and frequency), but no severity, have square markers, and 

so on.  A diamond shape can be seen for SERFF (NAIC, 2019) indicating it contains 

information for validation or verifying ILF results 

• Marker fill-colour (light-blue, grey, or clear): light-blue is used for data sources that 

have all three data types (regardless of the level of detail); grey colour is used for 

inadmissible sources (i.e. fail credibility or relevance, or both); the default fill-colour 

is otherwise clear (i.e. white) 

Marker outline (and font) colour (multiple): common colours are used for data sources that 

have comparable underlying data (e.g. purple: BIS (2003), ORX (2017), and SAS (2015) 

which comprise operational loss data); the default colour is otherwise black 

 Limitations of PSSs 

Whilst the PSSs in Figure 2.4 provide a simple and practical means to rank data sources, 

there are several limitations in using this method to identify suitable data.  For instance, 

other factors often associated with data quality (e.g. reliability of data field definitions, 

classification and reporting standards, quality control processes that aim to ensure internal 

consistency and completeness of data, etc.) would need to be considered separately. 
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Figure 2.5 Potential Suitability Scores (PSSs) Scores (y-axis) represent a relative scale of points that are based upon objectively measurable points associated with the 

following factors: 1) content and level of detail; 2) credibility (i.e. number of years of data available [span]); 3) relevance (i.e. age of most recent year of data available).  

The x-axis is based on year last modelled.  Span and age are based on potential availability of relevant underlying data (i.e. as opposed to that of actual data modelled) and 

are calculated in relation to a reference data of 31st December 2016.  Previously unmodelled sources refer to those that do not form part of the model review.  
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As such, underlying data for sources with relatively high PSSs in this figure may still be 

'substandard' in an absolute context.  There is also a natural tendency for a positive 

correlation to exist between year and PSS, as subsequent updates to previously modelled 

data sources may not necessarily have been captured.  Results should be interpreted 

accordingly.  Delays between the publication of an academic paper and the most recent 

period of underlying data are assumed to be negligible (which is unrealistic).  Furthermore, 

the weights ascribed to factors 1–3 are subjectively set and are not based on potentially 

more accurate scientific measures (e.g. based upon volume of data or underlying 

probability distributions).   

2.4.3 Identifying primary and secondary data sources 

None of the data sources considered thus far are necessarily ideal for the intended purpose 

at hand; however, some are preferable to others.  This section motivates the selection of a 

primary data source (i.e. for present research objectives, §1.2) and secondary sources to 

consider for potential support and validation of primary data and associated results. 

Primary data source 

In terms of Figure 2.5, sources with severity data are prioritised over others (i.e. exposure, 

loss count).   

As mentioned, BIS (2003), ORX (2017), and SAS (2015) are ‘comparable’ in the sense 

that they both feature operational loss data.  The latter two sources reportedly have such 

information at an individual level of detail (i.e. per event), which, as described previously, 

is highly desirable for the present purpose.  Other favourable attributes associated with 

these sources include: adherence to regulatory minimum reporting standards (relevant to 

OR); well-defined and structured ‘business line’ and ‘event type’ classifications; and 

quality control processes (Cope & Antonini, 2008).  However, as mentioned, SAS (2015) 

data is not openly available and the underlying data is not necessarily cyber-specific.   

Furthermore, PSSs indicate that these sources are inadmissible: they fail to meet predefined 

relevance criteria, with ages that range from 8 to 15 years; BIS (2003) also fails credibility 

requirements, with a span of less than one year.   
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Whilst ICPSR (2012), LMA (2008), IC3 (FBI, 2006), and NetD (2016), do have cyber-

specific severity data, it is only available at an aggregate level of detail (furthermore, LMA 

(2008) has restricted access; and ICPSR (2012) has an age of 9 years, and thus fails 

relevance criteria). 

PON (2019), on the other hand, scores highly in terms of PSS due to underlying (individual 

level) severity data which attracts maximum (relative) points for credibility (i.e. span of up 

to 12 years) and relevance (age less than one year) factors.  Other points in favour of this 

source include: 

• Cyber-specific: a wide range of data is available, such as: data breach probabilities and 

associated costs; customer churn estimates; number of records breached; and incident 

to discovery delay patterns  

• Relevance to cyber-insurance: data is based on a broad range of cost-activities that can 

be related to various types of cyber-insurance coverage 

• Comparability: data can be compared with other sources (as described shortly)  

This source is, therefore, selected as the primary source of data for ensuing analyses and 

models in the present research.   

Secondary data sources 

Now that the primary source has been decided upon, secondary sources are identified as 

follows:  

• OECD (2018): economic data for setting inflation assumptions (§3.3) 

• SERFF (NAIC, 2019): for assessing the reasonableness of ILF results (§5.3.5) 

Other secondary sources could also be identified (e.g. ITRC (2018) and PVC (2016)) to 

verify the congruency of associated data (e.g. ‘records breached’).  However, such an 

exercise lies beyond the scope of the present research. 
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Chapter 3   

3Description of data 

“It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit 

theories, instead of theories to suit facts.”  

    (Doyle, 1901: 39) 

 

The purpose of this chapter is to describe the data, assimilated from the primary source 

(§2.4.3), and the steps taken to arrive at a consolidated view for analysis in Chapter 5.  

3.1 Underlying data 

Data is drawn from Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g) global and 

country-level cost of data breach survey reports (hereafter, 2012–2015 years respectively)  

which form part of the PON (2019) data source (§2.4.1).  As described, these reports feature 

estimated organisational costs in respect of publicly disclosed data breaches (loss or theft 

of personally identifiable records such as names and account numbers).  Permission from 

the copyright holder, and fair usage considerations, are included in Appendix B.1.  The 

following is a summary of relevant information and basic preparation for subsequent 

analysis: 

• Costs are subdivided into four ‘cost centres’ – A: detection and escalation; B: 

notification; C: ex-post response; and D: lost business (hereafter, classes A–D 

respectively, with class E being the total) 
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• Years 2012–2014 (country-reports) – organisation-level costs, by class, are collated and 

US-dollar converted at exchange rates summarised in Table B.1 

• Year 2015 (global) – class E costs (in US dollars) are depicted in various ‘one-way’ 

graphs (e.g. by rank of mean time to discover a breach); R-based image-scraping 

software, Webplotdigitiser (Rohatgi, 2013), is used to obtain this data from Ponemon 

Institute (2015g, fig. 20), before further scrutiny and adjustments (as described shortly) 

• Mean and extrema (with respect to costs) are given, by class and year 

In terms of the 2015 year, extracted costs appear to resemble the corresponding data points 

reasonably well (partly due to the ordering represented, which results in volatile and easily 

identifiable costs).  A graphical comparison reveals 8 discrepancies (<2.5% of the data 

points).  These are manually corrected; after doing so, the mean cost falls within 0.2% of 

the given value and extrema are exact.   

Table 3.1 summarises classes A–D in terms of underlying activities and reputational 

damage associated with breaches, alongside examples of first-party coverage (i.e. which 

protect the insured’s assets).  

Table 3.1 Costs (classes A–E) and possible coverage Descriptions for classes A–E are based 

on ‘global’ cost of data breach reports (Ponemon Institute, 2012d, 2013e, 2014f, 2015g); 

specimen products are purely illustrative examples of first-party coverage in respect of 

associated costs: AIG – Illinois (Murphy, 2013); ACE – (Cresenzi & Alibrio, 2016); Federal 

Insurance – (Daigle & Cresenzi, 2018).  

Class Associated costs Basis

A : Detection and 

___escalation

Detect and report breach (e.g. forensics, crisis 

management, internal communications, audit and 

assessment)



PortfolioSelect  (CyberEdge, 

Event Management) –

AIG, Illinois National

B : Notification
Notify data subjects (e.g. create contact database, 

determine regulatory requirements, external experts)

C : Ex-post 

___response

Assist data subjects in aftermath of privacy event (e.g. 

help desk, inbound communications, investigations, 

remediation, legal, product discounts, credit monitoring 

and identity protection, regulatory fines and penalties)

D : Lost business
Abnormal churn,  reputational damage, and diminished 

goodwill


Forefront portfolio 

(CyberSecurity, Business 

Interruption) – Federal

E : Overall Sum of class A–D  costs

Composition of severity data Plausible cyber-insurance



Chubb Cyber Enterprise Risk 

Management policy (Cyber 

Incident Response Fund) – ACE
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There is a wide variety of products on the market: some are offered on a standalone basis 

which may provide (either one or both) first-party and third-party coverage (e.g. AIG and 

ACE, Table 3.1: A–C); others, as part of a special package that addresses multiple areas 

(US Department of Homeland Security, 2012); or through endorsements (e.g. Federal -

Table 3.1: D) that extend cover under existing arrangements.  Coverage and product 

variations are described further in Appendices E.2–E.3 respectively.   

Regulatory environments 

Activities associated with regulatory requirements and penalties (Table 3.1: B, C) can be 

expected given regulatory and legal developments such as the enactment of data breach 

laws in US jurisdictions (Greenberg, 2012, 2014, 2015; Kirsch & Greenberg, 2013; Digital 

Guardian, 2018); and notification requirements under the European Data Protection 

Directive, which have subsequently been strengthened across all European Union (EU) 

member states by General Data Protection Regulation (GDPR) – (European Commission, 

2018).  The impact of such activities is considered later in terms of severity and aggregate 

loss distributions (§5.3.2.1).    

Class-level correlations 

Class A costs are associated with activities that take place prior to public disclosure, whilst 

those in respect of classes B–D occur afterwards (Figure 3.1). 

 

This will be relevant for applications concerning interclass correlation in relation to loss 

distributions and associated characteristic functions in Chapter 5. 

The first 10 rows of initial data are shown in Table 3.2.  These losses relate to Australian 

organisations for the 2012 year.   

Figure 3.1 Loss generating process (classes A–E) Based on country-level cost of data 

breach reports analysed at a global level in Ponemon Institute (2012d).  

Data 

breach
Discovery Escalation Notification
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Survey methodology 

The same approach to capture and estimate costs appears to have been adopted each year, 

using Activity Based Cost (ABC) methodology which identifies and assigns costs to 

process-related activities, in respect of classes A–C, Table 3.1.  For a given class, relative 

costs for each underlying activity are estimated across a linear scale which represents the 

monetary range of costs over all such activities.  For class D, associated costs are 

extrapolated over the average customer lifetime (of respective firms).  Each year represents 

different, but similar organisations (e.g. geographic presence, workforce size, etc.), which 

are interviewed over a given period (typically, 10 months).  Breaches of less than 1 000 

records, and more than 100 000 records are excluded (i.e. costs are incidentally truncated; 

record-dependent truncation from above and below is effectively applied).  

Inflation 

Costs, by class, are inflation-adjusted to make them comparable for analysis, whilst 

ensuring associated distributions are not overly distorted as a result.  Key assumptions, for 

each survey year, include:  

• Costs represent nominal values as at the time of interview 

• Uniformity in regard to the timing of interviews (for the given ‘interview period’) and 

the timing of associated breach incidents (i.e. which occurred during the prior 12 

months, (Ponemon Institute, 2012a, n. 8)) 

Table 3.2 First 10 rows of initial data Class A–E costs, for the first 10 rows, are in 

Australian dollars; costs and records are per thousand (Ponemon Institute, 2012a).  

Organisation Records Class A Class B Class C Class D Class E

1 4.7 144.6 19.4 147.6 469.5 781.2

2 65.5 1 005.5 26.0 283.8 2 419.5 3 734.9

3 9.9 460.8 76.3 312.6 17.3 867.0

4 6.5 583.3 120.6 339.3 43.1 1 086.4

5 15.8 550.8 13.5 623.2 153.4 1 340.8

6 26.3 754.3 82.3 255.2 1 105.6 2 197.4

7 33.4 763.5 65.4 237.9 1 155.0 2 221.9

8 2.5 235.0 23.8 202.4 66.2 527.5

9 36.4 419.7 49.5 1 802.9 689.4 2 961.5

10 22.4 787.8 89.9 260.6 1 017.9 2 156.2
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• Constant inflation rates, by class, over the entire period of inflation 

The inflation period is from the average incident date to 30-06-16, or equivalently, the mid-

point of the interview period to 31-12-16 (a convenient reference point for subsequent 

ILFs).  Refer to Appendix B.3 for further detail regarding methodology. 

3.2 Data limitations 

The statistical accuracy of the data used in the present research for respective analyses (and 

ensuing results) relies upon:  

• Survey data, associated methodology (e.g. ABC estimation), and the legitimacy of 

underlying participants’ responses 

• Data extraction methodology (i.e. 2015-year, class E) and severity-trend assumptions 

Survey participants are described as constituting a “representative, non-statistical sample” 

of organisations (Ponemon Institute, 2015g: 29), and reports advise against the use of 

statistical inferences; as such, the data in the present chapter should be regarded as purely 

heuristic.  Whilst analyses may reveal subsurface characteristics that provide insight into 

special features of cyber-risk (e.g. potential impact of correlated classes of cyber-risk) and 

results may align to (or possibly bridge) those of exposure-based approaches (e.g. ‘power 

curve’ ILFs, Chapter 5), results cannot necessarily be generalised.  In addition to the issue 

of ‘record-dependent’ truncation: 

• Samples are believed to be biased towards organisations with more established security 

measures 

• Sampling bias is not measured, and non-participation is not reported 

Whilst survey reports (within and across the years) appear to be numerically consistent, 

representational consistency is sometimes lacking (e.g. depending on the year, tabulated or 

graphical summaries may be used).  For the 2015 year, this inhibits the ability to exact 

representative and consistently detailed information.  Despite having the highest relative 

PSS (Figure 2.5), the data in hand is arguably of questionable veracity as far as an accurate, 

representative, experienced-based actuarial pricing exercise is concerned.   
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Uncertainty 

It is foreseeable that uncertainty will remain regarding true costs underlying survey reports.  

There is no intention to reproduce such information, instead, the goal is to transform this 

information into stylised aggregate loss distributions, capable of reflecting the impact of 

correlation in terms of risk-adjusted ILFs.  Uncertainty, in this regard, is communicated in 

the form of a range of results for various 'scenarios' (in terms of risk, correlation), based on 

a variety of models.  

Homogeneity 

To achieve a reasonable balance between sample size and homogeneity, for the present 

research, severities are grouped by classes A–E.  Finer groupings (e.g. country, country-

year) have not been used as there is insufficient data for intended analyses.  Although 

measures that incorporate variance and proportional hazard transforms are considered later 

(Chapter 5), data is not explicitly transformed at this stage (e.g. natural logarithm, inverse, 

square root, etc.) to reduce heteroscedasticity, with respect to variance, within class-level 

groupings.  Homogeneity is considered in further detail in §3.3, with supporting 

investigations in  B.5 

3.3 Preliminary exploration 

Table 3.3 compares uninflated costs (‘raw’) with inflated costs in terms of various statistics.  

There are 15 severities in class B that have zero value (i.e. 785 non-zero losses).  Classes 

otherwise have a one to one correspondence between the number of companies and the 

number of non-zero severities (i.e. loss count).  This table appears to be incomplete: the 

missing values for 2015 (classes A–D)  do not represent an issue as far as severity and 

aggregate loss modelling is concerned; the alternative might be to drop the 2015 year 

altogether, but this would decrease the count for E by roughly 30% 350
1150

( ).     

After applying inflation to raw (uninflated) costs, mean costs appear to be aligned with one 

another over the years; the exception being E (2015 year), which has a relatively larger 

mean than earlier years (i.e. $3.96m vs. overall average $3.59m).  
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As can be seen in Table 3.3, uninflated costs for 2014–2015 suggest a rate of inflation of 

~17% (i.e. 3.7
3.2

1),−  however, this increase is only partly reflected by corresponding inflated 

costs, which reveals a shortcoming in assuming constant inflation over the years (Appendix 

B.3).   

Uninflated (orange) and inflated (blue) cost distributions in Figure 3.2 appear to agree with 

one another in broad terms, with greater alignment between lower quantiles (e.g. below 

median) and greater deviation between upper quantiles (i.e. above median).  Classes A and 

C appear to be similar with class B having the shortest tail, and D the longest. 

Table 3.3 Summary statistics (uninflated vs. inflated) Raw data (i.e. uninflated costs) 

source: Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g).  Note (1): inflation: 

annualised compound rate (subject to minimum of 0%) with respect to mean (uninflated) 

costs, by class, for survey-years 2012 and 2014 (approximately equal to square root of the 

ratio of 2014 to 2012 mean costs, less one).  Inflation period: mean interview date to 31st 

December 2016.  Relevant values in $US ‘000s.  Count refers to non-zero severities. 

 

Class Data Year: 2012 2013 2014 2015 All year Inflation
(1)

Raw 590.5 608.1 632.2 613.0

Inflated 693.2 693.8 695.2 694.2 3%

Raw 234.7 211.0 198.5 212.3

Inflated 234.7 211.0 198.5 212.3 0%

Raw 860.8 818.6 929.0 872.9

Inflated 1 064.8 975.1 1 053.8 1 029.4 4%

Raw 1 378.2 1 298.6 1 431.8 1 371.7

Inflated 1 534.5 1 418.5 1 525.9 1 491.0 2%

Raw 3 064.2 2 936.3 3 191.5 3 736.6 3 272.8

Inflated 3 527.1 3 298.3 3 473.4 3 957.8 3 588.4 2%

Entities 209 277 314 350 1 150

Class Data Count Min Max Std dev Kurtosis Skewness

Raw 800 14.9 4 181.0 668.3 7.31 7.31

Inflated 800 17.0 4 829.8 757.0 7.44 2.43

Raw 785 0.0 3 553.1 346.0 32.52 4.63

Inflated 785 0.0 3 553.1 346.0 32.52 4.63

Raw 800 6.7 8 797.5 1 029.4 13.57 2.94

Inflated 800 8.3 10 663.7 1 217.7 13.87 2.98

Raw 800 3.0 11 869.4 1 874.7 6.45 2.40

Inflated 800 3.3 12 786.5 2 037.0 6.39 2.39

Raw 1 150 75.3 28 290.6 3 231.7 7.26 2.16

Inflated 1 150 82.6 29 965.1 3 527.6 6.95 2.13
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Figure 3.2 Bean plots (classes A–D, uninflated vs. inflated) Beans: orange (uninflated cost); blue (inflated); solid lines: class-specific 

quantiles; dotted line: overall mean cost (costs are depicted on the y-axis).  Uninflated costs: Ponemon Institute (2012a–i, 2013a–j, 2014a–k).  

Software: R, package: ‘Beanplot’ v1.2 (Kampstra, 2008). 
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Class C 

 

Class B 

 

Class B 

 
Class D 

 

Class A 

 

Class B 

 

Class C 

 

Class A 

 

Figure 3.3 Surface plots (inflated costs) Data: costs from Ponemon Institute (2012a–i, 2013a–j, 2014a–k), inflated to end of 2016 year.  Ascending order of 

costs ($US) indicated by arrows (axes); surface-plot (spline fitting method) coloration relates to vertical axes (green – low, red – high costs).  Software: Statistica 

v13.2 (Statsoft, 2016). 

2) Class C excluded 
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3) Class D excluded 
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As can be seen in Figure 3.3, correlation between A–D can be positive or negative over 

different ranges (however, Pearson's correlation coefficient confirms an overall positive 

correlation between these classes).  For instance, red contour lines (i.e. large B) in (1) 

indicate C and D may either be negatively (lower C) or positively (larger C) correlated 

(although the latter form of correlation appears to dominate, with a coefficient of 0.46).   

Tail dependence is now examined.  Define the tail ratio, ,  in respect of n  observed pairs 

( , ),  1,2,..,i ix y i n , as follows: 

 
{ , }1

1,...,
{ }1

( ) , max{ }i i

i

n

x y zi
in

i n
x zi

z z x
=

=
=

= 



1

1
 3.1 

where indicators such as 
{ }ix z1  are defined as previously in §1.3 (Cope & Antonini, 2008, 

sec. 5.1; Parodi, 2014, sec. 28.3.2).  Figure 3.4 illustrates   for different pairs of classes. 

  

As the largest loss in each class corresponds to a different organisation, tail ratios in Figure 

3.4 inevitably decline to 0 as the (empirical) percentile increases to 1 (this, and volatility at 

high percentiles, are typical shortcomings associated with this estimate).  Prior to this, 

Figure 3.4 Tail dependence ratios Percentile corresponds to empirical quantile above 

which tail ratios are determined.  Underlying costs: Ponemon Institute (2012a–i, 2013a–j, 

2014a–k), inflated to end of 2016 year. 
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however, there is some evidence of tail dependence: compared to those with A (excluding 

A, D), pairings with class D appear to have stronger tail dependence at high percentiles: 

• Class D: tail ratios for (A, D), (B, D), and (C, D) exhibit an upward trend as the 

percentile approaches ~99%; (B, C) is somewhat similar to (C, D) in this regard 

• Class A: tail ratios for (A, B) and (A, C) start declining after ~90%; (A, C), however, 

does maintain the highest tail ratio over the range 85%-95% 

Before closing this chapter, year-on-year homogeneity is considered in terms of the 

following: 

• Country composition of years 2012–2014, according to the number of organisations 

associated with each country-year combination (proportional to width of adjoining 

lines, or ‘edges’) in Figure 3.5 

• Comparison with Jacobs (2014) log-log regression model in respect of costs, X , and 

records breached, R : ln 7.68 0.7584lnX R= + , as studied by Edwards, Hofmeyr & 

Forrest (2016: 10); as a means of independent validation, by year (2012–2014), and for 

different country groupings in Table 3.4 and Figure 3.6  

 

 

 

 

 

 

In most cases, Figure 3.5 indicates that each country is represented in each year (e.g. 

Australia has three edges adjoining years 2012–2014; the same can be said for France, 

Germany, etc.).  Brazil and the Middle East (i.e. ME, representing Saudi Arabia and United 

Arab Emirates) are the only two exceptions.  These countries were introduced in 2013 and 

2014 respectively.  Edges, for a given country, generally appear to be consistent with one 

another (i.e. in terms of width).  Typically, only discernible differences can be noted in this 

way, however, this is confirmed by the actual mix of countries, by year, in Table B.4. 

Figure 3.5 Country-year mappings Line width is proportional to number of organisations. 

Underlying costs: Ponemon Institute (2012a–i, 2013a–j, 2014a–k); ME: Middle East (Saudi 

Arabia, United Arab Emirates).  Software: Microstrategy (2016).  
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Attention is now turned to Jacobs (2014) log-log model in Table 3.4.  

 

 

 

 

 

Log-log model regression slope and intercept parameters (Table 3.4: USA, 2013–2014) 

correspond exactly with those determined by Jacobs (2014), as can be expected given the 

same underlying data.  Perhaps of greater interest is the effect of different country and year 

groupings, as illustrated in Figure 3.6. 

 

 

 

 

 

 

 

Whilst greater 'homogeneity' in regard to log-log regression could be achieved with country 

and year groupings, as depicted in Figure 3.6, resulting sample sizes would not be 

conducive for subsequent ILFs that involve fitting large-loss distributions to even smaller 

subsets (Table 5.1).  Further, using Levene's (1960) test, the null hypothesis that costs 

(years 2012–2015, inflated to 2016) exhibit homoscedasticity (with respect to variance) 

cannot be rejected (up to 25% significance).  Refer to Appendix B.5 for further support.

Table 3.4 Log-log model by year and country group Costs (class E), X, and records, R,  

based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k).  

USA   (ln X  = a  ln R  + b ) Non-US Global

Year a b r
2
(coeff) a b r

2
(coeff) r

2
 (coeff)

2012 0.801 7.252 0.574 0.884 5.710 0.615 0.593

2013 0.766 7.562 0.523 0.992 4.655 0.617 0.539

2014 0.750 7.800 0.503 1.002 4.492 0.611 0.572

2013 - 2014 0.758 7.680 0.512 0.957 4.980 0.611 0.562

Jacobs (2014) 0.758 7.680 0.512
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Figure 3.6 Log-log model (year, country groupings) Underlying costs: Ponemon 

Institute (2012a–i, 2013a–j, 2014a–k). 
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Chapter 4   

4Loss models and underlying theory 

“All models are wrong, but some are useful”  

    (Box, 1979: 202) 

 

4.1 Overview 

The aphorism “all models are wrong, but some are useful” (Box, 1979: 202) springs to 

mind when deciding upon a suitable model construct.  The purpose of this chapter is to 

describe models of aggregate losses (total amount of loss that occurs in a defined period in 

respect of a group of homogeneous risks) and describe the methods that are used to 

determine the distribution of these (Aggregate Loss Distribution, ALD).  These models are 

stylised representations of possible outcomes in respect of data breaches, the cost and 

number of which are uncertain.  In particular, applications of these models for determining 

ILFs in Chapter 5 are based upon the culmination of subjective interpretations pertaining 

to the underlying data (Chapter 3: inflated costs), and approximations that attempt to 

balance (apparent) realism with simplicity.   

There are essentially two key parts of this chapter: theory and models.  The former is 

divided into the following four sections (introduced by risk theory, §4.2.1) which support 

the latter as depicted in Figure 4.1: 
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1. ILFs (§4.2.2): this covers mathematical foundations of limit factors; basic definitions 

(e.g. different bases for limits); key concepts (e.g. consistency properties); related 

functions (e.g. Mean Excess); and various types of adjustments pertaining to risk, 

deductibles, and inflation (determined in respect of models) 

2. Composite (severity) models (§4.2.3): this concerns spliced densities which are 

determined later in respect of the severity data from Chapter 3 (underpinning every 

model), and considers model selection in terms of information criteria and goodness-

of-fit measures 

3. Aggregate loss models (§4.2.4–§4.2.5): basic tools for working with and determining 

distributions are described together with key algorithms that form the basis of Models 

4.3–4.6 

4. Simulation (§4.2.6): this focusses on Monte Carlo simulation and related functions (e.g. 

quantile, Value at Risk) which are utilised to verify and investigate output relating to 

Models 4.3–4.6 

Figure 4.1 Outline of theory and model links Theory 1–4 (blue, in addition to risk 

theory which introduces 1 and 3); Models 4.1–4.6 (green; all models rely upon 1 and 2; 

3 and 4 are only utilised in support of Models 4.3–4.6).  Generated using Freemind 

(Müller et al., 2004). 
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4.2 Background theory 

4.2.1 Risk Theory 

Aggregate loss, S , represents the total amount for a given period and group of risks,  

  1 2 , , ,NS X X X= + + +  4.2 

where N  and iX s can be defined from two perspectives of risk theory, namely:  

• Collective Risk (CR): loss count, N , and (non-negative) severities, 1,..., NX X , are 

random variables with independence assumptions as follows: N  does not depend on 

the severity of loss; for N  given, siX  are i.i.d., independently with respect to count 

• Individual Risk (IR): here, N  denotes a fixed number of risks with respective losses,  

s,iX  that are independently distributed (as opposed to i.i.d.) random variables with 

mixed cdfs that may have mass at point zero (i.e. for the probability of no loss) 

Following the notation in Klugman, Panjer & Willmot (2004: 142), the first three moments 

'

1S , 
2 ,S  and 

3S  of S  (4.2) for the CR model are as follows:  

  

' ' '

1 1 1

' ' 2 ' ' ' ' 2

2 1 2 2 1 1 2 2 1 1

3 ' ' ' 3

3 1 3 2 1 2 3 1

E (E )(E )

Var ( )

E( E ) 3

S N X

S N X N X N X N N X

S N X N X X N X

S N X

S

S S

  

         

       

= = =

= = + = + −

− = = + +

 4.3 

In terms of 
2S , if ~ PoissonN  (i.e. '

1 2N N = ), then ' '

2 1 2S N X  = : this represents the 

‘minimum variance’ (Miccolis, 1978: 43) and is considered later in the context of risk 

adjustments (§4.2.2.2).  Derivations of 4.3, based on mgfs and compound Poisson models, 

can be found in Mildenhall (2005, sec. 3.2).  For insurance risks, S (4.2) may represent the 

total amount paid on claims, in relation to coverage, in a given period, under a defined 

group of policies (Klugman, Panjer & Willmot, 2004: 135; Liu & Wang, 2017: 362).  In 

this context, IR models are a natural construct for a health policy, group life, or pension 

fund (Boutin-Dufresne, 2003, chap. 1).  The Individual Life (IL) model is a special type of 

IR model where any risk can only have a loss count of  0 or 1 (i.e. no multiple losses), 
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(Vernic & Sundt, 2009: 5).  However, such models are often too restrictive for describing 

general insurance risks, which are typically framed in terms of a CR model (Parodi, 2014, 

sec. 6.1.2).  As Burnecki, Janczura & Weron (2011: 294) remarked, non-insurance risks 

(e.g. OR, credit) have also been modelled using this framework.   

Conventionally, different groups of homogenous risks are modelled separately.  When 

these groups comprise a portfolio of risks, combinations of IR and CR models can be 

particularly useful.  For instance, model aggregate losses in respect of a portfolio that 

comprises several sub-portfolios, aggregate losses for each sub-portfolio could be modelled 

using a CR framework; and the aggregation of these could be based on the IR framework 

(in line with underlying independence assumptions, 4.2, CR).  A similar set-up is utilised 

in §4.4 to model aggregate losses in respect of correlated classes A–D (Chapter 3) using a 

CR framework, before combining with an IR framework.  A special type of CR model, 

which reduces to an IR model, is also considered. 

Convolutions for compound distributions 

Let SF  be the ALD for aggregate loss, S , with CR independence assumptions (4.2) – this 

is a compound cdf of the following form: 

  *( )

0

( ) ( ) Pr( | ) ( )n

S N N X

n

F s p n S s N n E F s


=

=  = = ,     4.4 

where ( ) Pr( )Np n N n= =  and *( )n

XF  is the n-fold convolution of cdf , XF , defined by: 

  

*( 1)

*( )

0

( ) ( ) 2,3,...
( )

( ) 1

x

n

X Xn

X

X

f y dF x y dy n
F x

F x n

−
 

− = 
=  

 
= 

     4.5 

(Klugman, Panjer & Willmot, 2004: 141). 

4.2.2 Increased Limit Factors 

An ILF is a multiplicative factor that is applied to the premium at a basic limit to determine 

the premium at an increased limit.  Basic limits typically refer to the lowest levels of 

coverage provided, (Werner & Modlin, 2010: 192).  However, in principle, any non-



Chapter 4  Loss models and underlying theory  

James Bardopoulos  4.5 

negative limit can be contemplated for this purpose (hereafter, the term base limit is used 

instead of basic limit).  As a precursor to ILF derivations, limits are first described in further 

detail, followed by some practical considerations.   

Limit definitions  

A policy limit refers to the maximum amount payable under an insurance policy, either 

overall, or in respect of a particular section of a policy (Lloyd’s, 2019), hereafter, 'coverage 

section'.  This may be expressed on several bases, for instance: 

• Per-occurrence: the limit restricts the amount payable in respect of all losses caused by 

a common occurrence (e.g. IT security failure, data breach, etc.).  In this regard, the 

definition of an ‘occurrence’ is crucial, for example, continuous, repeated, or related 

acts may be deemed as a single occurrence 

• Aggregate: the maximum payout in respect of all covered losses is restricted.  Such 

limits can apply to each of, and across all, the coverage-sections of a cyber-policy 

(Hiscox, 2017) 

Limits that restrict the level of payout in respect of an aspect of a coverage section are often 

referred to as sub limits.  For instance, $5k: data recreation – Munich Re (2015);  $500k–

$2.5m: regulatory defence expenses for small firms (< $100m turnover) – Deloitte cited by 

Jensen & Rosenthal (2015: 18).  Data breach notification limits can also be equated with or 

defined in terms of number of persons affected (e.g. Illinois National – Murphy  (2013); 

National Liability and Fire (NLF) – Selleck (2015)).  As such, cyber-policies may have a 

multitude of different types of single limits (i.e. maximum amounts payable in respect of 

individual claims) and compound limits that apply more than one limit to the covered losses 

(e.g. split limits, ACE – Cresenzi & Alibrio (2016)).  Limits may be eroded by legal defence 

costs incurred by the insurer, in defending the insured against liability claims (i.e. defence 

inside or within limits).  Similar bases may be used to define deductibles (claims in excess 

of which, subject to limits, are covered).  

As depicted previously (Figure 3.1), losses for classes A–D are associated with a common 

occurrence; for demonstrative purposes, limits are assumed to apply as follows: 

• Per-loss: applies to individual costs (i.e. classes A–D) 

• Per-occurrence: applies to total cost (i.e. class E) 
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Deductibles, where these apply, can be defined on similar bases.  The interplay between 

these, in terms of ALDs and ILFs, is explored further in Chapter 5. 

Practical considerations  

Solomon (2017: 7) argued in favour of high per-occurrence deductibles and limits, on the 

premise that frequency (of cyber-related losses) is predictable and, therefore, manageable 

by the insured, whilst severity is volatile and better managed by insurers through risk-

pooling mechanisms.  Further, events that trigger losses on multiple policies are described 

as being rare, mainly relating to cloud-based risks that can be managed separately (i.e. 

negating the purpose of aggregate deductibles).  According to a Betterley market report 

(2006, cited by Baer & Parkinson (2007: 52)), in respect of several major cyber-insurers, 

limits (presumably on an aggregate basis) can be as high as $7.5m–$25m and $7.5m–$50m 

for different first-party and third-party coverage-sections respectively.  However, it is not 

difficult to find numerous examples of  losses which have far exceeded such levels, such 

as the Anthem security breach (Osborne, 2015).  Whilst there are reports that London-

Market insurers have capacity available for $100m limits (Arthur J. Gallagher, 2017), it has 

been speculated that $1bn limits may be necessary to provide the insured with adequate 

protection (Chon, 2015) for certain types of cyber-risk.   

With this overview in mind, relevant variables, functions, and adjustments, associated with 

ILFs, are now formalised. 

Limited random variable 

The limited random variable 
( )bX  is defined as follows: 

  ( )( ) min ,bX X b=  4.6 

where X  is a random variable and { : 0}b b  is some limit.    

Limited moments  

The Limited Expected Value (LEV) is the first-order (raw) moment of a limited severity 

random variable.  More generally, consider the limited variable 
( )bX  (4.6), and suppose X  

has a cdf and pdf  denoted by F  and f  respectively; the limited kth-order moment of X , 

when limit b  applies, can then be expressed in terms of the Riemann-Stieltjes integral:  
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  ( 1

0

')

0

'E E min( , ) ( ) (1 ( )) ( )

b b

b k k k k k

XX X b x dF x dx b F b kx S x dx−= = + − =   4.7 

where 1XS F= −  and k +  ( 1k =  yields the LEV).  The reader is referred to Lee (1988: 

52) for a graphical illustration of 4.7 and Klugman, Panjer & Willmot (2004: 32) for a proof 

based on integration by parts; Riemann-Stieltjes (Stieltjes, 1995) and related integrals are 

covered in basic calculus, not here.  It can be noted that for some cdfs, the kth-order moment 

may not necessarily exist  k +   (e.g. Pareto).   

Consider 1j   ordered limits, 
1 20 ... ;jb b b     to approximate the LEV, 

( )
E jb

X , from 

the survival function, XS , of the severity variable, X (4.7), the product of 

1( ) ( )X u X uS b S b+ +  and 10.5( )u ub b+ −  can be summed over 1,..., 1u j= − .   Following on 

from 4.7 (with 1) :k =  

  

( )

( )

2 ( )

2

lim E E

E
1 ( ) ( )

E
( )

b

b

b

X

b

X X

d X
F b S b

db

d X
f b

db

→
=

= − =

= −

 4.8 

Refer to Bahnemann (2015: 46) for a proof of these and other characteristics such as the 

following: 
( ) ( )E Ea bX X   0 a b   ; 

( )E bX  is continuous on 0X  ; 
( )E bX  is concave-

down on 0;b  and 
( )( )E( ) E

b c
abaX c b a X
−

+ = +  for constants 0a   and c  (relevant for 

inflation adjustments, described in §4.2.2.2).  These properties are revisited shortly in the 

context of desirable features of limit factors.  

Limited Aggregate Severity (LAS) 

Let the aggregate loss in respect of limited severities (hereafter, LAS) be ( )S b  defined by: 

  ( )

1

( )
N

b

i

i

S b X
=

=   4.9 
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where 0b   is a given limit, and iX s are severities, and N  is the loss count, as for the 

aggregate loss  in 4.2.  This gives rise to the limit factor, ,  for a given base limit, ,a  

defined by:  

  
E ( )

( ) : ( ; ) ,     E ( ),E ( ) 0
E ( )

S b
b b a S a S b

S a
 = =   4.10 

where , 0a b  .  The term limit factor, for the purpose of the present research, refers to both 

discount factors and ILFs, defined as follows:  

• Discount factor: ( 0) ( ; ) (0,1)a b b a    ; in this case, a  could represent the 

highest limit of coverage, or, in the context of coverage without-limits, a →    

• ILF: (0 ) ( ; ) 1a b b a    ; the conventional definition of an ILF , where a  and b  

represent ‘basic’ and increased limits respectively  

There are several approaches to derive limit factors.  Examples includes top slicing 

(Michaelides et al., 1997: 433) which follows the spliced-severity model (4.69); mixed 

Exponential methodology which models ILFs as weighted Exponential cdfs (utilised by 

Insurance Service Office, ISO, of Verisk Analytics (2017)); and various forms of 

transformations (e.g. power curves and PH transforms, §4.2.2.2).   

In terms of 4.10, CR independence assumptions lead to the following for limit factors:  

  
( )

( )

E
( )

E

b

a

X
b

X
 =  4.11 

where X  is the severity variable, and , 0a b   are given limits.  From 4.8, this implies: 

  

( ) ( )

2
( ) ( )

2

' '

'

( )
( ) 1 E 1 '( ) E

( )
( ) E ''( ) E

a a

a a

d b
F b X b X

db

d b
f b X b X

db







= − = −

= − = −

 4.12 

where ( )b , X , a  , and b  are defined as previously (4.11); and ,F  f  represent the cdf, 

pdf for X  respectively.  Thus, given a scale of limit factors, 4.12 can be used as a basis for 

approximating the underlying severity cdf (demonstrated later, §5.3.4.1).   
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Given these relationships, the following properties, for limit factors, are apparent. 

Properties 4.1 Consistent limit factors 

Limit factors,  , for a given range of limits, are described as ‘consistent’ if they satisfy the 

following (notation based on 4.12):  

1. Asymptotically constant: ( )

1 ( )

E
lim '( ) lim 0a

F b

Xb b
b −

→ →
= = ; lim ( )

b
b c

→
=  for constant 0c    

2. Monotonically decreasing and non-negative gradient: ( )F b  is monotonically 

increasing, therefore ( )

1 ( )

E
'( ) a

F b

X
b −=  must be monotonically decreasing – any point of 

inflection in ( )F b  will also correspond to an inflection point in '( )b   (the converse is 

also true); ( )( ) [0,1] ; 0  '( ) 0aF b EX b      

3. Concave down: ( )

( )

E
''( ) 0a

f b

X
b = −   – any mode in ( )( ) dF b

db
f b =  will correspond to an 

inflection point in both ( )F b  and '( )b , Miccolis (1978) 

Hereafter, these are referred to as consistency properties.  In terms of the first of these, it is 

acceptable for   to remain constant above some finite limit, y , provided the probability 

that severity exceeds this is zero (i.e. ( ) 1)F y = .  This point is considered later in the context 

of empirical cdfs (§5.3.1).  When testing the second property, in respect of a given set of 

limit factors, 1 2, ,...  , corresponding to ordered (positive) limits, 1 2 ,...k k  , first-order 

derivatives can be approximated using the well-known divided difference (Milne-

Thomson, 2000, chap. 1):  

  1

1

   , 2,3,...x u u

x x u u u

d
u

dk k k

  +

= +

−
 =

−
 4.13 

4.2.2.1  Mean Excess 

The ME function (also known as mean residual life function), which is closely related to 

the LEV (4.7 with 1)k =  is a widely used tool with applications concerning EVT in the 

study of Actuarial Science, Environmental Science, Hydrology, and several other fields.  It 

can be used to signal the potential distribution of the underlying data, for instance, 

Paretianity (Cirillo, 2013), as considered in §5.2.1.  
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The distribution of the excess over a threshold 0,b   
( )bF , in respect of a random variable 

X  with distribution F and density f , is defined by: 

   
( ) ( ) Pr( | )bF x X b x X b= −   , 4.14 

(Ghosh & Resnick, 2010: 1492), and the corresponding ME function, e( )b , is defined by: 

  
( )

E E
e( ) [ | ]

1 ( )

b
X X

b E X b X b
F b

−
= −  =

−
 4.15 

where ( )bX  is as before (4.6), (List & Lohner, 1998: 310; Klugman, Panjer & Willmot, 

2004: 29).  This clearly defines the relationship between the LEV (4.7, 1)k =  and the ME 

function.  The empirical analogue to 4.15 is given by: 

  1

{ }1

max( ,0)
ê( )

1
i

n

ii

n

x bi

x b
b =

=

−
=




 4.16 

where 
{ }1

ix b
 is the indicator defined as previously (§1.3) and 1,..., nx x  are n  observed 

severities.  The exponential cdf has a horizontal ME, as illustrated in Figure 4.2. 

Figure 4.2 ME plots Increasing MEs for heavy-tailed cdfs: Pareto, lognormal, Burr, and 

Weibull (shape parameter: a < 1); horizontal for exponential cdf; and decreasing for light-

tailed Weibull cdf (i.e. a >1). 
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As can be seen in Figure 4.2, heavy-tailed cdfs (formerly defined later, §4.2.3.3) have 

increasing MEs (e.g. Pareto, lognormal, heavy-tailed Weibull).  Concave-up patterns in the 

case of Burr and lognormal cdfs (depending on parameters) can also be seen in this figure; 

whilst the Weibull cdf (shape parameter greater than one) and other such light-tailed cdfs 

have decreasing MEs.  Refer to Cirillo (2013) for strengths and weaknesses of ME plots 

when used as a tool to identify Pareto cdfs, and Ghosh & Resnick (2010) for further 

theoretical and practical considerations. 

4.2.2.2  Adjustments and transformations  

This section describes limit factor adjustments in regard to risk, inflation, and deductibles. 

Risk adjustment 

As suggested by Feldblum (1993: 1), actuaries have proposed several methods for 

determining risk loads to compensate insurers for the level of risk they accept when writing 

business (e.g. measures based on the loss distribution, utility theory, and modern portfolio 

theory).  In the context of stochastic loss modelling, there are three main sources of risk: 

• Process risk: the inherent variability associated with the stochastic nature of frequency 

and severity of losses 

• Parameter risk: the uncertainty in estimating the expected loss due to, for example, the 

occurrence of catastrophes, inflation, changes in the volume and mix of business (for a 

line of insurance), inadequate data (Freifelder 1976, cited by Miccolis (1978: 41)), 

errors in estimating parameters for frequency and severity distributions (Miccolis, 

1978, n. 12) or the application of knowledge that is based on incomplete information 

(Allaben et al., 2008: 12) 

• Model risk: the use of an imperfect model, or one that fails to accurately represent the 

situation (Allaben et al., 2008: 12) due to, for instance, modelling errors that produce 

inaccurate outputs or incorrect usage of the model (Aggarwal et al., 2015: 233) 

Parameter risk considered in the context of mixture models (§4.2.5) and an algorithm is 

used to simulate model error.  The current section concerns process risk (in particular, its 

quantification).  In the context of limit factors, the mean LAS (4.10) will fail to reflect 

process risk otherwise described by the ALD.  As such, higher order moments (e.g. standard 
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deviation and variance) may be required.  Alternatively, transformation such as the 

Proportional Hazard (PH) or power curve can be used; these are considered shortly. 

Example 4.1 Variance principle risk adjustment 

The variance principle has the following desirable properties: it satisfies basic ratemaking 

axioms, as set out by Freifelder (1979: 520), has theoretical backing (Bühlmann, 1985), 

and enables direct use of the severity distribution (assuming independence with frequency, 

losses in different layers, etc.).  According to Feldblum (1993: 167), however, whilst 

variance (or standard deviation) may be mathematically tractable there is often no 'a priori' 

reason for equating risk to such measures.  Further, consistency (Properties 4.1) may not be 

preserved (Wang, 1995, sec. 10).   

Formerly, let var ( ; )S w  be the variance-adjusted (pure-risk) premium in respect of the 

aggregate loss amount, ,S  and a risk parameter, 0,w   be defined by:  

  var ( ; ) E VarS w S w S = + , 4.17 

then the variance-adjusted limit factor, S , can be defined as: 

  var

var

( ( ); )
( ; , )

( ( ); )
S

S b w
b a w

S a w





= , 4.18 

where ( )S a  and ( )S b  are LASs (4.9) with limits , 0a b   respectively.  Now suppose the 

underlying loss count variable is N  and respective limited severity variables are 
( )aY  and 

( ).bY   Independence assumptions (4.2) concerning loss count and i.i.d. severity (i.e. N , Y  

respectively), in conjunction with a Poisson cdf for ,N  collapse the risk-adjusted limit 

factor, S  (4.18), to the following:  

  

( ) ( )2

( ) ( )2

( ) ( ) 2

var

( ) ( ) 2

var

* ( )
* ( ) ( ) ( ) 2var
var var* ( )

var

E E E E
( ; , )

E E E E

( ; ) (E )

( ; ) (E )

( ; )
 ,  ( ; ) ( ; ) (E )

( ; )

b b

Y a a

b b

a a

b
b b b

a

N Y w N Y
b a w

N Y w N Y

Y w w Y

Y w w Y

Y w
Y w Y w w Y

Y w








 



+
=

+

+
=

+

= = +

 4.19 
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In addition to Properties 4.1, Wang (1995, sec. 10) described desirable qualities for risk-

adjusted ILFs that include the following: 

• Relative to the mean, risk loadings should increase with the size of the limit 

• The same price should be produced regardless of how layers of cover are subdivided 

In terms of the variance principle, the first of these should be satisfied in most practical 

circumstances, however, it is possible to violate the second by dividing cover into 

sufficiently many layers (however, the present research generally considers upper-limits 

for ground-up losses, as opposed to layers of insurance).   

Example 4.2 Proportional-Hazard (PH) transform 

The PH transform is a member of a class of functions that preserves stochastic dominance 

and exhibits comonotonic additivity, and is defined as the mapping: ( ) : ( )r

Y XS x S x=  where 

XS  and YS  are survival functions in respect of the severity random variable X  and the 

transformed variable, Y , respectively, and 0 1r   is a given risk parameter.   

Let PH  be the mean in respect of the PH transform defined by:  

  
1

( )

0
( ; , ) ( )w

b
b

PH YY b w S x dx =  ,   4.20 

where b  is a given non-negative limit, and, and 1w   (Wang, 1995: 44, 1999b: 943).  

This transform satisfies limit factor consistency properties since 
1

'( ) ( )w

PH Yb S b = is a 

monotonically increasing function (i.e. with decreasing marginal rate of increase).  One 

approach to modelling aggregate loss distributions, described by Wang (1999b: 955), is to 

apply the transform to the associated severity and frequency cdfs (as demonstrated later, 

§5.3.3).  Further, application of this transform to certain cdfs (e.g. Pareto, Weibull, Burr) 

results in the same type of cdf, with altered parameters; in other cases (e.g. lognormal, 

Poisson) numerical integration or analysis techniques are required. Refer to Wang (1995: 

45) for examples of the former and a description of the properties of this type of transform. 

The power transform is another type of transformation that several insurers such as ACE  

(Cresenzi & Alibrio, 2016) and NLF (Selleck, 2015) have utilised for cyber-liability ILFs.  
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Example 4.3 Riebesell curves (power transform) 

Power curves are commonly used in the London Market for insurance and reinsurance 

excess of loss pricing, and are also known as power or alpha curves, the German method, 

or power curves, named after their founder, Riebesell, as described by Mack & Fackler 

(2003: 231).   

The following rule is assumed: (2 , ) (1 )k ka a r = + , where   is the ILF in respect of an 

increased limit and base limit, in this case, 2k a  and a  respectively, with 0,a   (0,1),r   

and 1k  .  Substituting 2kb a=  yields 2log ( )b
a

k = , and, therefore, one has the following 

for the power curve limit factor: 

  
1

2 2log ( ) log (1 )1 1( ; , ) (1 ) ( ) ( )ba r wb a w r ba ba
− +− −= + = =   4.21 

where 2log (1 ).w r= +   Refer to Halliwell (2013) for further detail on power curves (and 

exponential transforms); for an evaluation of the performance of several principles (e.g. 

PH, square root, logarithmic, quadratic, etc.), see Wang (1996: 85).  In contrast to the 

variance principle, power curves and PH transforms are scale invariant (i.e. limit factors 

are unaffected by scale transforms such as currency and inflation adjustments).  In terms of 

inflation invariance, this can lead to inconsistent results when compared to experience-

based calculations that consider the experience of the risk in question. 

Inflation adjustment 

Constant inflation trend in underlying loss-severity can have a disproportionate effect on 

the LAS at higher limits.  In the case of excess of loss covers, this is commonly referred to 

as a leveraging effect of inflation.  The effect of such inflation, in terms of limit factors, is 

now considered.  Let Y  and X  be two random variables with cdfs YF  and XF  

respectively, where Y vX=  for constant 1v  .  From 4.7 ( 1)k = , the LEV for Y  with limit 

0b   is:  

  
( )( )

0 0
[ ; ] ( ) ( )

b
b

v
v

b
b

Y XE Y v S y dy v S x dx vEX= = =  ,  4.22 

through substitution, 1x yv−= .   
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As such, limit factors X  and Y , corresponding to severity variables X  and Y vX=  

respectively, are related as follows: 

  ( ; ) ( )b
Y X v

b v = ,  4.23 

where b and v  are as before (4.22).  Variations of inflation adjustments include application 

of two inflation trends: the first, in relation to the LEV at the basic limit; the second, in 

relation to the average severity in excess of that limit. 

Related methods exist for updating ILFs to reflect inflation, for instance, applying one trend 

function to average severity for basic limits and a separate function to the average severity 

for layers in excess of the basic limit, as described by Miccolis (1978).   

Thus far, risk and inflation adjustments have been considered in isolation; their combined 

effect is now considered. 

Proposition 4.1 Limit factors: inflation and variance principle risk adjustments 

From 4.7 ( 2)k = , the second-order moment for limited variable Y , and limit b , is:  

  

( )

( ) 2 2 2

0

2 2

0

22 2

0

( )2 2

[( ) ; ] ( ) (1 ( ))

( ) ( ) (1 ( ))  

( ) (1 ( ))

[( ) ],

b
v

b
v

b
v

b
b

Y Y

b
Y X v

b b
X Xv v

E Y v y dF y b F b

xv dF xv b F

v x dF x F

v E X

= + −

= + −

 = + −  

=







 4.24 

where XF  and YF  denote cdfs for Y vX= and X  respectively ( 1v  , as for 4.22).  Here, 

the third equality follows from the previous since ( ) ( )y

Y X v
dF y dF= .  For a CR model with 

independence assumptions (4.2), and Poisson loss count, the variance-adjusted limit factor, 

Y  (4.19), with parameter w  (as before), becomes:    

  

( )* ( ) *

var var

* ( ) ( )*
var var

( ; ) ( ; )
( ; , , ) ( ; , )

( ; ) ( ; )

b
v

a
v

b

b a
Y X v va

Y w X vw
b a w v vw

Y w X vw

 
 

 
= = =  4.25 

The following is an extension of 4.25 that recognises deductibles:   
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Example 4.4 Excess losses with inflation and variance principle risk adjustments 

If 
( )

max(0, )
b
vY vX d= −  for non-negative variables X , Y ; and constants 1,v   ,d  and ,b  

s.t. 0 d b  ; then ( )max(0,( ) )bY vX d= − , and Y  can be expressed as follows: 

  

0 vX d

Y vX d d vX b

b d vX b

 
 

= −   
 −  

 4.26 

The first two (raw) moments of Y  are:  

  

( ) ( )

( )2 ( )2 ( ) ( )2 2

[ ; , , ] ( )

2
[ ; , , ] ( ( )),

b d
v v

b d b d
v v v v

E Y b d v v EX EX

d
E Y b d v v EX EX EX EX

v

= −

= − − −

  4.27 

(Klugman, Panjer & Willmot, 2004: 127).  For a compound-Poisson ‘excess’ LAS, 

1

N

ii
S Y

=
=  , where 

( )
max(0, )

b
v

i iY vX d= − , 1,2,...,i N=  (i.e. ~ )N Poisson , under CR 

independence assumptions (4.2), limits , 0;a b   and deductible ,d s.t. 0 min( , )d a b  , 

the variance-adjusted limit factor, Y  (i.e. 4.25, based on 4.19), with parameter w  (as 

before),  becomes: 

  

( ) ( ) ( ) ( )* *

var var

( ) ( ) ( ) ( )* *

var var

( , ) ( , ) 2 ( )
( ; , , , )

( , ) ( , ) 2 ( )

b d b d
v v v v

a d a d
v v v v

Y

X vw X vw dw EX EX
b a d w v

X vw X vw dw EX EX

 


 

− − −
=

− − −
  4.28 

where *

var  is defined as previously.     

4.2.3 Modelling severity 

This section is relevant for spliced-severity cdfs, model selection, and tail behaviour (§4.3). 

4.2.3.1  Composite models 

The composite model considered here is an m-component spliced density, a convex 

combination of other densities with given weights.  



Chapter 4  Loss models and underlying theory  

James Bardopoulos  4.17 

Definition 4.1 m-component spliced density 

An m-component spliced density, h , given m  densities, ,ih 1,..., ,i m= is defined as: 

  

1 1 1 2

2 2 2 3

1

( )

( )
( )

... ...

( )m m m m

p h x b x b

p h x b x b
h x

p h x b x b +

  
 

  
=  

 
   

, 4.29 

where ih  is valid on 1( , )i ib b + , 1,.., ,i m=  and (0,1)ip   s.t. 
1

1
m

ii
p

=
= .     

Precise model specification is required to ensure h  (4.29) is continuous (Klugman, Panjer 

& Willmot, 2004, sec. 4.4.7); the same goes for differentiability (e.g. at 2 ,..., ).mb b    

Several proponents of the Maximum Likelihood (ML) technique, for parameterising two 

component spliced-densities, have incorporated such restrictions to reduce the number of 

unknown parameters and associated equations.  ML and other such techniques are 

considered later as part of a threshold determination exercise for a spliced-severity model 

(§4.3).  The kth order moment for a variable, Y , with density h , can be expressed in terms 

of the kth order moments of the variables 1, , mX X  (provided these exist), if each iX  has 

density   1,...,ih i m =  as follows: 

  
1

E E
m

k k

i i

i

Y p X
=

=     4.30 

where ip s are defined as previously.  Applications of 4.30 range from mixed compound 

Poisson (Halliwell, 2009), §5.3.3,  to spliced-severity cdfs.  

4.2.3.2  Model selection 

Information Criteria (IC) 

Akaike Information Criterion (AIC) is a form of penalised likelihood criteria for model 

selection, measured as follows (Akaike, 1998): 

  *2 2AIC k l= −   4.31 
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where k + is the number of parameter estimates, and *l  is the maximised log-likelihood. 

The model with the lowest AIC is preferred; however, this is asymptotically valid in relation 

to sample size (Burnham & Anderson, 2002: 353).  For small samples (in relation to )k , a 

‘second-order’ bias correction term may be introduced, which gives rise to the  corrected 

Akaike information criterion, AICC, defined by: 

   2 ( 1)
; 1

1

c k k
AICA kC n

n k
I

+
= +  +

− −
  4.32 

where n  is the sample size.   

According to Motulsky & Christopoulos (2004, chap. 23), the probability of making an 

incorrect selection, in respect of two models with an AICC difference of ,d  is 

1(exp(0.5 ) 1)d −+ .     

Bayesian Information Criteria (BIC) is another measure that is based on a different 

underlying perspective to the AIC: 

  *ln( ) 2BIC k n l= −  4.33 

where k , n , and *l  are defined as previously.  Key points relating to these criteria include: 

• In contrast to the BIC,  AIC is based on the Kullback & Leibler (1951) distance between 

two models (AICC simply enforces greater parsimony in terms of number of parameters)  

• AIC does not assume that the true model is one of the candidates (Burnham & Anderson, 

2002: 211–212) 

• Whereas AIC aims for parsimonious selection, BIC (asymptotically) aims to determine 

the dimension of the true model 

• In either case, AICs and BICs cannot be compared for models of different data 

Such criteria depend heavily on relative measures for a given set of candidate models.  As 

such, the absolute ‘quality’ of a selected model depends heavily on the suitability of 

candidate models.   
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In particular, 4.31–4.33 only reflect goodness of fit through likelihood term ( *)l ; as such, 

measure based on the Kolmogorov-Smirnov and Anderson-Darling tests are now 

introduced.  

Kolmogorov-Smirnov test 

Let nF  be the empirical distribution for n  (i.i.d.) observations 1, , nx x defined by:  

  { }

1

1
( ) 1

i

n

n x x

i

F x
n



=

=   4.34 

where indicator, 
{ }1

ix x
, is defined as previously (§1.3).  For some continuous distribution, 

G , the Kolmogorov-Smirnov (KS) statistic, nd , is defined as: 

  sup ( ) ( )n n
x

d F x G x= − . 4.35 

Now consider the following hypotheses: 

  0 1: ,     :n nH F G H F G=    4.36  

• 0H : lim( ) 0n
n

d
→

=  almost surely (Glivenko-Cantelli  ̶ van der Vaart (1998: 266)), 

rejected at the (0,1)   level in favour of 1H  if 
1(1 ),nnd − − where  

represents the Kolmogorov distribution 

• Critical values 1( ) (1 )k  −= −  for this two-sided test can be determined using: 

  ( )
1

2
1

ln( )  
2 2

k



 

= − 
 

 4.37 

• To allow for discontinuities (i.e. jumps) in the empirical cdf, nF  (4.34), for n  ordered 

observations, 1 2 , , nx x x   , nd (4.35) can be derived as:  

  ( )1max max | ( ) ( )| , | ( ) ( )|n i n i i n i
i

d G x F x G x F x −= − −    4.38 

where G  is defined as previously in 4.35–4.36 (Klugman, Panjer & Willmot, 2004, sec. 

13.4.1).  As this relies on the comparison of the test statistic, nnd , and the critical value, 
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( )k   (given significance, ) , the ratio of these terms represents a compact metric for 

testing 4.36 and ‘score-based’ comparisons that account for goodness of fit (§4.3.1). 

Proposition 4.2 KS-ratio 

Using definitions for n  (4.34), nd  (4.35 or 4.38), ( )k   and   (4.37), the KS-ratio, 

( , ),r n   is proposed as follows: 

   
( )

,  ( (0,1);   ( ), ) 0n

k

nd
kr n 


 =   4.39 

where ( , ) 1r n    implies there is insufficient evidence to reject 0H  (4.36).   

In a similar way, an alternative ratio can be defined in terms of the Anderson-Darling (AD) 

measure which is related to 4.35 but recognises differences (weighted, squared) between 

the empirical and proposed (i.e. model) cdfs.  

Anderson-Darling test 

The AD test statistic, 2 ,A  in respect of model ( )F and empirical ( )nF  cdfs, is defined by: 

  ( )2

1 1

2 1
2 2 2

1 , , 1 ,

0

ln ln lnj j

j j

k
S F

k n j n j n k kS F

j

A
F S F S S

n

+

+ +

−

+ +

=

= − + + +   4.40 

where 1 ( )j j jF S F x= − = , , ,1 ( )n j n j n jF S F x= − = , and nF  is based on 1n   observations 

that span the (ordered, unique, uncensored) set of 2k n+   observations in question, 

0 1 1,..., kx x x +   , (Klugman, Panjer & Willmot, 2004, sec. 13.4.2).  The ‘AD-ratio’ 

analogue to 4.39 can, therefore, be defined in terms 
2A (4.40) divided by the desired critical 

value and related hypotheses (4.36, : )G F=  can be tested as before (i.e. reject the null 

hypothesis, thus the proposed model, if this ratio is less than one).   

Preference may be given to AD test over the KS in ‘standard’ applications that require 

greater emphasis to be placed on goodness of tail fit (as opposed to in the ‘body’ of the cdf).  

Later, a similar (but moderated) result, in terms of goodness of fit, is considered using an 

average score that incorporates, as one of its components, the KS-ratio (§4.3.2).  This 

avoids shortcomings associated with AD critical values (e.g. specificity in relation to the 
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cdf being tested), and, as alluded to previously, provides greater control over fluctuations 

in the tail. 

4.2.3.3  Tail behaviour 

Tail behaviour can be studied in several ways, one of which involves the ME as described 

previously (4.14).  Here, a limiting ratio introduces the concept of relative tail weight, 

followed by the absolute concept which defines a class of distributions with a particular 

property.  Consider two cdfs, G and H , with respective pdfs, g and h: should G have a 

heavier tail than H, then the limiting ratio,  , diverges to infinity as follows: 

  
1 ( ) ( )

lim ( ) lim lim
1 ( ) ( )x x x

G x g x
x

H x h x


→ → →

−
= = = 

−
 4.41 

Now that relative tail weight has been considered, attention is turned to the absolute 

concept.  A class of sub-exponential ‘heavy-tail’ distributions, ,  is considered followed 

by the subclass of long-tailed cdfs. 

Definition 4.2 Heavy- and light- tailed cdfs (absolute context) 

For cdf F and associated pdf ,f  let ( ) 1 ( )S x F x= −  be the survival (i.e. tail) function and 

*( ) *( )1n nS F= −  be the tail function where 
*( )nF  is the n-fold convolution of F  (4.5), 

.n +   The tail of F depends on the asymptotic properties of 
*( ) ( )( )

( )
( )

nS xn

S x
x = , for 

instance:  

• ( )lim ( )n

x
x n

→
=   F  is heavy tailed and belongs to ; examples include Weibull (with 

shape parameter, 1),   Burr, Lognormal, and Pareto cdfs 

• ( )lim ( )n

x
x

→
=   F  is light tailed (e.g. Binomial, Poisson, and Negative Binomial),  

Panjer & Willmot, 1992, cited by Wang (1998: 29)   

Long-tailed cdfs are a subclass of heavy-tailed distributions (i.e. if F is long tailed then it 

is also the case that ,  F  Definition 4.2).   
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Definition 4.3 Long-tailed distributions 

The cdf F  is defined as long tailed if lim ( ) lim ( )  0
x x

S x y S x y
→ →

+ =   .  For m  long-tailed 

cdfs, 1, , mF F , the following asymptotic result holds: 

  1 2

1

( ... )( )
lim 1

( ) ... ( )
m

x
m

S S S x

S x S x→

  


+ +
  4.42 

Now that the all preliminary theory for this chapter has been covered, attention is turned to 

models that describe the severity of loss.  

4.2.4 Aggregate loss distributions and transforms 

In terms of 4.1 (IR, CR models), determining the ALD is one of the classical problems in 

the realm of risk theory.  As there is generally no closed-form solution alternative 

techniques are often required (Shevchenko, 2010, sec. 1).  

In the context of an insurance portfolio, the ALD for the IR model becomes a convolution 

of ALDs in respect of the individual risks that comprise the portfolio (Vernic & Sundt, 

2009: 5); generally, the exact distribution can only be obtained in this way (i.e. 

convolution), although De Pril recursion can be used provided the portfolio follows a 

certain set up (Tse, 2009: 86).  It may also be possible to identify (or, with FFT, reconstruct) 

the density with the aid of transforms (e.g. cf; mgf, pgf – provided these exist) – (Kaas et 

al., 2008, sec. 2.1).  Alternatively, the ALD might be approximated (e.g. Normal, translated 

gamma (ibid., sec. 2.5); compound Poisson, Klugman, Panjer & Willmot (2004, sec. 

6.11.3)). 

For CR, the ALD can be treated as a compound cdf, with primary (loss count) and secondary 

(severity) component cdfs (the heavier of which determines the shape of the ALD tail (ibid., 

secs 6.2–6.3)).  A special case, for instance, is when the primary cdf is Poisson which is 

closed under convolution and, therefore, results in a (mixed) Poisson distributed ALD (ibid., 

98) which facilitates recursion (e.g. Panjer) and FFT methods (e.g. as a means of 

approximating the IR model).  

There are relative advantages and disadvantages associated with each of these methods (e.g. 

FFT can be quicker than Panjer recursions when modelling severities with high per-loss 
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limits, although the opposite may be true at lower limits (ibid., sec 6.10); exact computation 

can be laborious, etc.).  The main methods used to determine ALDs in this chapter are those 

relating to transforms such as FFT (§4.2.4.2) and mixture models (§4.2.5); MC simulation 

is also utilised (§4.2.6).  This allows ALDs based on different techniques to be compared 

and checked against one another and provides a means to deal with some of the following 

areas that come under scrutiny in Chapter 5: 

• Determining ALDs in respect of correlated classes (FFT) 

• Quantifying process risk for risk-adjusted limit factors (mixture models) 

• Varying the per-loss limit for individual severity distributions that incorporate 

empirical and statistical losses (MC simulation) 

Basic concepts concerning transforms (§4.2.4.1) are now covered; these ‘tools’ will be key 

for several subsequent algorithms and models in the present chapter. 

4.2.4.1  Characteristic functions and related trans forms 

Transforms are defined here in univariate and multivariate settings, followed by two 

illustrative examples for independent and correlated risks.  

Univariate and multivariate transforms 

In a univariate setting, respective definitions for the pgf, mgf, and cf, relating to a non-

negative random variable, ,X  are given by: 

  [ ] E ,  [ ] Eexp( ),  [ ] Eexp( )X

X X XP t t M t tX C t itx= = =   4.43 

where i  .  This assumes the pgf and mgf exist (hereafter, this goes without saying); the 

cf (of a real valued argument), however, always exists.  Useful properties and relationships 

include: 

  

[exp( )] [ ] [ ];   [ ] [ln( )]

[1] [1] [0]
E ( ) ,  

[1] [0] [0] 1,

X X X X X

k k k
k kX X X

k k n

X X X

P it M it C t P t M t

P M C
X i k

t t t

P C M

+

= = =

  
= = = − 

  

= = =

  4.44 
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assuming kth-order derivatives exist, (Wang, 1998; Mildenhall, 2005; Shevchenko, 2010). 

 Further, XP , XM , and XC  uniquely characterise the cdf of X (i.e. random variables with 

the same pgf, mgf, or cf are identically distributed).  For the multivariate case, with slight 

abuse of vector notation, respective versions of joint pgf, mgf, and cf of 1[ , , ]nX X=X , 

n + , are defined as: 

  

1

1

1

1

, , 1 1

, , 1

, , 1 1

[ ] : [ , , ] E ...

[ ] : [ , , ] E exp( ')

[ ] : [ , , ] E exp( '),    [ , , ]

n

n

n

n

XX

X X n n

X X n

X X n n

P P t t t t

M M t t

C C t t i t t

= =

= = 

= =  =

X

X

X

t

t t X

t t X t

  4.45 

Transforms for ALDs  

Let SP , SM , and SC  be the respective pgf, mgf, and cf of the aggregate loss, 

1 , , nS X X= + +  ( iX s and n , as for 4.45).  If iX s  are independently distributed, with pgf, 

mgf, and cf  given by ,iP  iM , and iC  respectively, then: 

  
1 1 1

[ ] [ ],  [ ] [ ],  [ ] [ ]
n n n

S i S i S i

i i i

P t P t M t M t C t C t
= = =

= = =   , 4.46 

(Klugman, Panjer & Willmot, 2004, sec. 3.3).  On the other hand, for correlated or 

independent iX s , it can easily be shown that:  

  [ ] [ ],  [ ] [ ],  [ ] [ ]S S SP t P M t M C t C= = =X X Xt t t  4.47 

where [ ,..., ]t t=t  is n dimensional (see, for instance, Wang (1998, sec. 4.3)).  In the context 

of aggregate loss models, iX s could represent aggregate losses in respect of n  independent 

(4.46) or correlated (4.47) risk portfolios.  In either case, S  would resemble an IR 

framework.  For a CR model, where iX s are defined accordingly, with common pgf, mgf, 

and cf given by XP , ,XM  and ,XC respectively; and ,N  the loss count variable, has pgf 

.NP   Transforms for the aggregate loss are now given by: 

  | | |[ ] [ [ ]],   [ ] [ [t]],  [ ] [ [ ]]S N X N S N X N S N X NP t P P t M t P M C t P C t= = =  4.48 
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where 
|X NP  is the conditional pgf for X  (i.e., given N ).   

Here, S  is treated as a compound cdf, with respect to ,N  and 
|X NP  represents the pgf of the 

secondary severity cdf (as mentioned in §4.2.3); the compound Poisson cdf is considered 

in Klugman, Panjer & Willmot (2004: 94).  Examples for independent and correlated risks 

are now considered: the first is elementary; the second, which builds upon this, is somewhat 

more elaborate. 

Example 4.5 Aggregation of independent random events 

Consider a random variable U  with pdf ( )Pr { : 1; 1 : elsewhere}U u p u q p= = = = −  for

[0,1]p  .  The mgf of U is, therefore,   t

UM t q pe= +  (i.e. Bernoulli Table D.3, eqn. D.2

with 1n = ), and aggregation over 1n   i.i.d. of such variables relates to the Binomial cdf 

(i.e. parameters , ).n p  

Example 4.6 Aggregation of correlated random events 

This example revisits the correlation model, proposed by Böhme (2005) and Böhme & 

Kataria (2006), §2.2, where the individual losses are correlated with a latent variable, based 

on Pearson correlation coefficient (defined shortly, §4.2.5.1).  For this , consider m  

random variable loss events, 1, , mU U , and assume these are correlated with the random 

variable 1~ (1, ),R Bin p s.t. siU  are conditionally i.i.d. with | ( )iU R r=
1|~ (1, )rBinomial p

  1,...,i m = ; 1| Pr( 1| );r ip U R r= = =  and joint pgf, 
1 ,..., 1[ | ]: [ ,..., | ].

mU U mP r P t t R r= =U t   

Then, from 4.47 with i iX U=  and 1 , , mS U U= + + ,  

  1

1| 1|

.

[ ; ] [ ; ]

[ ... | ]

( ) ,

m

S

UU

m

r r

P r P t r

E t t R r

p q t

=

= =

= +

U t

 4.49 

which is the pgf for a 1|( , )rBinomial m p  cdf.  The unconditional pgf of S  is given by: 
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1 ...

1| 1|

1 1|1 1|1 1 1|0 1|0

1 1

[ ] [ | ]

[( ) ]

( ) (1 )( )

[ |1] (1 ) [ | 0] ,

mU U

S R

m

R R R

m m

S S

P t E E t R r

E p q t

p p q t p p q t

p P t p P t

+ +
= =

= +

= + + − +

= + −

 4.50 

and this resembles the weighted  average of two Binomial pgfs: [ |1]SP t  and [ | 0]SP t , with 

weights 1p  and 1(1 )p−  respectively.  This is consistent with the aggregate claim count cdf 

arrived at by Böhme (2005: 9) and Böhme & Kataria (2006: 17).   

In terms of parameter estimation concerning 4.50 (i.e. 
. . . . . .1|1 1|0,  ,p p 1p ) Böhme & Kataria 

(2006) utilised Expectation Maximisation, EM (an iterative method to find the maximum 

likelihood of parameter estimates), and measured parameter risk using a beta binomial 

model (i.e. mixture model).  Refer to Hisakado, Kitsukawa & Mori (2006, secs 2–3) for 

further detail regarding equations and solutions for 
. . . . . .1|1 1|0( ,  )p p  in the context of correlated 

binomial distributions.  Other types of mixture models are considered in §4.2.5.  For other 

considerations and methods (e.g. Panjer recursion) concerning correlation in terms of 

aggregate loss, refer to Sundt (1999).   

4.2.4.2  Fourier transform 

The Fourier transform f̂  of an integrable function f  is a mapping :f →  defined by: 

  ˆ ( ) exp( ) ( )f z ixz f x dx



−

=    4.51 

where  z  and  s.t. 1i i − = .   

The original function f  can be recovered using the inverse Fourier transform (i.e. of the 

Fourier transform) which can be represented as: 

  
1 ˆ( ) exp( ) ( ) ,  ;

2
f x izx f z dz x i





−

= −   ,  4.52 

(Klugman, Panjer & Willmot, 2004, sec. 6.9.1).  Several properties are now described.   
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Properties 4.2 Fourier transforms 

Let ( )f x  and ( )g y  be integrable functions defined on ,x y   s.t. x y⊥ , with (Fourier) 

transforms   ˆ:f f= and   ˆ:g g= respectively; the following can then be shown:  

1. The transform ˆ(0)f  in respect of function f  is, according to 4.51, the following 

integral: 

  ˆ (0) ( )f f x dx



−

=   4.53 

2. The transform of f g  (i.e. convolution) is the product of their transforms (this follows 

from 4.46): 

       f g f g =  4.54 

3. When f  is a pdf, its transform is the cf of f  (cf in 4.43 is same as 4.51)  

4.2.4.3  Discrete Fourier Transform (DFT)  

Let xf  be a function defined on all discrete integers, such that xf  has a period of length n  

(i.e. x n xf f+ = ).  The Discrete Fourier Transform (DFT) that applies to a vector 

( )

0 1 1[ , , , ]n

nf f f f −=  generates ˆ
zf  defined as: 

  
1

0

2ˆ exp  ,   0,1,.., 1
n

z x

x

izx
f f z n

n

−

=

 
= = − 

 
   4.55 

The original functions in ( )nf  can then be recovered using the inverse of the DFT that is 

applied to the DFT of these functions, with the following result: 

  
1

0

2 ˆexp  ,   ,
n

x z

x

izx
f f x

n

−

=

− 
=  

 
   4.56 

(Klugman, Panjer & Willmot, 2004, sec. 6.9.1). 
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4.2.4.4  Fast Fourier Transform (FFT) 

To generate n  values of ˆ
zf  (4.55), n  vectors of f , each having n  functions of the form 

xf  (4.56) are required.  As such, the number of terms for evaluation is of the order 2;n  the 

FFT algorithm reduces this to the order of 2log .n n   To illustrate, it begins with a vector 

( )

0 1 1[ , , , ]n

nf f f f −=  of length 2rn = , for some r + , and subdivides this into two 

subvectors of equal length ( 2
nm = ), functions 2xf  (even indices) are assigned to one sub 

vector whilst functions 2 1xf +  (odd indices) are assigned to the other, 0,1,.., 1:x m= −  

  

1

0

1 1

2 2 1

0 0

1 1

2 2 1

0 0

1

'

' ' '

'

'

2ˆ exp  

2 (2 ) 2 (2 1)
exp  exp  ...   = 

2

2 2
exp exp exp  

ˆ ˆexp

n

z x

x

m m

x x

x x

m m

x x

x x

z z

izx
f f

n

iz x iz x n
f f m

n n

izx iz izx
f f

m m m

iz
f f

m



 

  



−

=

− −

+

= =

− −

+

= =

 
=  

 

+   
= +   

   

     
= +     

     

 
= +  

 



 

 

2  ,

  4.57 

(Klugman, Panjer & Willmot, 2004: 186).  In turn, each of the transforms 1
ˆ
zf  and 2

ˆ
zf  are 

subdivided into two further subvectors, each of equal length, and so on until each vector is 

comprised of only one function.  This entire procedure is hereafter referred to as FFT.   

For ,  ,...n m  (i.e. the lengths of each subdivided vector of functions) to be integer valued, 

the original vector, ( )nf , must have n  functions such that 2rn =  (i.e. r +  is the number 

of bisections required).  If there are fewer than 2r
functions the original vector ( )nf  can be 

padded with zeros to make up for the shortfall.  Should xf  be continuous (i.e. x  as 

opposed to x ) or not periodic, then discretisation, the mathematical process by which 

continuous functions (or models, equations, etc.) are relayed to discrete counterparts, is 

required before FFT (4.57) can be applied.  Appendix C.1 describes the mass-dispersal 

discretisation (rounding method), which is utilised in Chapter 5.  Refer to Wang (1999a: 

862) and Klugman, Panjer & Willmot (2004: 655–656) for further information pertaining 

to this and the mean-preserving method.  
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The following steps define a general purpose FFT algorithm in terms of 4.55–4.57.  These 

form the basis of several key models (§4.4).  

Algorithm 4.1 General FFT steps for reconstructing ALDs 

1. Perform discretisation (Appendix C.1) in respect of a given severity cdf to produce the 

vector ( )

0 1[ , , ]n

nf f f −=  (where 2rn = , )r +  

2. Apply FFT to the vector ( ) ,nf  and obtain ˆ
zf , 0,1,...., 1z n= −  (as in 4.55)  

3. Apply the cf (step 2) within the pgf of the loss count cdf, or raise to the power of the 

given number of risks (i.e. for CR and IR ALDs respectively, 4.2) – based on relevant 

application of 4.46–4.48 

4. Apply the inverse Fourier transform to the cf (step 3), and obtain the ALD as a 

discretised pdf vector with dimension 2rn = , as in 4.56   

The ALD (step 4, Algorithm 4.1) can  be 'undiscretised’ as necessary; further details in this 

regard can be found in Klugman, Panjer & Willmot (2004, sec. E.3).   

4.2.5 Correlated ALDs 

This section describes cfs for correlated aggregate loss and count, based on pioneering 

contributions by Wang (1998, 1999a) and conventional techniques for mixture models 

(Klugman, Panjer & Willmot, 2004; Mildenhall, 2005).  To begin with, prerequisite 

definitions regarding correlation are first covered. 

4.2.5.1  Correlation and covariance coefficients  

Definition 4.4 Pearson’s correlation coefficient 

Pearson’s correlation coefficient between two random variables, iX  and jX , with standard 

deviations ,  i j   respectively, is ij  defined by: 

  
ij i j

ij

i j

  


 

−
=    4.58 

where 1 1ij−    and ij i jEX X =  (Pearson cited by Lawrence & Lin (1989)).  
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Definition 4.5 Covariance coefficient 

For random variables iX  and
jX , with Pearson correlation coefficient 

ij , means and 

standard deviations as before (4.58), the covariance coefficient 
ij  is given by:  

  
Cov( , ) i j

i j i

i j ij

ij

j

X X 


 

   
= =    4.59  

The range of 
ij  (4.59) depends on the shape of marginal distributions for iX  and 

jX , as 

described later (§4.2.5.1) in terms of tail behaviour.  

4.2.5.2  Cfs for correlated aggregate losses  

Define the joint cf, 
1 ,...,:

mS SC C=S
, for m +  random variables,  1, , ,mS S=S  by: 

  ( )( )( ) 1
[ ] 1 1 [ ] 1 [ ] [ ]

m

ij i i j j i ii j i
C C t C t C t

 =
= + − − S t , 4.60 

where ,i jS S S  have respective cfs , ,i jC C  and covariance coefficient ,ij  1 ;i j m    

and 1[ ,..., ]mt t=t , Wang (1998, pt. IV).   

The joint pdf, 
1 , ,:

mS Sf f=S
, can be represented as follows:  

  

*(2)*(2)

1

( )( )
( ) 1 1 1 ( )

( ) ( )

m
j ji i

ij i i

i j ii i j j

f sf s
f f s

f s f s


 =

   
= + − −        

 S s , 4.61 

 where :
ii Sf f=  represents the marginal pdf of ,iS with two-fold convolution (4.5) 

*(2) *(2):
ii Sf f= ; and 1,...,i m= .  Key features of CS (4.60), and representation of fS  (4.61), 

include: 

• Covariance coefficients are incorporated by utilising the entire marginals (where these 

are given)  

• For valid fS  (i.e. non-negative), sij  must fall within a permissible range, which can 

be defined for heavy-tailed marginals (Definition 4.2) as limiting ratios (
*( 2)

,
f

f
 4.61) 
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that are bounded from above; whilst light-tailed cdfs lead to negative probabilities  

• The density of 1 , , mS S+ +  can be reconstructed from 
1 , , mS SC + +

 using FFT  

(Algorithm 4.1) which, interestingly, may not necessarily be invalid in the case of light-

tailed marginals 

The univariate density, referred to in the final point, is now considered further. 

Example 4.7 ALD for sum of correlated aggregate losses 

Following on 4.60, let the univariate cf of 1 , , mS S S= + +  be SC ; from 4.47 (with ),=S X

it follows that:  

  ( )( )( ) 1
[ ] 1 1 [ ] 1 [ ] [ ]

m

S ij i j ki j k
C t C t C t C t

 =
= + − −  , 4.62 

where sij  and siC  are defined as previously.  The mean and variance of aggregate loss, 

,S  is then:  

  
1

2

: E E[ , , ],

Var 2 E E  

m

ij i ji j

S S S

S S S



 


= = + +

= + 
 4.63 

where 2

1
Var

m

jj
S

=
=  , Wang (1998: 31).  As alluded to previously, the univariate cf  

(4.62) is apparently less restrictive, in terms of covariance coefficients (for valid pdf), than 

is the case for the joint cf (4.60).  

4.2.5.3  Cfs for correlated loss count (mixture models)  

Often, the extent, existence, or number of insurance claims are influenced by common 

external loss generating mechanisms, for instance: a hurricane or motor-vehicle accident 

may result in multiple claims including bodily injury and property damage; claim costs may 

be affected by the common regulation or economic climate (e.g. inflation).  In the context 

of stochastic modelling, this is a cause of uncertainty referred to previously as parameter 

risk (§4.2.2.2).   

To reflect such uncertainty, a secondary mixture cdf can be incorporated within the model.  

In this section, a joint pgf for correlated aggregate loss count variables is built up using 
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Poisson mixtures.  Refer to Klugman, Panjer & Willmot (2004, sec. 4.6.10) for examples 

of various other mixtures with theoretical underpinnings. 

Poisson mixture models 

 Let 1[ , , ]mN N=N  be a vector of m  discrete random variables with joint pgf given by

1 , ,:
nN NP P=N
(see 4.45 for similar notation) and assume there exists a random variable   

with mgf M such that ( | ) ~ ( )j jN Poisson   =  (i.e. Appendix D.1, D.3) where 

( ) ,j jEN   = = 1,..., .j m=  The marginal pgf of | ( )jN  =  is then

( 1)

| [ ] j j

j

w t

N jP t e


 

−

= = , which leads to the following joint pgf  for N :  

  1

1[ ] | exp( ( )) M [ ( )]mNN

m m mP E Et t E       = =  − =  −N t λ t 1 λ t 1 ,  4.64 

where 1 1[ , , ],  [ , , ],m mt t = =λ t  and m1  is a (row) vector with m  ones. 

Example 4.8 Gamma-mixed Poisson model 

Suppose ~ ( ,1),Gamma   for some 0a  , has mgf [ ] (1 ) ,M t t 



−= −  then the joint pgf in 

4.64 becomes [ ] (1 ( ))mP − = −  −N t λ t 1 .  This specifies a form of multivariate negative 

binomial cdf, where marginals, ~ ( , )j jN NB    (D.4), have respective pgfs, ,
jNP   

1,...,  ,j m=  defined by: 

  [ ] (1 ( 1))
jN j j jP t t  −= − − ,  4.65 

(Wang, 1999a: 803).  Refer to Mildenhall (2005: 120) for mgfs with alternative 

parameterisations, and Reshetar (2008) for practical application in the context of OR 

(Chapter 2).  

Example 4.9 Multivariate Negative Binomial (MNB) distribution  

From Example 4.8, let ~ ( , )j j jN NB a   ̶  the joint pgf, PN , is now: 

  
 

'

1

[ ] ( 1) w
mP m

−

=  − +N t 1 k  , 4.66 
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where  1, , ,mt t=t
m1  is a row vector of m  ones; 1[ , , ]mk k=k  with 

(1 ( 1)) ,jw

j j jk t


= − − 1,...,j m= ; and 0.w     

This specifies a family of MNB cdfs, with marginals ~ ( , ),j j jN NB   in either of the 

following cases: 

1. 1

[1, ]
0 min{ }j

j m
w  −


    

2. 0w   s.t. P [ ] 0m N 0  and 1
w

+−   

where m0  is a row vector of m  zeros, (Wang, 1998: 47).  Here, the random vector N  

follows an MNB distribution, denoted by ~ MNB( , , )wN α λ with vector parameters 

 1, , m  =  and 1[ , , ].m =λ   Suppose 1, , mS S  represent m +  CR loss models 

(4.2) that are specified by their severities and loss count variables, ( , ),i iX N  1,..., ,i m= and 

only correlated through 1[ , , ] ~ MNB( , , )mN N w=N α λ  (Example 4.9).  

Recall the relationship between aggregate loss cf, loss count pgf, and severity cf (4.48); 

accordingly, the cf for the overall aggregate loss, 
1 ,...,:

mS S SC C + += , is defined by: 

  
1

 
'[ ] ( 1) w

S mC t m
−

=  − +1 y  , 4.67 

where m1  is a row vector of m  ones, 1[ , , ]my y=y  with (1 ( 1)) jw

j j jy C


= − − , 
jC  is 

the cf of 
jX  1,...,j m=  (Meyers & Heckman, 1984: 36; Wang, 1998: 27).  As such, FFT 

reconstructs the cdf of 1 ,..., mS S S= + + , from transforms SC  (4.67).  The mean and variance 

of S  can be determined using 4.63 (substituting sij  with w , the correlation parameter in 

4.67). 

4.2.6 Monte Carlo (MC) simulation 

Monte Carlo simulation refers to a broad class of algorithms that repeatedly sample from a 

process, to assimilate results for a process that typically exhibits some form of variability.  
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To illustrate this, the inverse probability transformation (as considered previously for the 

purpose of FFT in Algorithm 4.1) and the quantile function are defined. 

Definition 4.6 Probability integral transformation 

For random variable, X , with continuous distribution, F , the transformation, ( ),U F X=  

yields random variable, ~ (0,1)U Uniform .   

Definition 4.7 Inverse probability integral transformation  

The inverse for Definition 4.6: if ~ (0,1)U Uniform  and X  has a distribution ,F  then 

random variable 1( )F U −  has the same distribution as .X   Thus, simulating 1( )F U−  is 

equivalent to simulating random variable X (Definition 4.7), however, it may be the case 

that F  does not have a unique inverse (e.g.  ( ) ( )F b F a=  s.t. a b , ( ) 0F a  , and 

( ) 1).F b    In such instances, it is useful to define the inverse 
1F −
 in terms of a non-

decreasing quantile function Q  as follows: 

  1( ) ( ) inf{ : ( ) }Q u F u x F x u−= =   4.68 

where (0,1)u  , (Devroye, 1986: 28).  In terms of a given time horizon and loss X  with 

cdf ,F  the (0,1)   quantile, ( ) ( )Q VaR X  , where VaR is the Value at Risk – that is, 

the value of loss s.t. the probability of a larger loss is less than 1 .−   

Algorithm 4.2 Monte Carlo (MC) simulation of a random variable 

To simulate random variable X  with distribution ,F  first simulate U u= from 

~ (0,1)U Uniform , then calculate ( )Q u using 4.68, (Wang, 1999a: 880).  This represents 

one iteration of the MC simulation (increasing the number of iterations generally reduces 

associated simulation error).    

4.3 Severity model  

The spliced (severity) model, considered in this section, assumes individual losses are 

generated by processes that differ according to the severity of loss.  In particular, define a 

two component spliced model in terms of n  observed severities, ordered as 
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1 2 , , .nx x x     Losses in the interval [0, ] , for a given non-negative threshold,   (i.e. 

‘splicing point’), are assumed to follow a small loss cdf (in this case, estimated by the  

empirical cdf, nF ).  To cover the interval ( , )  , a parametric distribution, ,G  is estimated 

using (observed) losses greater than  .  Following on from 4.29 ( 2m = ), let H  be the 

spliced distribution in question:     

  

( )

( )

1 ( )

1 ( ) ( ) ( )
1 ( ) 1

1 ( )

1 ( )

 1 ( )
1 ( )

1 ( )

n

n

n

n

F x x

H x G x G
F x

G

F x x

G x
F x

G




 





 


− 


− = − 
− −   − 

− 


= − 
−   − 

 4.69 

where the first component cdf, 
( )

( )
n

n

F x

F   (for x  ) and second component cdf, 
( ) ( )

1 ( )

G x G

G





−

−  (for 

x  ), are spliced with weights ( )nF   (i.e. 1p , 4.29) and 1 ( )nF −  2( mp p= , 4.29) 

respectively.  There is no notation for the true underlying distributions, which are "unknown 

and unknowable" (Klugman, Panjer & Willmot, 2004: 421).   

Approaches to identify a model and threshold (i.e. G  and    respectively, 4.69) are now 

described in further detail.    

4.3.1 Selection (large-loss model) 

The following steps are used to select a large-loss cdf, from a set of k +  candidate 

models (e.g. Burr, Weibull, Pareto, etc.) and identify a suitable threshold for application of 

the spliced model in 4.69 (i.e. given 1[ , , ]n nx x=x ):  

Step 1 Fit 1m   cdfs, 
1,..., ,i imG G  to the largest 1n i− +  severities, for 

some 2,3,..., 1,i n k= − − where 2k n − is the minimum 

number parameter estimates for each cdf (e.g., based on 

Maximum Likelihood Estimation, MLE)  

Step 2 Let * min{ }i j
j

G c= , where 
jc  is the AICc for 

ijG , 1,...,j m=   
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Step 3 Calculate *

iB , the KS-ratio (4.39) for *

iG   

Steps 1–3 have the following outputs: the large-loss distribution, *,iG  empirical threshold,

ix , and KS-ratio, *

iB  (valid scores require 2,..., 1i n k= − − , as in step 1).  In terms of the 

spliced model, H  (4.69), 
( ) ( )*

1 ( )
( ) ,

G x G

i G
G x x






−

−
=  and 1i ix x +   –  if 2x   or 1n kx − − , 

then the unconditional cdfs, G  and nF  respectively, might be used (in parallel to similar 

set-ups, such as Ralucavernic (2009: 86), where an ML approach is utilised).   

The threshold itself can be expressed in terms of the empirical rank as follows: 

  ( )nj nF =   4.70 

where 1,...,j n= ; nF , ,  and 1x  are defined as previously (4.69).   

4.3.2 Threshold determination  

Threshold determination is a common challenge when dealing with spliced models such as 

H  (4.69), and several techniques exist in this regard.  In the statistical branch of EVT, for 

instance, these include graphical (e.g. ME 4.2.2.1, Hill plot) and analytical methods (e.g. 

ML, Scollnik & Sun, (2012); square error; etc.).  These and other methods include EM 

algorithms (Reynkens et al., 2016); techniques pertaining to GPD models (Gharib et al., 

2017); and tail-fit optimisation (Buch-Kromann, 2009).   

However, elements of subjectivity are introduced (e.g. choice of weights, siw  in 4.72, as 

described shortly); and there may be loss of predictive power, with results that are highly 

dependent on data (Michaelides et al., 1997).   

The present chapter adopts a score based approach (Klugman, Panjer & Willmot, 2004, sec. 

13.5.3), using a similar set-up adopted for ML approaches, but with greater emphasis being 

placed on tail fit and limit-factor consistency.  Differentiability and continuity 

requirements, (Cerchiara & Acri, 2016: 3), are not explicitly allowed for, however, model 

selection incorporates the Kullback-Leibler distance estimate (AICC, §4.2.3.2).  This 

provides a practical and simplified means to identify both parametric cdf and threshold 

(additional considerations pertain to limit-factor consistency and ME plots, Chapter 5). 
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Criteria 4.1 Splicing point 

Ordinarily, criteria for determining a threshold in the context of EVT depict a variance-bias 

trade-off associated with GPD parameter estimates.  As there is no such ‘bias’ in the present 

case, an artificial index is created using the underlying empirical cdf, which is combined 

with the KS-ratio (§4.2.3.2).  An alternative approach would be to use the Anderson-

Darling goodness-of-fit measure (Klugman, Panjer & Willmot, 2004, sec. 13.4.2) – as this 

places greater emphasis on tail fit (i.e. at larger values).  However, to illustrate concepts 

such as weighted scores and balancing trade-offs, the following criteria are contemplated 

for determining threshold,  , in terms of output from steps 1–3 (§4.3.1). 

1. ,  with the greatest rank, i   

2. ,  with the lowest KS-ratio, *

iB   

In this way, larger thresholds are favoured through the first criterion, whilst the second 

attempts to optimise tail fit.  As described in §5.2.1, upper bounds are established for 

thresholds by considering ME plots.  Recall   was defined as being equivalent to ,ix

2,..., 1i n k= − − , as before (step 1, §4.3.1) – this is relevant for the following section.   

Normalising scores  

According to Criteria 4.1, preference is given to higher and lower values of six  and *siB  

respectively (i.e. steps 1–3, §4.3.1).  Equivalently, higher values of i  and ,i  defined as 

follows, are favoured over lower values:  

  

*

[1, ] *

*

1

min{ }
,      0

i
i ni

i i i

n k i

Bx
B

x B
  

− −

= =     4.71 

With i  defined as previously (step 1, §4.3.1); thus , (0,1]i i    are on the same scale.  

Combining scores  

The concept of combining different measures or estimates is not uncommon.  For instance, 

in insurance practice, Actuaries may determine premiums as the credibility weighted 

average of exposure-based and experience-based estimates (Boor, 1997: 2; Werner & 
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Modlin, 2010, chap. 12).  Some of the many other applications include constructing cubic 

splines where competing objectives relating to smoothness (measured using second 

derivatives) and goodness of fit (based on the sum of least squares) are combined, 

(Klugman, Panjer & Willmot, 2004: 485).   

The weighted average score, ,iz  with respect to measures i  and i  (4.71), is determined 

as follows: 

  (1 ) ,i i i i iz w w = + −    4.72 

where (0,1)iw   represents the weight associated with i , 2,3,..., 1i n k= − − .  To 

determine an optimal splicing point, iz (4.72) can be maximised over  2,3,...i =  given 

2 1[ ,..., ]n kx x − −=x , *

iB , and associated weights (i.e. 2 3, ,...).w w   The algorithm outlined 

shortly utilises steps 1–4 (§4.2.4.4), transformations (§4.2.2.2), and tail-fit scores 

(§4.2.3.2).  

The choice of weight, iw , 2,...,i n= , for i  (or equivalently, 1 iw−  for i ) in  4.72 is 

indeed a subjective one.  Three options are considered here, the first of which, (1)

iw , 

represents a naïve approach that assumes equal weights for i  and i :   

  (1) 50%iw =    4.73 

This is the most straightforward option, however, as the threshold,   (or equivalently, i )  

increases, the reliability of i  reduces (since fewer observed severities are used to 

parameterise the cdf,  *

*iG , Algorithm 4.3, upon which i  is based).  Therefore, (2)

iw , which 

reduces as   increases, can be defined as follows: 

  (2)

i

n i
w

n

−
=   4.74 

Likewise, as   reduces (2)

iw  increases, which also appears to be acceptable if this implies 

*

*iG , and thus i , is more reliable due to parameterisation in respect of a larger number of 

observed severities.  However, the suitability of *

*iG  itself depends on the suitability of 

candidate severity cdfs considered (i.e. 1 2, ,...i iG G , §4.3.1 step 1), which is independent of 
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the threshold.  As described earlier (§4.2.3.2), ‘absolute’ quality of a model relies on that 

of the candidate models.  If unsuitable cdfs are considered in the first instance then i  

should reflect this, however, using (2)

iw  will mask this at lower thresholds.  The third and 

final weighting option, (3)

iw , attempts to address this potential issue by forcing the ratio 

(2) (2): (1 )i iw w−  to remain constant across all 2,...,i n= :  

  (3)

2
i

n i
w

n i

−
=

−
   4.75 

This weight results from the division of (2)1 iw+  into (2)

iw .  As is the case for (2)

iw , (3)

iw  

reduces as   increases, however, it allows greater weight to be placed on i   at lower .   

Table 4.1 illustrates (1)

iw , (2)

iw , and (3)

iw  for a sample of low to high  percentiles.  In terms 

of the various options for weights depicted in this table: 

• Option 1 appears to be inferior to Options 2–3, for reasons already provided 

• Option 3 is unnecessary here, due to a variety of suitable candidate cdfs considered in 

Chapter 5 (Appendix D.1), where the sensitivity of these options, in terms of 

Algorithm 4.3 outputs, is also considered  

Option 2 is, therefore, selected for use in Chapter 5. 

 

Table 4.1 Scale of weights for scores Considered for determining the weighted average  

where  and  are transformed AICc and KS-ratio measures respectively for different 

percentiles, , in respect of  severities,   Option 1: 50%; 2–3: weights 

 and  respectively) that reduce as the percentile increases. 

w i
(1)

1  ̶  wi
(1)

w i
(2)

1  ̶  wi
(2)

w i
(3)

1  ̶  wi
(3)

0.25% 50.0% 50.0% 99.8% 0.3% 49.9% 50.1%

65.5% 50.0% 50.0% 34.5% 65.5% 25.7% 74.3%

66.5% 50.0% 50.0% 33.5% 66.5% 25.1% 74.9%

80.5% 50.0% 50.0% 32.5% 67.5% 24.5% 75.5%

81.5% 50.0% 50.0% 31.5% 68.5% 24.0% 76.0%

82.5% 50.0% 50.0% 30.5% 69.5% 23.4% 76.6%

97.5% 50.0% 50.0% 2.5% 97.5% 2.4% 97.6%

98.5% 50.0% 50.0% 1.5% 98.5% 1.5% 98.5%

99.5% 50.0% 50.0% 0.5% 99.5% 0.5% 99.5%

Percentile

Option 1 _Option 2 _Option 3

( )i
n
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Algorithm 4.3 Optimal threshold and large-loss cdf  

For a given group (i.e. class) of  n  ordered, homogeneous, and independent severities,  

1, , nx x , with empirical cdf nF  (4.34); steps 1- 3 (p. 4.35) are run for each [2, ]i n  to 

produce the following input vectors for this algorithm:  

• * * *

2 3 1[ , , , ]n kG G G − −=G  (i.e. selected large-loss distributions from step 3) 

• * *

2 1[ , , ]n kx x − −=x  (i.e. vector of ‘thresholds’) 

• * * *

2 3 1[ , , , ]n kB B B − −=B  (i.e. associated vector of KS-ratios) 

Next, 4.71 is applied to x  and B  (element by element) to obtain the vector of scores 

2[ , , ]n =α  and 
2[ , , ]n =β  respectively.   

For a given vector of weights 2[ , , ],nw w=w  where (0,1)  2,3,...,iw i n  = , the vector 

of (calculated) weighted scores, 2[ , , ]nz z=z , is determined using 4.72.  The optimal 

threshold, * , is *ix , where * {2,3,..., }i n  is the optimal index value that yields the 

solution to the following: 

  * max{ : 2,3,..., }i iz z i n= =  4.76 

The corresponding (parameterised) optimal distribution is then 
* *

( *) *nnF iG G =  (which 

follows from 4.70 with *: ).j i=   Thus, the outputs of this algorithm are the optimal 

threshold, optimal index value, and optimal distribution (i.e. * , *i , and *

*iG  respectively).  

Algorithm 4.4 Model confidence sets – Kullback-Leibler 

This algorithm follows the bootstrap approach of Burnham & Anderson 2002 (sec. 4.5), 

which is based on essential Kullback & Leibler (1951) theory associated with AIC and other 

such information criteria.  For each candidate cdf (i.e. parametric family), ,iG  and 

bootstrap sample indexed 1,...,i m=  and 1,...,j M= respectively, ,  2,m M   determine 

Akaike differences, ij , in relation to the minimum AICC, *

1,..,
min{ }j ij
i m

A A
=

= , and associated 

Akaike weights, ijw  (that sum to one for each sample) as follows:  
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  *

1

exp( 0.5 )

exp( 0.5 )

ij

ij ij j ij m

iji

A A w





=

−
= − =

−
 4.77 

where 
ijA  is the AICC score for cdf iG , parameterised (e.g. using MLE) in respect of data 

for sample {1,..., }j M .   

Differences and weights accompanying the M  samples can provide insight into model (in 

this case, cdf) selection uncertainty.  For instance, in terms of the following ‘model 

confidence set’ and selection probability estimates: 

• The 100%  ‘Kullback-Leibler’ (KL) confidence set, for specified cdf with (common) 

index {1,..., },s m comprises the set of candidate cdfs with corresponding Akaike 

differences below the 100%  empirical quantile, ( ) ,q  of Akaike differences for the 

specified cdf; the probability that cdf indexed 1,...,i m=  is in such a confidence set, 

( ) ,ic   can be estimated from the samples as follows: * ( )

( ) 1

{ }1
ˆ 1

ij j

M

i A A qj
c M 

 −

− =
= 

(indicator, 
{.}1 ,defined as previously in §1.3)  

• Correspondence between the average weight, 1

1
ˆ

M

i ijj
w M w−

=
=  , for a given cdf with 

index 1,...,i m= , and the proportion of ( )M  minimum Akaike scores that correspond 

to the cdf in question, 1

{ 0}1
ˆ 1 ,

ij

M

i j
M  −

==
=   attests to the veracity of the 

(aforementioned) KL confidence set, and associated model inference uncertainty 

4.4 Limit factor and aggregate loss models  

This section describes and formulates various limit factor and aggregate loss models, which 

are grouped in Figure 4.3 according to whether correlation (between aggregate losses for 

classes A–E, Chapter 3) is recognised, and how loss count, N , is modelled: 

• IR framework:  N n=  is given  

• CR framework: N  is a random variable with a given pdf  

In this way, IR represents a special type of CR, where N  has a degenerate distribution such 

that Pr( ) 1N n= = , as contemplated by Klugman, Panjer & Willmot (2004, sec. 6.1).   
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Models 4.1–4.2 Limit factors for independent, individual classes (IR model) 

The following is an overview of Models 4.1–4.6, as depicted in this figure 

• Models 4.1– 4.2 model aggregate losses in respect of small and large severities, using 

empirical cdfs and the spliced-severity model (§4.3); relevant limited moments (4.7) are 

used to determine the risk-adjusted LAS (4.17) and limit factors (4.18) in an IR 

framework with consideration for possible application in a CR framework 

• Model 4.3 (IR and CR) derives ALDs in respect of classes A–D (subject to per-loss 

limits), and class E (subject to a per-occurrence limit) from which limit factors are 

determined in respect of ground-up or excess losses; inflation and risk adjustments 

(4.28) 

• Models 4.4–4.5 rely on given covariance coefficients between aggregate losses in 

classes A–D (4.62) 

• Model 4.6 applies 4.67 with relevant parameters for the (correlated) marginal loss count 

cdfs (NB, Table D.3, eqn. D.4) 

Figure 4.3 Flow chart for Models 4.1–4.6 Models 4.4–4.5 and Model 4.6 assume 

correlated aggregate loss amounts and counts (classes A–D) respectively.  Adjustments 

(e.g. inflation, risk) may apply to limit factors based on any of these models.   

Individual classes Correlated classes

IR
 f

ra
m

ew
o

rk
C

R
 f
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m
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o
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Models 4.1 - 4.2 

Aggregate loss models
(small, large losses),  
limit factors:   
❖Model 4.1 
empirical severity cdf
❖Model 4.2      
spliced severity cdf

Model 4.3

ALDs, by class, using 
FFT with given loss 
count

Model 4.4

ALDs for correlated  
classes using FFT 
with given loss counts 
and covariance-
coefficients

Models 4.5 - 4.6

❖Model 4.5: as for 
4.4 but with random 
variable loss count                        
❖Model 4.6: loss 
count N~MNB using 
FFT with given 
correlation parameter

Model 4.3 

ALDs, by class, using 
FFT with random 
variable loss count
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Models 4.1–4.2 are formerly defined in this section; Models 4.3–4.6 are more descriptive 

in nature and are framed in the context of tailored FFT steps, with compound-Poisson and 

negative binomial applications for Models 4.5–4.6. 

Assumptions for ILFs 

The method used to determine ILFs in this section is based on ‘top slicing’ and relies on 

the following assumptions: 

• Severities, by class, are homogenous, independent, and independent of loss count  

• Non-risk elements (e.g. expenses) are negligible 

• There is no anti-selection (e.g. by size of limit) 

Variables and definitions 

Define the following for a given class with n  observed severities: 

• nF  and  : empirical cdf and splicing point respectively 

• 1 , , ux x    : the smallest, ordered, u  (i.i.d.) severities with LAS, LEV, and 

‘limited’ variance denoted by ( )

1
( ) ,

u b

S ii
Z b x

=
=  ( ) ( )1

; 1
E ,

ub b

S b S iu i
X x

=
= =   and 

2 ( ) ( ) 21
; ;1

Var ( )
ub b

S b S i S bu i
X x 

=
= = −  respectively, where 0b   is a single limit that 

applies to severity (§4.2.2); ( ) {0,1,..., }nu nF n=  ; 1{ ,..., }S uX x x  is the small 

severity random variable where ~ , 1,...,d

i Sx X i u= , and ~S nX F     

• 1, , n uX X − : n u−  random variable ‘large’ severities with LAS, LEV, and limited 

variance  ( )

1
( ) ,

u b

L ii
Z b X

=
=   

( )

; E b

L b LX = , and 
2 ( )

; Var b

L b LX =  respectively, where 

siX  are i.i.d. such that ~ , 1,...,d

i LX X i n u= − ; ~LX G , where LX  and G  are the 

large severity random variable and cdf (unconditional with respect to ),  respectively; 

;L SX X⊥  b  is the limit as before  

Thus, 
;

0
( )

b

L b XS x dx =   and 2 2

; ;
0

2 ( )
b

L b X L bxS x dx = − , which follows from 4.30 with 

1k =  and 2k =  respectively, and 1X XS F= −  where 
( ) ( )

1 ( )
( ) G x G

X G
F x 



−

−
= , x 

( ( ) 0,  )XF x x =  .  The overall aggregate loss, Z , its mean, Z , variance, 2

Z , and 
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associated (variance principle) risk-adjusted LAS, var:Z =  (4.17, S Z= ), and limit 

factor, :Z S =  (4.18, S Z= ), are defined by Models 4.1–4.2, in an IR framework, as 

follows: 

 

( ) ( )

1 1

2 2 2

; ; ; ; ; ;

;2

; ; ; ; ,

;

( ) ( ) ( )

E ( ) ( )  ;    Var ( ) ( )

 ;      

u n u
b b

S L i i

i i

Z b S b L b Z b S b L b

Z b

Z b Z b Z b Z a b

Z a

Z b Z b Z b x X

Z b u n u Z b u n u

w

     


   



−

= =

= + = +

= = + − = = + −

= + =

 

  4.78 

where , 0a b  ; ( ,u  ,n  ,b  SZ , ,LZ  
; ,S b  

; ,L b  
2

;L b ) as before; and Cov 0.S LX X =    

Models 4.1–4.2 can now be distinguished from one another as follows: 

• Model 4.1 – by setting u n=  (or equivalently, nx  , the maximum observed severity), 

s LX  and associated terms in 4.78 become redundant and Z , Z , 2

Z , . ,Z . and Z  are 

expressed solely in terms of ix , 1,...,i n= ) and calculated numerically 

• Model 4.2 – this relies on the spliced-severity model (and associated algorithms) 

developed in §4.3, by setting  , u , and G  to the optimal outputs from Algorithm 4.3 

(i.e.  threshold * , index *i , and large-loss cdf , *

*iG  respectively); analytical solutions,  

developed in respect of large-loss limited moments, are checked using Model Risk by 

Vose (2019), risk analysis software and simulation 

ILFs and associated measures for Models 4.1–4.2 can then be determined for a range of 

different splicing points and associated (small and large) severity cdfs.   

CR modifications – Model 4.2 

Limited moments, risk-adjusted LASs, and limit factors (4.78) can be modified for CR 

applications.  For instance, suppose N  is the random variable loss count with mean n , and 

all other relevant assumptions underlying Models 4.1–4.2 remain unaltered; then ;Z b  does 

not change; if ~ ( )N Poisson n , then replacing 
2

;S b  and 
2

;L b , in the expression for 
2

;Z b  

(4.78), with ( )2E b

SX  and ( )2E b

LX  respectively, yields the CR equivalent for the variance of 
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( )Z b  (associated limit factors follow suit).  Attention is now turned to Models 4.3–4.6, 

which rely on FFT (Algorithm 4.1), with steps summarised in Table 4.2. 

• Steps 1–2: limited severity cdfs that reflect per-loss (classes A–D) and per-occurrence 

(E) limits (§4.2.2) are discretised for application of standard (Excel) FFT routine 

(Chapter 5), based on specified spans, ranges, and limits  

• Step 3a: varies according to whether the model belongs to the IR or CR framework (as 

defined earlier); Step 3b combines cfs in respect of ALDs with correlated aggregate 

severity (i.e. Models 4.4–4.5) or count (i.e. Model 4.6) 

• Step 4: reconstructs the density in question by applying inverse Fourier transform   

(4.56) to respective cfs from the previous step 

 

As mentioned, covariance coefficient parameters (Step 3b, Models 4.4–4.5) are investigated 

and formulated as part of a sensitivity analysis (Chapter 5).  

Model 4.3 ALD for independent classes (IR, CR models) 

Of the Models 4.3–4.6, this model represents the most straightforward application of FFT 

(Algorithm 4.1).  In terms of steps 1- 4 in that algorithm, consider a class with n  observed 

severities.  Model 4.3 (IR) proceeds with step 1 by discretising the spliced-severity 

Table 4.2 FFT steps for ALDs (Models 4.3–4.6)  Check mark (✓) if step is relevant, cross 

(x) otherwise.  Common font colour (i.e. red or blue) for common procedures within a step; 

‘cov coeff’- given covariance coefficient parameters. 

Steps 1 - 2 Step 3a Step 3b Step 4

Model:

1) Discretise  (limited, 

spliced ) severity cdf s 

in respect of classes

A-E ; 2) Apply FFT 

(element by element) to 

obtain their cfs

Cf s (step 2 ): raise to 

power of n  (i.e. given loss 

count), or apply within pgf 

of N  (i.e. random variable 

loss count ) to obtain 

aggregate loss cf s

Combine cf s (step 3a ) to 

obtain overall aggregate 

loss cf  using given 

covariance coefficients  or 

Multi-NegBin  model

Reconstruct ALD (s) from 

cf (s) in penultimate step 

(i.e. step 3a  or step 3b ), 

using inverse FFT

Model 4.3 (IR ) ✓ Raise cf s to power of n X Inverse FFT (cf s: step 3a )

Model 4.3 (CR ) ✓ Apply cf s in pgf  of N X Inverse FFT (cf s: step 3a )

Model 4.4 ✓ Raise cf s to power of n Combine using cov coeff Inverse FFT (cf : step 3b )

Model 4.5 ✓ Apply cf s in pgf  of N Combine using cov coeff Inverse FFT (cf : step 3b )

Model 4.6 ✓ Apply cf s in NegBin pgf s Combine with MNB Inverse FFT (cf : step 3b )
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distribution (of limited severities) using the rounding method (Appendix C.1).  The 

corresponding vector of cfs (determined in step 2) are raised to the power of n  (element by 

element) to obtain cfs in respect of ALDs (step 3a), which are yielded using the inverse 

Fourier transform (step 4) – undiscretisation of these ALDs is unnecessary for the intended 

purpose, and, therefore, not performed.  Model 4.3 (CR) is very similar except, instead of 

raising severity cfs to the power of n  (step 3a), the pgf of an assumed loss count cdf (in 

this case, Poisson) is incorporated (steps 1, 2, and 4 remain otherwise unchanged).  A 

simulation algorithm (presented shortly) is used to verify Model 4.3.  Models 4.4–4.6 are 

distinguished from one another in terms of steps 3–4 (Table 4.2), as is now described. 

Model 4.4 ALD for correlated aggregate losses (IR model) 

Step 3a is relevant for Model 4.4 as this is based on the IR framework which assumes each 

class has a (deterministic) loss count, n .  The cf for each of the classes A–D is thus raised 

to the power of n  (element by element) to obtain corresponding (class-level) cfs in respect 

of their marginal ALDs.  Step 3b combines these using 4.62 (with 4,m =   and assumed 

covariance coefficients, ),ij =  before taking the inverse Fourier transform (4.56) in step 

4 to yield the aggregate loss cdf (i.e. joint cdf for correlated marginal ALDs  with respect to 

classes A–D).  

Model 4.5 ALD for correlated aggregate losses (CR model) 

Model 4.5 is the CR analogue to Model 4.4.  Instead of raising the cfs in each of the classes 

A–D to the power of a deterministic count parameter, n , as is the case for Model 4.4 in step 

3a, the pgf of an assumed loss count variable is incorporated within the cf (element by 

element).  Following on from 4.48, this yields the cfs in respect of the (marginal) ALDs for 

each of the classes A–D.  Step 3b (i.e. application of 4.62 with given marginals and 

covariance coefficients) and step 4 (i.e. inverse Fourier transform) used in this model are 

otherwise identical to those used for Model 4.4.  For variance principle adjustments 

regarding limit factors, 4.63 is utilised later (§5.3.3).     

Model 4.6 ALD for correlated loss count (CR model) 

Model 4.6 utilises a (multivariate) mixture model, as considered for Example 4.9.  In 

particular, step 3a assumes that the  class has random variable loss count, jN , with 
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( , )j jNB a   cdf and specified parameters ,j ja  , 1,2,3,4j =  (Table D.3, D.4).  The 

associated pgf is thus incorporated (element by element) within cfs in step 2 to produce 

(class-level) vectors of cfs (step 3a) for respective ALDs.  These are then combined using 

4.67 (with 4,m =  and assumed correlation parameter, )w  in step 3b, before using the 

inverse Fourier transform (4.56) to yield the aggregate loss cdf in step 4 (i.e. joint cdf in 

respect of classes with correlated aggregate NB loss count variables).  Relationships 

between Models 4.5–4.6, with respect to LAS moments, are considered later (Chapter 5). 

Applications for Models 4.5–4.6 

In terms of Model 4.5, aggregate loss, S  (4.63) with constant covariance,   ,ij r i j =    

is assumed later for some scenario 1,2,3r =  ( ,i j⊥ ) – to this end, let  : 2 E E .V i ji j
C S S


= 

The variance-adjusted LAS, r  (4.17) for scenario r , with covariance-coefficient, r , and 

(common) risk-adjustment parameter, 0w  , can then be expressed as:  

 2

1( )r r v r vw C w C     = + + = +   4.79 

For compound-Poisson iS  (4.63), having (primary) Poisson parameter, 0  , and 

(secondary) survival function, 
iXS , in respect of severity variable iX , 1,...,i m= , it can be 

shown that 1 ,..., mS S S= + + , in the independent case (i.e. 0)r = , is also compound-

Poisson, having primary (Poisson) parameter m  and secondary (mixed) survival function 

1

1 i

m

Xi
m S−

= .  Refer to Klugman, Panjer & Willmot (2004: 99) for a general case proof.  In 

this way VC ,  , and 2  can be related to the moments of a random variable Y  with 

(mixed) survival 1

1 i

m

Y Xi
S m S−

=
=  , as follows: 

 

( ) 2 2 ( )

( )

2
2 ( )2

( 1)( E ) ,  2 ( 1) ( )

,   ( )

,   2 ( )

b bV
V V Y

b

Y

b

Y

dC
C C m m Y m m S b Y

db

d
m Y m S b

db

d
m Y mb S b

db

 


  


  

= − = − 

=  =

=  =

  4.80 
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where 0b   is a given limit; m  and    as before; and VC  denoting an upper bound (or, 

when the variance between ( ) ( )

1E ,...,Eb b

mX X  is small, an approximation) for .VC   In fact, 

V VC C−  is directly proportional to the variance between ( ) ( )

1E ,...,Eb b

mX X  (i.e. akin to 

‘variance in hypothetical means’), and thus,  at sufficiently low limits, V VC C  (with 

equality when ( )E   1,..., ).b

iX b i m=  =   To see this, define ( ): E ,  1,..., ;b

i ix X i m= = then 

( ) 1

1
E ,

mb

im i
Y x

=
=   2

21

1
( ) ,V

mC m
im i

x


−

=
=   and 2

VC

i ji j
x x

 
= 

2 2

1 1
( ) .

m m

i ii i
x x

= =
= −   The 

difference, 2
1 ( )V VC C


− , after rearranging, yields 2 21

1 1
( )

m m

V V i imi i
C C x x

= =
−  −   (i.e. 

( ) ( )

1Var{ E , ,E }b b

mX X , q.e.d.).  The extent to which this difference, as a percentage of VC  

(i.e. V V

V

C C

C

−
), increases with the size of the limit, ,b   depends on the nature of the underlying 

severity cdfs (i.e. 
1 2

1 ( ),1 ( ),...).X XS b S b− −    

For Model 4.6, let * * *

1 , , mS S S= + +  denote the LAS for this model, where *

iS s have 

compound cdfs with (common) marginal ( , )NB c  loss count variables and secondary 

severity cdfs identical to those of Model 4.5.  Then the mean and variance of *S  can be 

expressed in terms of ,  2 ,  and VC  (defined for S in 4.80) as follows: 

 

* *2
* * * *

2
1

* *2
2 * ( ) 2 *

2
1

2
2 * *

2 *
2

E  ; Var Var

(E )

  .... for 

   

m

i V

i

m
b

i V

i

V
V

V

S S S C

c X C

C
c C

c c
C

 
 

 

 
  

 


   



  


 

=

=

= = +

= + +

−
= + + =

−
= + −




  4.81 

The final line can also be written as ( ) 2

1
Var (E ) Var

m b

ii
S c X S

=
+  , where VarS  

represents the variance for S  in Model 4.5 (i.e. 2

vC + ) with covariance coefficient 

* =  (in which case Model 4.6 would have a larger risk-adjusted LAS than Model 4.5 

with this covariance coefficient).  The algorithm used to simulate LAS cdfs, to verify 

compound Poisson ALDs based on Model 4.3, is now described.   
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Algorithm 4.5 Monte Carlo simulation of class-level ALDs (CR framework) 

Let S have a compound-Poisson cdf with primary Poisson loss-count (and constant 

parameter) and secondary spliced-severity cdf (given q splicing percentile; and large- and 

small- loss cdfs): 

1. Realise N n=  from the primary cdf  

2. Realise L LN n=  severities from the secondary cdf (large-loss)  cdf, where LN  denotes 

large-loss count with a conditional Binomial cdf, parameters ( , )n q  

3. Realise Ln n−  small severities from the secondary (small-loss) cdf, and sum  

Summing large (2) and small (3) severities and repeating 1–3 will simulate S (Homer & 

Rosengarten, 2011).  Refer to Sundt (1999, sec. 2) for a generalised set-up for various 

applications.   

Model choice 

The choice of model depends on several factors (e.g. suitability for desired purpose, validity 

of underlying assumptions, etc.).  As summarised in Table 4.3, Models 4.1–4.2 provide an 

effective way to calculate limit factors over a wide range of limits using risk analysis 

software or analytical solutions (where these exist) to derive underlying limited moments.  

Models 4.3–4.6 allow for determination of the entire ALD.   However, if the purpose is to 

derive limit factors, then an analytical approach, provided solutions exist, would be far 

more effective since application of FFT would otherwise be required for each and every 

(single) limit (the same goes for simulation based approaches, 4.12).   

As for Models 4.1–4.2, analytical complexity depends on factors such as severity (e.g. 

spliced) and loss count (e.g. Poisson) cdfs, and risk-adjustment method (e.g. variance 

principle, PH, etc.).  The usual quirks associated with FFT (e.g. wrap around) extend to 

Models 4.3–4.6.  The choice between Models 4.4–4.6 depends on respective loss count and 

correlation assumptions.  For instance, Models 4.4–4.5 allow for correlation between class-

level (i.e. marginal) LASs by utilising given covariance coefficients and marginal ALDs 

with respect to different classes, whilst Model 4.6 utilises a mixed-model in relation to 

correlated aggregate count variables.   
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Model 4.5 (Table 4.3) provides greater flexibility than Model 4.6 in that the latter requires 

NB loss count cdfs and a common covariance-coefficient, whilst the former allows for 

different cdfs and coefficients in this regard.  Whereas both models are utilised, in Chapter 

5, to combine limited severity cdfs for classes A–D with per-loss limits (and relevant 

correlation assumptions), Model 4.3 (when applied to class E) implicitly combines classes 

A–D without-limits (allowing for any empirical correlation that may exist) before imposing 

a per-occurrence limit. 

Table 4.3 Advantages and disadvantages of different models  

Model Advantage Disadvantages

1.1(a) Efficient method for calculating limit factors or the

exact mean LAS over a wide range of (single) policy

limits

1.1(b) Based on expected value which disregards other

features of the ALD  (e.g. skewness, kurtosis, etc.)

1.2(a) ILF s can be expressed in terms LEV s alone,

which simplifies calculations
1.2(b) Assumes frequency and severity are independent

1.3(a) Easily extended to other applications such as

testing ILF consistency for different splicing points and

performing simulations

1.3(b) Requires simulation or other extension to cater for

the CR framework, non-independence, correlation, or

compound limits

2.1(a) Makes use of FFT , an efficient algorithm for

approximating the ALD

2.1(b) Needs to be run for each per-loss/occurrence limit

2.2(a) Quick determination of pure-risk premium for

different aggregate limits

2.2(b) Requires specification of a suitable span and

truncation point

2.3(a) FFT routines can be implemented using widely

available software

2.3(b) Some frequency pgf s may be difficult/impossible

to explicitly formulate (e.g. negative hypergeometric)

2.4(a) Flexible: easily modified to model IR or CR 

frameworks, univariate or multivariate severity and

frequency, and various forms of correlations

2.4(b) Potential for distortions and inaccuracies (e.g.

discretisation error, wrap-around and over/under-flow

issues)

2.5(a) Strong theoretical backing with consideration of

characteristic, moment and probability generating

functions

4
.1

 -
 4

.2
4

.3
 -

 4
.6
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Chapter 5    

5Results and Discussions 

“Again, you can’t connect the dots looking forward, you can only connect them looking 

backwards… you have to trust that the dots will somehow connect in your future”  

    (Jobs, 2010) 

 

5.1 Overview 

Various models and algorithms (Chapter 4) are put to the test and analysed in this chapter 

using data from Chapter 3.   

The objective of this chapter is to determine and compare aggregate loss cdfs and limit 

factors (§4.2.2) for a range of limits, modelling perspectives (i.e. IR, CR), types of interclass 

correlations, and risk adjustments.   

Definitions of various terminologies have been introduced (e.g. ALDs; IR, CR §4.2.1; LAS 

4.9 and related measures; FFT §4.2.4.4; and MC §4.2.6), and Models 4.1–4.6 (§4.4), based 

on spliced cdfs (§4.3), have been described.  Depending on the context, ALD refers to a cdf 

or pdf; and empirical or observed, and unless stated otherwise, refer to (inflated severity) 

data (Chapter 3). 
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Figure 5.1 Flow of results between figures and tables 

Table 5.2 

(Selected cdfs for classes A–E) 

 Selected large-loss cdfs and 

MLE parameterisations 

 Selected splicing points 

Figure 5.2 

(ME plots based on 4.16) 

 A–D (observed data, Chapter 3) 

considered in terms of ‘typical’ 

MEs (Figure 4.2) 

Figure 5.3 & Table 5.3 

(Algorithm 4.4: bootstrap) 

 Figure 5.3 cdfs (parameterised), 

PP, and QQ plots (A–E) 

 Table 5.3: Bootstrap sim. results 

Figure 5.5–5.6 

(ALDs based on Models 4.3–4.6) 

 Figure 5.5: Model 4.3 (classes 

A–D, CR & IR frameworks) 

 Figure 5.6: Model 4.3 (class E) 

& 4.4–4.6 (correlated classes) 

Figure 5.7–5.8 

(Investigations & experiments) 

 Figure 5.7: bimodal ALDs 

(Model 4.4) 

 Figure 5.8: Validity of ALDs 

(Model 4.5) 

Figure 5.11–5.12 

(MC simulation & wrap around) 

 Figure 5.11: MC versus FFT 

(Model 4.3), ALD accuracy 

 Figure 5.12: Detecting potential 

FFT wrap around 

Table 5.1 

(Algorithm 4.3: model selection) 

 A–E: goodness of tail fit (KS-

ratio); combined scores; and ILF 

consistency (by splicing point) 

Table 5.4–5.5 & Figure 5.4 

(Discount factors using Model 4.2) 

 Table 5.4: Mean LASs for 

classes A–E ($100m limit) 

 Table 5.5 & Figure 5.4: discount 

factors & curves resp. 

Table 5.6 & Figure 5.9–5.10 

(Risk-adjusted limit factors) 

 Table 5.6: ILFs for variance 

principle & PH transform 

 Figure 5.9–5.10: limit factor, 

gradient curves 

Table 5.7–5.11 

(Checks and comparisons) 

 Table 5.7–5.9: severity cdf, 

mean LASs, and ALD moments   

 Table 5.10–5.11: insurer versus 

model ILFs 
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The tables and figures in Figure 5.1 can essentially be divided into two main parts: 

1. Severity cdfs (§5.2): results from §4.3 are used to specify and assess large-loss severity 

cdfs underlying spliced cdfs of the form 4.69 

2. Model results (§5.3): feature discount factors (Model 4.2), ALDs (Models 4.3–4.6), and 

risk-adjusted ILFs (Models 4.3, 4.5–4.6), and concludes with validations and additional 

investigations (§5.3.4)  

1) Severity cdfs (§5.2) 

Here, data is represented by ME plots (Figure 5.2), followed by results of Algorithm 4.3 

(Table 5.1) where severity cdfs are selected (Table 5.2); goodness of fit (i.e. QQ- and PP- 

plots: Figure 5.3); and model confidence sets (Table 5.3) based on Algorithm 4.4 are 

considered.   

2) Model results (§5.3) 

This section is further subdivided into discount factors (§5.3.1), ALDs (§5.3.2), risk-

adjusted ILFs (§5.3.3), and validations (§5.3.4) based on Models 4.1–4.6, as follows: 

• Discount factors (Models 4.1–4.2): these are based on mean LASs at the $100m limit 

mark (Table 5.4), with a tabulated summary (Table 5.5) of factors that underpin limit 

factor curves in Figure 5.4 

• ALDs (Models 4.3–4.6): Figure 5.5–Figure 5.6 illustrate ALDs for Models 4.3–4.6; 

correlation is considered in terms of the effect in the tail of distributions (Figure 5.7), 

and the validity of resulting ALDs (Figure 5.8) 

• Risk adjustments (Models 4.3, 4.5–4.6): graphical illustrations that consider the impact 

of correlation in terms of consistency and different risk ‘environments’ (Figure 5.9) are 

followed by a summary of variance principle and PH transform risk-adjusted limit 

factors (with ranges indicating different intensity levels, Table 5.6), and gradient curves 

as part of a ‘stress test’ (Figure 5.10) 

• Validations are made in terms of: severity cdfs (FFT vs. limit factors: Table 5.7); 

accuracy of mean LASs (Table 5.8); ALDs (Model 4.3 vs. Algorithm 4.5: Figure 5.11, 

Table 5.9); FFT aliasing error (Figure 5.12); and reasonableness (insurer ILFs: Table 

5.10–Table 5.11) 
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5.2 Spliced severity   

Recall that in Algorithm 4.3 that steps 1–3 (p. 4.35) are repeated over a range of splicing 

points to determine input vectors G , x  , and .B   To this end, a number of candidate cdfs 

are considered in step 1 (Appendix D.2, Table D.1), and maximum splicing points (i.e. 

minimum number of large losses) are set in relation to ME plots.   

5.2.1 Mean Excess plots 

ME plots (§4.2.2.1) for the data are illustrated in Figure 5.2.  Markers that indicate the 

apparent onset of volatility, or other such irregularity due to having too few data points 

(percentiles correspond to maximum permissible thresholds for use in Algorithm 4.3). 

Figure 5.2 Empirical ME plots Axes: x (threshold, $m), y (mean excess, values omitted as they 

are unnecessary for this exercise).  Data: costs sourced from Ponemon Institute (2012a–i, 2013a–j, 

2014a–k), inflated to 2016.  Square markers (i.e. 94th, 96th, 93rd, and 92nd percentiles: A–D 

respectively) indicate the onset volatile or irregular trends (used as maximum percentiles for 

Algorithm 4.3). 
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The MEs for classes B and C (Figure 5.2) initially decrease before assuming upward 

concavity (possibly indicating a Burr type cdf), and ultimately, continue to increase beyond 

the indicated percentiles (i.e. 94%, 93% respectively).  This could also be indicative of a 

heavy-tailed Weibull, possibly a Pareto.  In contrast, MEs for class A and D reduce after 

the threshold of 93% (sharply so, in class D), which undermines a cdf such as the Pareto, 

and may even imply a short-tailed cdf for D, as will be explored in further detail.  For 

completeness, the empirical ME for E (Figure D.1) and 'shifted' MEs by percentile for A–E 

(Figure D.2) are included in Appendix D.1. 

5.2.2 Selecting large-loss cdfs (Algorithm 4.3) 

Vectors G , x  , and B  (Algorithm 4.3), representing large-loss cdfs (based on AICC 

Kullback-Leibler criterion; threshold values, and scaled, inverted KS-ratios, §4.3.1, 

respectively), and overall combined scores, z  (4.76), are summarised by class A–E and 

percentile in Table 5.1.   

In the first column are threshold percentiles for which large-loss cdfs and associated scores 

have been determined as part of two runs of Algorithm 4.3: the 1st run identifies ‘optimal’ 

splicing points in relation to the set of percentiles presented (i.e. with increments of one – 

65.5%, 66.5%, …, 98.5%, 99.5%); the 2nd run considers percentiles with finer increments 

(based on underlying empirical cdfs) that fall within 4 per cent of the thresholds identified 

in the initial run.  In terms of the large-loss models, ‘Weibull3’ refers a 3-parameter 

(shifted) Weibull; Burr cdfs are of a type 3 (i.e. Dagum, inverse Burr) with 4 parameters.  

Colour-coded bars represent the empirical data (quantiles for severity divided by respective 

maxima, A–E).  Goodness-of-fit scores, for each class, are evaluated relative to the lowest 

KS-ratio achieved in the 2nd run.  Colour-coded bars associated with these (and overall 

combined) scores illustrate the relative magnitude of the scores.   

Final selections (i.e. percentiles with colour-coded font; cdfs within boxes: A–E) 

correspond to the largest combined scores – similar selections (in terms of percentile; type 

and tail behaviour of cdfs) could be made using the second and third largest scores (these 

are produced in the 2nd run and are, therefore, not shown in this table).  Green check marks 

indicate where percentiles fall within acceptable ranges (based on ME plots: Figure 5.2; 

Figure D.1) and where resulting spliced cdfs produce consistent ILFs (across all limits 

considered, Table D.4); red-crosses are used otherwise.   
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Table 5.1 Large-loss cdfs and scores Final selections (percentiles: coloured font, A–E; cdfs: boxed) correspond to maximum overall scores (boxed).  Weibull (shifted; 

asterisked: light-tailed), Burr (type III: Dagum), and Pearson: 3, 4, and 6 parameter cdfs respectively.  Coloured bars: models – quantile divided by maximum (empirical 

severity); scores – relative magnitude.  Criteria for  (failing which, ): percentile deemed to be acceptable (in terms of ME plots); spliced cdf yields consistent ILFs 

over a given set of limits ($10k, $100m).  Underlying costs: Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to 2016. 

Class A Class B Class C Class D Class E Class A Class B Class C Class D Class E

0.25% Weibull Weibull Pearson Weibull Weibull* 0.63 0.36 0.32 0.71 0.39  0.31  0.19  0.16  0.35  0.20

65.5% Weibull Weibull Weibull Weibull Weibull 0.73 0.62 0.41 0.79 0.56  0.71  0.63  0.47  0.76  0.58

66.5% Weibull Weibull Weibull Weibull Weibull 0.73 0.48 0.56 0.75 0.62  0.72  0.53  0.59  0.73  0.63

67.5% Weibull Weibull Weibull Weibull Weibull 0.80 0.51 0.49 0.76 0.53  0.77  0.55  0.53  0.74  0.55

68.5% Weibull Weibull Weibull Weibull Weibull* 0.73 0.39 0.52 0.77 0.77  0.72  0.46  0.56  0.75  0.76

69.5% Weibull Weibull Weibull Weibull Weibull* 0.60 0.49 0.50 0.79 0.73  0.62  0.54  0.54  0.77  0.72

70.5% Weibull Burr Weibull Weibull Weibull* 0.47 0.25 0.54 0.67 0.74  0.53  0.36  0.58  0.68  0.73

71.5% Weibull Burr Weibull Weibull Weibull 0.50 0.28 0.53 0.65 0.53  0.55  0.37  0.57  0.66  0.56

72.5% Weibull Burr Weibull Weibull Weibull* 0.43 0.36 0.40 0.69 0.59  0.49  0.44  0.47  0.70  0.62

73.5% Weibull Burr Weibull Weibull Weibull 0.43 0.40 0.37 0.59 0.50  0.49  0.47  0.45  0.62  0.55

74.5% Weibull Burr Weibull Weibull Weibull 0.43 0.36 0.44 0.54 0.56  0.49  0.44  0.50  0.58  0.60

75.5% Weibull Burr Weibull Weibull Weibull 0.47 0.52 0.38 0.49 0.57  0.53  0.57  0.45  0.55  0.61

76.5% Weibull Burr Weibull Weibull Weibull 0.50 0.27 0.36 0.59 0.48  0.55  0.37  0.43  0.62  0.54

B: 77.50% Weibull Burr Weibull Weibull Weibull 0.68 1.00 0.35 0.53 0.51  0.70  0.96  0.43  0.58  0.57

78.5% Weibull Burr Weibull Weibull Weibull* 0.64 0.80 0.29 0.55 0.65  0.66  0.80  0.37  0.59  0.68

79.5% Weibull Burr Weibull Weibull Weibull* 0.63 0.31 0.29 0.49 0.75  0.66  0.39  0.37  0.54  0.76

C: 81.00% Weibull Burr Burr Weibull Weibull* 0.56 0.34 1.00 0.62 0.73  0.60  0.42  0.97  0.65  0.75

81.5% Weibull Burr Burr Weibull Weibull* 0.53 0.51 0.28 0.59 0.85  0.58  0.56  0.36  0.63  0.84

82.5% Weibull Burr Weibull Weibull Weibull* 0.52 0.51 0.33 0.54 0.84  0.56  0.56  0.41  0.58  0.83

E: 83.91% Weibull Weibull Weibull Weibull Weibull* 0.49 0.28 0.42 0.53 1.00  0.54  0.36  0.48  0.57  0.98

84.5% Weibull Burr Weibull Weibull Weibull 0.57 0.36 0.41 0.54 0.66  0.61  0.42  0.47  0.58  0.71

85.5% Weibull Burr Weibull Weibull Weibull 0.69 0.40 0.35 0.65 0.58  0.71  0.45  0.41  0.68                 

86.5% Weibull Weibull Weibull Weibull Weibull 0.82 0.48 0.41 0.68 0.58  0.82  0.52  0.47  0.70                 

A: 87.25% Weibull Weibull Weibull Weibull Weibull 1.00 0.46 0.39 0.75 0.66  0.99  0.50  0.44  0.76                 

88.5% Weibull Weibull Weibull Weibull Weibull 0.80 0.48 0.39 0.63 0.56  0.81  0.52  0.44  0.66                 

89.5% Weibull Weibull Weibull Weibull Weibull 0.91 0.34 0.48 0.49 0.52  0.91  0.39  0.52  0.53                 

90.5% Weibull Burr Weibull Weibull Weibull 0.75 0.63 0.41 0.51 0.58  0.76  0.65  0.45  0.54                 

91.5% Weibull Weibull Weibull Weibull* Weibull 0.88 0.28 0.49 0.65 0.49  0.88  0.33  0.52  0.67                 

D: 92.12% Weibull Burr Weibull Weibull* Weibull 0.67 0.30 0.31 1.00 0.49  0.68  0.35  0.35  0.99                 

93.5% Weibull Burr Burr Weibull Burr 0.52 0.26 0.25 0.67 0.28  0.55                                                                 

94.5% Weibull Burr Weibull Weibull Burr 0.44 0.30 0.48 0.77 0.26                                                                                  

95.5% Weibull Burr Burr Weibull Weibull 0.41 0.28 0.27 0.64 0.30                                                                                  

96.5% Fatigue Burr Burr Fatigue Burr 0.32 0.30 0.20 0.21 0.29                                                                                  

97.5% Fatigue Fatigue Fatigue Fatigue Weibull 0.24 0.19 0.26 0.30 0.61                                                                                  

98.5% Fatigue Fatigue Fatigue Fatigue Fatigue 0.39 0.20 0.25 0.67 0.15                                                                                  

99.5% Fatigue Fatigue Fatigue Fatigue Fatigue 0.47 0.31 0.35 0.71 0.34                                                                                  

_ Threshold 

percentile _ _ _ _ _ Class A _ _ _ _ _ Class B _ _ _ _ _ Class C _ _ _ _ _ Class D _ _ _ _ _ Class E

Large-loss models
(AIC

c
selections; final selections are boxed)

Goodness-of-fit score
(KS critical: 5%; minimum KS-ratio by class, divided by KS-ratio )

Overall scores and consistency check
(are limit factors consistent over all limits considered?)
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The cdfs identified by AICc (Table 5.1: A–E) generally agree with ME plots (Figure 5.2: A–

D; Figure D.1: E) for respective classes (e.g. A, C: heavy-tailed Weibull, Burr; B: Burr; D: 

light-tailed Weibull, 92% threshold; E: light- and heavy- tailed Weibull cdfs).   

As mentioned, final selections (Table 5.2) are reinforced by the fact that the top 3 largest 

combined scores (2nd run) yield similar results in terms of distributions and percentiles 

(Table D.2). 

 

5.2.3 Model confidence sets (Algorithm 4.4)  

Table 5.4 shows results for Algorithm 4.4 (10k bootstrap samples), by class.  In the first 

column are the top four models (selected cdfs, Table 5.2, are colour coded), according to 

how frequently they were selected on the basis of AICC (i.e. % selected, 2nd column).  For 

each such model, the average AICC weight, KS, and AD-ratios are shown together with the 

rate (per 100) for which resulting ILFs were consistent (over the range of limits in Table 

5.5).  The proportion of samples for which a given model falls within the 90% confidence 

set (based on Akaike differences, as described previously) is reported under the heading 

‘Confidence set %’. 

• Selected % ˆ( , following 4.77), AIC weight ˆ( )w , KS and AD ratios (based on 4.39 and 

4.40) are in agreement; ̂  and ŵ  are highest for selected cdfs, except for C (Weibull, 

the highest, fails the AD-test, 5% critical; also, the selected Burr cdf has a similar 90% 

confidence set success rate, (90%)ĉ ) 

• Light-tailed cdf selections are confirmed for D, E (with average shape 1)    

Table 5.2 Selected large-loss cdfs and splicing points Threshold: dollar value of splicing 

point; Burr represents inverse Burr (i.e. Dagum cdf); cdfs fit using MLE to severities from 

Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to 2016.  

A B C D E

Threshold  ($m) 1.40 0.29 1.67 4.14 6.50

Percentile 87.3% 77.5% 81.0% 92.1% 83.9%

Distribution Weibull Burr Burr Weibull Weibull

Shape 0.76 2.12, 0.53 2.13, 0.57 1.56 1.11

Scale ($m) 0.82 0.38 1.34 3.37 3.81

Location ($m) 1.40 0.29 1.67 4.14 6.50
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• Lowest and highest (90%)ĉ  can be seen for D (due to high, 92.5% truncation, Table 5.2) 

and E (due to additional 350 observations, year 2015, Chapter 3) respectively 

• Selected cdfs appear to strike an appropriate balance between ˆ, (90%)ĉ , and tail-fit ratios 

5.2.4 Cdf, QQ, and PP plots 

The cdf, QQ, and PP plots in Figure 5.3 (first, second, and third column, respectively) 

illustrate goodness of fit, by class (i.e. row), in relation to the large-loss cdfs (Table 5.2).   

In terms of PP plots, these cdfs appear to resemble the empirical cdfs reasonably well; as 

for the QQ plots, deviations occur in the extremities of the data as might be expected (e.g. 

maximum: A; largest three values: B, C, and E); distributions are otherwise reasonably well 

aligned with the empirical data. 

Table 5.3 Bootstrap results 10k samples; selected % achieving minimum AICC;  90% confidence sets 

based on Kullback-Leibler distance estimate for selected cdf (colour coded font, A–E - average shape 

parameter for Weibull cdf selections).  Tail-fit ratios (KS, AD - 5% critical); consistent ILFs (rate per 100).  

Underlying costs based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g) inflated to 2016. 

Model Selected % AIC weight Confidence set % KS-ratio AD-ratio Consistent ILFs

Weibull3 (α=0.76) 79% 77% 68% 0.5 0.6 99.8

Burr 17% 18% 25% 1.1 1.3 54.4

Fatigue 3% 3% 2% 2.5 17.8 24.5

LogLaplace 1% 1% 2% 3.4 67.8 99.5

Burr 74% 67% 48% 0.7 0.5 99.9

Weibull3 22% 22% 23% 0.7 1.1 99.9

LogGamma 3% 7% 17% 0.4 0.2 100

GEV 1% 2% 8% 0.4 0.2 100

Weibull3 55% 52% 26% 0.7 1.0 99.9

Burr 29% 29% 25% 0.8 0.6 98.0

LogGamma 14% 12% 17% 0.4 0.2 100

LogLaplace 1% 2% 8% 1.0 0.3 99.9

Weibull3 (α=1.20) 49% 34% 11% 0.6 0.6 99.8

Fatigue 21% 21% 4% 2.2 14.0 41.9

Burr 9% 9% 10% 1.5 1.5 52.1

Pearson5 8% 6% 8% 0.5 0.2 100

Weibull3 (α=1.04) 85% 80% 74% 0.5 0.6 100

Burr 8% 10% 13% 0.9 0.3 95.6

LogGamma 7% 8% 12% 0.4 0.2 100

LogLaplace 0% 1% 1% 1.7 0.7 99.3

A

B

C

D

E
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Figure 5.3 Cdfs, QQ, and PP plots for large losses Rows correspond to different classes: columns (1–

3) correspond to different types of plots: 1) empirical (blue line) vs. model (red line) cdfs; 2–3) quantile-

quantile (qq) and probability-probability plots, respectively: data (red line) vs. fitted (black line).  Costs 

based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to 2016.  

Weibull(0.76,0.82m,1.40m) QQ plot PP plot

Data ($m) Data ($m) Empirical cdf

Burr(2.12, 0.53,0.38m,0.29m) QQ plot PP plot

Data ($m) Data ($m) Empirical cdf

Burr(2.13, 0.57,1.34m,1.67m) QQ plot PP plot

Data ($m) Data ($m) Empirical cdf

Weibull(1.56,3.37m,4.14m) QQ plot PP plot

Data ($m) Data ($m) Empirical cdf

Weibull(1.11,3.81m,6.50m) QQ plot PP plot
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5.3 Limit factors and ALDs 

5.3.1 Discount factors (Models 4.1–4.2) 

The discount factor at a given limit is derived by dividing the mean LAS at that limit by the 

mean LAS at the $100m limit.  Table 5.4 reports mean LASs at the $100m limit for severities 

based on the empirical data (alone) and spliced models (§4.3), for each of classes A–E.   

The cdfs and thresholds used to construct spliced cdfs were presented in Table 5.2 – limit 

factors based on these are compared to those for the empirical data (hereafter, ‘spliced’ and 

‘empirical’ limit factors respectively; LASs are referred to in a similar fashion).   

 

 

Spliced LASs at $100m are greater than empirical counterparts (Table 5.4, A–E), due to 

spliced cdfs having heavier tails (Definition 4.3), which is very similar to the effect 

previously described for QQ plots previously (Figure 5.3, A–E).   

Attention is now turned to the discount factors that apply to these mean LASs (Table 5.5, 

base limit $100m), based on Models 4.1–4.2, and in particular, the extent to which these 

satisfy consistency tests (Properties 4.1).     

Number formats in this table are as follows: percentages (to the nearest two decimals) 

represent limit factors less than one, whilst numeric ‘1’ is equivalent to one (100.00% refers 

to a number less than one).  As such, spliced discount factors continue to increase as limits 

increase towards $100m – Figure 5.4 illustrates the effect this has on limit factors, at high 

limits.

Table 5.4 Empirical vs. spliced mean LASs (Model 5.2) $m; apply to mean LASs  at 

$100m limit.  Underlying costs based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 

2015g), inflated to end of 2016 year. 

Severity cdf _ A _ B _C D _ E

Empirical 555.4 169.8 823.5 1 192.8 4 126.7

Spliced 564.7 169.9 832.3 1 189.3 4 123.4
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Table 5.5 Empirical versus spliced discount factors (classes A–E) Based on Model 4.2.  Factors apply to mean 

LAS at $100m limit.  Costs based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to 2016. 

Limit ($) A B C D E A B C D E

10 000 4.40% 0.97% 0.66% 4.40% 0.96% 0.66%

20 000 2.88% 8.35% 1.94% 1.28% 2.83% 8.35% 1.91% 1.28%

30 000 4.32% 11.93% 2.89% 1.88% 4.24% 11.92% 2.86% 1.89%

40 000 5.73% 15.20% 3.83% 2.48% 5.64% 15.18% 3.79% 2.49%

50 000 7.13% 18.26% 4.76% 3.06% 7.01% 18.24% 4.71% 3.07%

60 000 8.50% 21.17% 5.69% 3.64% 8.36% 21.15% 5.63% 3.65%

70 000 9.85% 23.87% 6.61% 4.22% 9.69% 23.85% 6.54% 4.23%

80 000 11.18% 26.38% 7.52% 4.79% 10.99% 26.36% 7.45% 4.80%

90 000 12.48% 28.75% 8.43% 5.35% 2.51% 12.28% 28.72% 8.34% 5.36% 2.51%

100 000 13.77% 31.01% 9.33% 5.91% 2.79% 13.55% 30.98% 9.23% 5.92% 2.79%

250 000 30.75% 55.17% 21.79% 13.72% 6.92% 30.25% 55.13% 21.56% 13.76% 6.93%

400 000 43.89% 70.16% 32.27% 20.53% 10.91% 43.17% 70.01% 31.93% 20.59% 10.92%

550 000 54.39% 79.91% 40.67% 26.51% 14.79% 53.50% 79.64% 40.24% 26.59% 14.80%

700 000 62.76% 85.83% 47.59% 31.85% 18.51% 61.72% 85.42% 47.09% 31.94% 18.52%

850 000 69.10% 89.50% 53.53% 36.69% 22.02% 67.96% 88.95% 52.96% 36.80% 22.03%

1 000 000 74.31% 91.68% 58.65% 41.14% 25.38% 73.09% 91.24% 58.03% 41.26% 25.40%

1 150 000 78.61% 92.97% 63.08% 45.21% 28.61% 77.32% 92.80% 62.41% 45.34% 28.63%

1 300 000 82.06% 93.98% 67.02% 48.81% 31.70% 80.71% 93.93% 66.31% 48.96% 31.72%

1 500 000 85.73% 94.91% 71.66% 53.08% 35.57% 84.27% 95.00% 70.91% 53.23% 35.59%

1 700 000 88.38% 95.74% 75.66% 56.93% 39.19% 86.86% 95.78% 74.85% 57.09% 39.22%

1 900 000 90.46% 96.47% 79.18% 60.39% 42.62% 88.89% 96.35% 78.30% 60.57% 42.66%

2 100 000 92.12% 97.13% 82.25% 63.53% 45.83% 90.54% 96.80% 81.33% 63.72% 45.87%

2 300 000 93.52% 97.72% 84.83% 66.42% 48.86% 91.89% 97.16% 83.91% 66.61% 48.90%

2 500 000 94.78% 98.31% 87.02% 69.04% 51.72% 93.02% 97.44% 86.06% 69.24% 51.76%

3 000 000 97.07% 99.36% 90.88% 74.73% 58.10% 95.12% 97.97% 89.96% 74.95% 58.14%

3 500 000 98.41% 99.97% 93.40% 79.26% 63.46% 96.53% 98.33% 92.40% 79.49% 63.51%

4 000 000 99.30% 1 94.99% 82.78% 67.94% 97.50% 98.58% 93.99% 83.03% 67.99%

4 500 000 99.91% 1 96.16% 85.55% 71.95% 98.18% 98.78% 95.08% 85.82% 72.01%

5 000 000 1 1 97.11% 87.99% 75.47% 98.66% 98.93% 95.87% 88.29% 75.53%

5 500 000 1 1 97.77% 90.32% 78.46% 99.01% 99.04% 96.46% 90.51% 78.52%

6 000 000 1 1 98.27% 92.42% 81.11% 99.26% 99.14% 96.91% 92.44% 81.17%

6 500 000 1 1 98.60% 94.06% 83.47% 99.44% 99.22% 97.27% 94.08% 83.54%

7 000 000 1 1 98.84% 95.35% 85.64% 99.58% 99.29% 97.57% 95.43% 85.67%

7 500 000 1 1 99.06% 96.46% 87.57% 99.68% 99.35% 97.81% 96.53% 87.58%

8 000 000 1 1 99.24% 97.35% 89.29% 99.76% 99.40% 98.01% 97.41% 89.26%

8 500 000 1 1 99.42% 98.10% 90.78% 99.81% 99.44% 98.18% 98.09% 90.73%

9 000 000 1 1 99.60% 98.70% 92.09% 99.86% 99.48% 98.32% 98.61% 92.02%

9 500 000 1 1 99.78% 99.10% 93.23% 99.89% 99.51% 98.45% 99.00% 93.14%

10 000 000 1 1 99.92% 99.36% 94.21% 99.92% 99.54% 98.56% 99.29% 94.11%

11 000 000 1 1 1 99.71% 95.78% 99.95% 99.60% 98.74% 99.66% 95.68%

12 000 000 1 1 1 99.88% 96.93% 99.97% 99.64% 98.89% 99.84% 96.84%

13 000 000 1 1 1 1 97.76% 99.98% 99.67% 99.01% 99.93% 97.70%

14 000 000 1 1 1 1 98.27% 99.99% 99.70% 99.11% 99.97% 98.34%

15 000 000 1 1 1 1 98.60% 99.99% 99.73% 99.19% 99.99% 98.80%

16 000 000 1 1 1 1 98.86% 100.00% 99.75% 99.26% 100.00% 99.14%

17 000 000 1 1 1 1 99.04% 100.00% 99.77% 99.32% 100.00% 99.38%

18 000 000 1 1 1 1 99.19% 100.00% 99.79% 99.38% 100.00% 99.56%

19 000 000 1 1 1 1 99.31% 100.00% 99.80% 99.42% 100.00% 99.68%

20 000 000 1 1 1 1 99.43% 100.00% 99.81% 99.47% 100.00% 99.77%

35 000 000 1 1 1 1 1 100.00% 99.92% 99.78% 100.00% 100.00%

40 000 000 1 1 1 1 1 100.00% 99.94% 99.82% 100.00% 100.00%

45 000 000 1 1 1 1 1 100.00% 99.95% 99.86% 100.00% 100.00%

50 000 000 1 1 1 1 1 100.00% 99.96% 99.88% 100.00% 100.00%

55 000 000 1 1 1 1 1 100.00% 99.97% 99.91% 100.00% 100.00%

60 000 000 1 1 1 1 1 100.00% 99.97% 99.92% 100.00% 100.00%

65 000 000 1 1 1 1 1 100.00% 99.98% 99.94% 100.00% 100.00%

70 000 000 1 1 1 1 1 100.00% 99.98% 99.95% 100.00% 100.00%

75 000 000 1 1 1 1 1 100.00% 99.99% 99.96% 100.00% 100.00%

80 000 000 1 1 1 1 1 100.00% 99.99% 99.97% 100.00% 100.00%

85 000 000 1 1 1 1 1 100.00% 99.99% 99.98% 100.00% 100.00%

90 000 000 1 1 1 1 1 100.00% 100.00% 99.99% 100.00% 100.00%

95 000 000 1 1 1 1 1 100.00% 100.00% 99.99% 100.00% 100.00%

100 000 000 1 1 1 1 1 1 1 1 1 1

Empirical discount factors Spliced discount factors
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Naturally, empirical limit factors reach ‘1’ beyond observed maxima.  However, given the 

nature of incidental truncation described previously (§3.1), larger values can be expected 

for these classes (in general, larger values can always be expected for empirical samples).  

In the absence of any external restrictions, limit factors should be strictly monotonic and 

increasing over the entire range of limits (in this case, up to $100m).   

In this this way, empirical limit factors are regarded as undermining the first consistency 

property.  In contrast, spliced limit factors should adhere to this property, and, provided 

threshold values are suitably low (and continuity, differentiability, and other Properties 4.1 

are in order) consistency properties should be satisfied.   

Figure 5.4 Discount factor curves (classes A–D, Model 4.2) Limit factors expressed as 

discount factors (to respective LASs at $100m limit for classes A–D) - based on costs  

Ponemon Institute (2012a–i, 2013a–j, 2014a–k), inflated to 2016.  
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5.3.2 Aggregate Loss Distributions (Models 4.3–4.6) 

In Figure 5.5 individual ALDs for A–D (Model 4.3 IR, CR) are illustrated; combined 

versions of these (Models 4.4–4.6) are then shown in Figure 5.6, accompanied by Model 

4.3 (IR, CR) in respect of class E.   

The following assumptions are made for loss count, limits, discretisation (for FFT, 

§4.2.4.4), and correlation (for Models 4.4–4.6). 

Loss count 

This assumption depends upon the framework (i.e. IR, CR) as follows: 

• IR ̶ Models 4.3–4.4 assume a deterministic loss count of 10  

• CR ̶ Models 4.3 and 4.5 assume a Poisson loss count with mean 10

  ̶ Model 4.6 assumes a multivariate negative binomial with mean 

   10 and variance 20 (4.66 with MNB(10,1,0.09)) 

It can be noted that loss count assumptions are convenient, but otherwise arbitrary 

(however, assumptions are consistent across models) – modelling empirical severity is of 

greater interest for the present research. 

Severity limits A–E 

Illustrated in Figures 5.5–5.6 are per-loss and per-occurrence limits (§4.2.1), defined as:  

• Per-loss limit: $20m (A–D) 

• Per-occurrence limit: $80m (E) 

These are high enough to ensure large-loss cdfs make a reasonable contribution towards the 

ALD (Table 5.2).   

This allows for suitable discretisation (as is described shortly), and, in this particular case, 

a per-occurrence limit four times the per-loss limit provides some level of consistency 

between the limited severities for Model 4.3 (CR) and Model 4.5 (Scenarios 1–3): Figure 

5.6 (1), and Model 4.3 (IR) and Model 4.4 (Scenarios 1–3): Figure 5.6 (2).   
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Class E (subject to per-occurrence limit: $80m) can be expected to be at least as large as 

the sum of A–D (each subject to per-loss limit: $20m).  It can be shown that equality will 

occur whenever (severities for) A–D are (simultaneously) less than, greater than, or equal 

to $20m with strict inequality diversely (that is, the limited severity E will be greater than 

the sum of limited severities in A–D).   

According to the data, equality occurs in every one of the 800 cases.  However, these limits 

have implications for ALDs, as is described shortly.  

Discretisation of spliced-severity cdfs 

ALDs (Figures 5.5–5.6) represent 4 096 discretised points, based on the method of mass 

dispersal (Appendix C.1) as illustrated by Wang (1998: 46–47) and Klugman, Panjer & 

Willmot (2004, sec. 6.6.5), with the following truncation points: 

• Figure 5.5 (Model 4.3): truncation of $96.2m, roughly 6.5 times the mean LAS for class 

D, which has the largest mean LAS compared to other classes.  This equates to a span 

of approximately $23.5k 96.2m
4096

( )   

• Figure 5.6 (Models 4.3–4.6): truncation of $287.1m, roughly 8 times the mean LAS for 

class E, corresponding to a span of $70.1k 287.1m
4096

( )  

In each case, truncation points are selected to ensure there is no wrap-around issue 

encountered by the FFT, whilst maintaining an acceptably low level of discretisation error 

(wrap around and discretisation are described in further detail later in this section).   

Correlation parameters (Models 4.4–4.6) 

Scenario 1,2,3r = for Models 4.4–4.5, is based on 4.62 with covariance coefficient     

0.05( 1)  ij r r i j = = −    (i.e. 0%, 5%, and 10% for scenarios 1–3 respectively).   

Model 4.6 represents a ‘single’ scenario: 10j = =  (4.66, 1,...,4j = ) with parameter 

0.09w =  satisfying the first condition: 1(0, )w  − .   
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A B C D

Mean 7.05 2.12 10.35 14.99

Min 0              0              0              0              

Std dev 3.48 1.39 5.24 8.08

Skew 1.00 3.03 1.10 0.84

Kurt 4.67 28.60 5.25 3.87

VaR 1% 17.58 6.56 26.87 38.38

A B C D

Mean 7.05 2.12 10.35 14.99

Min 0.54 0              0.61 0.09

Std dev 2.67 1.22 4.10 6.54

Skew 1.23 3.93 1.39 0.77

Kurt 5.74 43.29 6.91 3.68

VaR 1% 15.55 6.08 24.36 33.61
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Figure 5.5 ALDs: Model 4.3 CR is based on Poisson(10) loss count, and IR assumes a deterministic loss count of 10.  Data based on 

Ponemon Institute (2012a–i, 2013a–j, 2014a–k), with costs inflated to 2016.  
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Figure 5.6 ALDs: Models 4.3–4.6 $m; Scenarios 1–3 represent constant covariance coefficients of 0%, 5%, and 10% respectively, for use in Models 4.4 

(IR framework) and 4.5 (CR framework).  CR loss count: Poisson with mean 10 (Models 4.3–4.5); MNB(10,1,0.09) for Model 4.6;  IR loss count: 10 

(deterministic).  Underlying data based on costs from Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to end of 2016 year. 
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5.3.2.1  Underlying cost types  

ALDs for A–E (Figures 5.5–5.6) are now considered in terms of associated cost types (Table 

3.1) and underlying large-loss cdfs (Table 5.2)  

• B: this has the lowest mean (Figure 5.5: 1, 2) and largest kurtosis – in keeping with the 

fact that these costs are not significant drivers of overall loss (e.g. data recreation, expert 

engagement, possibly customer notification); and the element of ‘determining 

regulatory requirements’, suggesting a heavier tail than otherwise (i.e. in support of the 

Burr cdf, Table 5.2) 

• A, C: most similar in terms of ALDs and moments – this agrees with underlying cost 

types which appear to be overlapping in some aspects (e.g. forensic, investigative, 

communication, assessment costs); however, the nature of other costs in C (legal, 

regulatory fines and penalties, product discounts, and credit monitoring) would explain 

its relatively larger moments and heavier tail 

•  D: the largest mean and, as implied by the lowest kurtosis and skewness (relative to 

mean), lightest (severity cdf and ALD) – this appears to reflect the nature of the 

underlying extrapolated cost estimate that has been derived from some other 

distribution 

5.3.2.2  Impact of correlation  

By increasing the covariance coefficient,  (Figure 5.6, 1), variance, skewness, and 

kurtosis, for Model 4.5, also increase.  This is consistent with Model 4.4, Scenarios 1–2, 

but not Scenario 3, which has a lower kurtosis than Scenario 2 (i.e.  6.79 vs. 6.08), which 

is due to the formation of a bimodal ALD.  Bimodal ALDs appear to result from ‘spikes’ in 

underlying discretised severity cdfs.  In this case, due to common per-loss limits coupled 

with FFT discretisation issues when combining heterogonous cdfs (e.g., B, D).  To 

investigate further, Scenario 3 is compared to Scenario 1 in terms of Model 4.4 (as 

described shortly, similar comments apply to Model 4.5).  Scenario 3 should bear closer 

resemblance to Scenario 1 if one of A–D were to be ‘exchanged’ with a mutually 

independent but otherwise identically distributed class (akin to the concept of ‘reciprocity’ 

in the context of reinsurance).   
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To this end, an experiment is performed using a log-log scale for Model 4.4 (Scenario 3), 

as Figure 5.6 illustrates, where, in turn, each of one A–D is assumed to be independent of 

the others, as follows:   

Sensitivity 1: Class A is independent of classes B, C, and D 

Sensitivity 2: Class B is independent of classes A, C, and D 

Sensitivity 3: Class C is independent of classes A, B, and D 

Sensitivity 4: Class D is independent of classes A, B, and C 

ALDs for sensitivities 1–4, as well as for Scenarios 1 and 3 are illustrated in Figure 5.7.  

The covariance coefficient in respect of a class, assumed to be independent of every other 

class (sensitivities 1–4), is set to zero, and kept at 10% for other classes (in accordance with 

Scenario 3).  

For example, if C is being tested as the independent class (i.e. sensitivity 3) then 0% =  

for (A,C),  (B,C), and (C,D), and 10% =  for other pairs: (A,B), (A,D), and (B,D).   

 

 

 

 

 

 

 

 

Figure 5.7 Bimodal feature for different sensitivities (Model 4.4) ALDs for sensitivities 

1–4 as well as the common independent ALD (Scenario 1) and Scenario 3 are based on Model 

4.4 with (deterministic) loss count of 10.  Data based on Ponemon Institute (2012a–i, 2013a–

j, 2014a–k), with costs inflated to 2016. 
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As can be seen, the ALD for Sensitivity 4 lies between Scenario 1 and other sensitivities 

(Figure 5.7); further, it does not appear to have a clear bimodal feature (which can otherwise 

be seen near the $50m mark).  Therefore, in terms of the extent of the bimodal feature (and 

potential ALD invalidity) for Model 4.4, correlation with respect to D has the greatest 

impact compared to other classes.  This is consistent with previous observations for relative 

tail ratios (Figure 3.4).    

Applying a PH transform to the severity cdf of D could be another way to deal with the 

bimodal issue (FFT discretisation may require updating to prevent aliasing issues).  As 

previously mentioned, similar conclusions apply for Model 4.5, which, as can be seen in 

Figure 5.8, also leads to bimodal (and eventually invalid) ALD, as   increases. 

According to Figure 5.8, the maximum permissible covariance coefficient lies between 20 

to 30 per cent (corresponding to valid and invalid ALDs, respectively).  Using trial and 

error, this maximum is determined as ~ 0.24 .  Whilst this is true for Models 4.4 and 4.5 

considered in this chapter, it may not be the case for other ALDs that have been derived in 

a similar fashion (i.e. using 4.62).  Despite this, however, it can be noted that the example 

ALD provided by Wang (1998, sec. 12), based on the same technique, appears to exhibit a 

similar bimodal feature.   

Figure 5.8 Valid and invalid ALDs (Model 4.5) Uniform covariance coefficients (i.e. 

across all classes) of 20 and 30 per cent result in valid and invalid ALDs respectively (i.e. 

maximum permissible covariance coefficient lies within this range).  Data based on 

Ponemon Institute (2012a–i, 2013a–j, 2014a–k), with costs inflated to 2016.   
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One of the key differences between Model 4.4 and 4.5 is that the ‘tail’ of the discretised 

ALD for Model 4.5 is less sensitive to changes in the coefficient,  .  For instance, if this 

parameter is set to 0% for class D (i.e. sensitivity 4), then other classes can enjoy a 

coefficient as high as 85%–90% before the ALD becomes invalid.  This compares to the 

maximum permissible value of only 50%–60% in the case of Model 4.4.   

5.3.3  Risk-adjusted limit factors (Models 4.3, 4.5–4.6) 

This section considers risk adjustments (variance principle, PH transform – §4.2.2.2) for 

Models 4.3, 4.5–4.6; types of limits (per-loss, per-occurrence), and risk and correlation 

parameters; in particular: 

• Loss count is defined as previously: Poisson with mean 10 – Models 4.3 (CR) and 4.5; 

MNB(10,1,0.09) – Model 4.6; Poisson(10) is also used for the PH transform 

• Risk parameter w  (4.17, 4.20) is calibrated to achieve a risk-adjusted (to) mean LAS 

ratio of 1.05 (low), 1.25 (medium), and 1.50 (high ‘risk environment’), at a per-

occurrence limit of $10m (Model 4.3, PH transform) and a per-loss limit of $2.5m 

(Models 4.5–4.6) 

• PH transform follows 4.20: with 
( )( ; , ) ( ; ) ( ; )b

PH PH PHS b w N w X w    where 

, ,S N  and X  (Weibull and lognormal, fit to class E using MLE) denote LAS, loss count, 

and limited severity variables respectively (given limit 0b   and parameter 1)w  ; this 

assumes equal confidence can be placed on assumed loss count and severity, as 

described by Wang (1999b: 955) 

Variance principle adjustments rely on analytical and computational results for first and 

second-order moments (4.3, 4.7) of a spliced limited severity variable (based on 4.30).  PH 

transforms are based on algorithmic integration using Vose (2019) software; for variable 

X  with Weibull cdf: ~ ( , )X Weibull a b (Table D.3: D.7), ( )( ; , ) E ,b

PH X b w Y =  where 

1/~ ( , )bY Weibull aw b−  is considered.  Parameters (for each method, model) are summarised 

in Appendix D.6.   

Figure 5.9 illustrates discount factor curves (base limit, $100m) and associated gradients, 

followed by Table 5.6 which summarises the range of low–high risk-adjusted limit factors 

(base limit, $1m) for different per-occurrence and per-loss limits. 
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Figure 5.9 Limit factor and gradient curves Base limit: $100m.  Model 4.3 (CR) in low (1–2), medium (3–4), 

and high environments achieves a risk margin of 5% at $10m, $100k, and $10k limits, respectively, based on 

variance principle which also applies to Models 4.5–4.6.  PH transform applies to a compound Poisson-Weibull 

and lognormal model (fit to costs: Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to end of 

2016 year).  Random variable loss count assumed to follow a Poisson cdf with mean 10 for all CR models and 

a deterministic value of 10 for Model 4.3 (IR).   
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Key observations relating to Figure 5.9 and Table 5.6 include: 

• PH (Weibull) limit factors are closely aligned to (variance-adjusted) Model 4.3 (CR), 

as is the case for Models 4.5 (scenario 3) and 4.6; PH (lognormal) and Model 4.3 ILFs 

crossover at a limit between the $15m-$20m (due to the underlying cdfs, Figure D.3) 

• Variance principle risk-adjusted limit factors, in this case, are generally consistent (i.e.  

positive and decreasing gradients, which is always the case for PH), although a subtle 

initial increase can be seen for Model 4.3 (i.e. closing the gap between CR and PH 

Weibull in medium–high risk, Figure 5.9: 4, 6) 

• Increasing the risk parameter leads to a greater risk adjustment at higher limits than 

lower limits for a given model (i.e. discount factor reduces, whilst ILFs increase at 

limits greater than $1m); a similar effect can be achieved through the correlation 

parameter in Models 4.5–4.6  (although this is partially offset by equalising risk margins 

at the $2.5m limit)  

Attention is now turned to risk-adjusted LASs and associated gradients for Model 4.5 

Scenarios 1–3, as they relate to a compound Poisson model with Poisson parameter and 

secondary mixed severity cdf.   

Table 5.6 Risk-adjusted limit factors Base limit: $1m.  Loss count: all CR models (Poisson, 

mean 10); IR (deterministic, 10).  Variance principle (Models 4.3, 4.5–4.6); PH transform:  

CR model with same risk parameter for both loss count (i.e. Poisson) and severity (*orange) 

cdf.  Risk parameters (each method, model) calibrated to achieve 5%, 25%, and 50% risk 

margin (i.e. low–high, corresponding to each range of limit factors) at $10m (per-occurrence) 

and $2.5m (per-loss) limits.  Underlying cost data: Ponemon Institute (2012a–i, 2013a–j, 

2014a–k, 2015g), inflated to end of 2016 year. 

Model $1m $2m $5m $10m $15m $20m $100m

4.3 (IR ) 1 1.75 - 1.81 3.04 - 3.59 3.89 - 5.51 4.14 - 6.33 4.20 - 6.58 4.21 - 6.65

4.3 (CR ) 1 1.76 - 1.86 3.05 - 3.64 3.86 - 5.13 4.08 - 5.65 4.13 - 5.79 4.14 - 5.83

Weibull
* 1 1.77 - 1.83 3.14 - 3.55 3.91 - 4.88 4.09 - 5.35 4.13 - 5.52 4.15 - 5.61

Lognormal
* 1 1.73 - 1.80 2.93 - 3.35 3.69 - 4.65 4.00 - 5.34 4.15 - 5.75 4.40 - 6.85

4.5 (1) 1 1.37 - 1.53 1.75 - 2.31 1.89 - 2.76 1.91 - 2.82 1.91 - 2.83 1.92 - 2.90

4.5 (2) 1 1.37 - 1.50 1.73 - 2.15 1.86 - 2.48 1.88 - 2.53 1.88 - 2.54 1.89 - 2.58

4.5 (3) 1 1.36 - 1.49 1.72 - 2.09 1.85 - 2.37 1.86 - 2.40 1.86 - 2.41 1.87 - 2.44

4.6 1 1.36 - 1.49 1.72 - 2.08 1.85 - 2.35 1.86 - 2.38 1.86 - 2.39 1.87 - 2.42
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For this, model 4.5 is specified in terms of 4.63,  4.79–4.80 as follows: 

• 4.63, Model 4.5 LAS: 1 4, ,S S S= + + ; respective LASs for A–D: 1 4,...,S S  (i.e. 4) :m =

constant covariance coefficient, scenario 1,2,3r = : 0.05( 1)r r = − ,  

• 4.79, variance-adjusted LAS: 2( )r r vw C   = + +  with 0;w   covariance term: 

: 2 E EV i ji j
C S S


=    

• 4.80, mixed survival: ( )YS b  based on spliced-severity variables, 1 4,..., ,X X  for 

respective classes (A–D); per-loss limit: 0b  ; and Poisson parameter (A–D): 10 =  

In this case, V V

V

C C

C

−
 (i.e. percentage difference described in respect of 4.80) grows from 

0.06% to 11% between the limits ($10k, $10m), but only increases by a further 1% between 

($10m, $100m).  Clearly, 
0

lim ,r
w

 
+→

=  1,2,3r = , which is why (low-risk) limit factor (and 

gradient) curves for Scenarios 1–3 (purple, blue, and red respectively) are virtually 

indistinguishable (Figure 6.13, 1), but appear to deviate in the medium (3) and (more so) 

high risk (5).  Moreover, in this case, 2  and VC  are initially (at low limits) concave-up 

(this is certainly the case b  s.t. ( )E bY b= ,  since 
2

,  ~rdC d
db db

b 
, 4.80: Figure D.4).  Given 

this, and the fact that greater weight is placed on 2  and VC  as w  increases (4.79), this 

would explain why gradients (scenarios 1–3) exhibit a decline that transitions from being 

steep (low risk), to being relatively gentle (high risk), as the risk parameter increases.   

Without digressing too far, this trend (i.e. upward concavity, 2, )VC   continues until 

underlying severity cdfs (i.e. for A–D) have gathered sufficient probability mass below the 

corresponding limit, b  (which marks the respective inflection points in VC , in this case, 

$450k, and 2 ,  $1m).  Compared to other classes, B has a severity cdf that accumulates 

the greatest such mass early on (i.e. due to it having a greater probability of relatively 

smaller severities).  In this way, it is the first class that serves as a countermeasure against 

the (initial) concave-up nature – theoretically analogous to the effect of diversification 

associated with heterogeneity.  Similarly, its cdf is also the first to exhibit a diminishing 

contribution towards the marginal increase in VC  and 2  as the limit increases even further 

(e.g. at $450kb = , severity cdf for B is around 80%–90%; compared to 40%–50% for other 

classes).   
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Returning to the point at issue, 1 , by definition (4.79), is independent of VC , but still 

depends upon   and 2 ; 2  and 3  depend not only upon these terms, but also VC .  

Whilst   may be relatively ‘well-behaved’ in terms of consistency properties, this is not 

necessarily the case for r , 1,2,3r = , due to dependence upon one (or both) of the terms 

2  and .VC   In particular, the risk adjustment associated with Scenario r  is 

2( 2 ),r r Vw C   − = + . 1,2,3r = , all terms defined as previously.  As such, the shape of 

the corresponding limit factor curves is influenced by that of 2  (i.e. through w ) and, in 

the case of Scenarios 2–3, VC  (i.e. through w  and )r .  Since 2  and  rC  are initially 

concave-up, there will be a tendency for limits factors to exhibit a similar pattern should 

the variance parameter, w , be large enough.  In this regard, w  (high risk, s.t. risk margin, 

50%m = , at limit $2.5m) does not appear to cause any issues, however, ‘stress testing’ w  

s.t. 500%m =  reveals the effect in Figure 5.10. 

Figure 5.10 Gradient curves (risk parameter stress test) 500% risk margin at limits 

$10m (Model 4.3 -variance principle; PH transforms) and $2.5 (other models - variance 

principle). $100m base limit; PH transform applies to a compound Poisson-Weibull and 

lognormal model (fit to costs: Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), 

inflated to end of 2016 year).  Loss count = 10 for IR (and Poisson parameter for CR). 

 0 0.3 2.5


'(

x)
 

x ($m, log10 scale)

Model 4.3 (IR)

Model 4.3 (CR)

Model 4.5 (scenario 1)
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PH (Weibull)
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Figure 5.10 illustrates the case where w  is stressed to the point where gradients for 

scenarios 1–3 reflect the combined effect of underlying gradients associated with 2  and 

VC  (Appendix D.6).  As can be seen, PH transforms remain resilient in terms of consistency 

properties (i.e. decreasing gradients); whilst Model 4.3 (CR, IR) has increasing gradients, 

which violates these properties (CR earlier than IR, due to greater variance associated with 

the former).  There is still remarkable similarity between scenario 3 (i.e. 3 0.1) =  and 

Model 4.6 in terms of gradients.   

The mathematical relationship follows 4.81 with * * *

1 4, ,S S S= + + ; marginal compound 

LASs for A–D with respective primary negative binomial parameters ( , ) (10,1)c = ; 2 ,   

based on Model 4.5 scenario 3; and * 0.09 = .  In particular, *Var VarS S− =

20.1 0.11 VC −  (i.e. 
*

*

Var Var

Var
~ 0;S S

S

−  VC  based on scenario 3 as before).   

This supports Figure 5.9 (1, 3, 5), although the effect is rather subtle and difficult to see as 

limit factor curves for Scenario 3 (red) and Model 4.6 (dark grey, dashed) appear to 

coincide with one another.  Refer to Halliwell (2009) for generalised extensions relating to 

mixed cdfs in the context of CR models with and without heterogeneity.  In Figure 5.9 (2, 

4, 6), gradients also appear to be fairly similar to one another (differences can be observed 

more easily in this case, due to the log-scale used for limits along the x-axis, especially in 

the case of Figure 5.10).   

In summary, due to common dependence on terms such as 2  (i.e. associated with 1 ) and 

VC ,  limit factor curves and gradients for Model 4.5 (in particular Scenario 3) and Model 

4.6 are similar in shape as illustrated (Figure 5.9: 1–6; Figure 5.10).  Previous comments 

regarding Model 4.5 consistency properties (low–high risk) also apply to Model 4.6. 

5.3.4 Validations and investigations 

As outlined in §5.1, this section reviews, to a practicable degree, models and results (§5.2–

§5.3) in terms of consistency, accuracy, and reasonableness. 
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5.3.4.1  Discretisation versus first-order derivative 

As mentioned previously, spliced-severity cdfs form the basis of mean LAS calculations 

based on Model 4.2 as well as ALDs based on Models 4.3–4.6.  Goodness of fit (§5.2.3) has 

already been considered for large-loss cdfs at selected thresholds.  It is now of interest to 

assess spliced-severity cdfs in terms of Models 4.1–4.6, by comparing cdfs implied by LEVs 

(based on Models 4.1–4.2) to discretised cdfs used in the FFT algorithms that underlie 

Models 4.3–4.6.  In Table 5.7 discretised severity cdfs for A–E (underlying ALDs in Figure 

5.5 and Figure 5.6) are compared with cdfs using the first-order derivative of LEVs based 

on Model 4.2 (i.e. 4.12).   

The term discretisation (Appendix C.1) in Table 5.7 refers to discretised severity cdfs that 

formed the basis of FFT used to determine the ALDs represented in Figure 5.5 (i.e. for 

classes A–D) and Figure 5.6 (i.e. for class E).  Recall that a separate discretisation was used 

for each.  This table shows that, for each class, there is close correspondence between the 

moments of the spliced-severity cdf, based on discretisation, and moments of cdfs that have 

been derived using the first derivative of LEV over a range of limits. 

 

 

 

 

The first-order derivative of LEVs are approximated over 4096 limits (with loss of one 

point, as described shortly), based on discrete multiples of the span used for discretisation 

(§5.3.2).   

Table 5.7 Discretised severity cdf versus first-order derivative of ILF Discretisation 

(truncation, span) - A–D: ($96.2m, $23.5k), E: ($287.1m, $70.1k).  Limits: A–D: $20m; 

E: $80m.  Underlying data based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 

2015g) costs inflated to end of 2016 year. 

Class Method Mean Std Dev Skewness Kurtosis

LEV  derivative 705 820 844 039 3.875 30.407

Discretisation 704 985 844 115 3.876 30.408

LEV  derivative 212 040 384 233 12.467 407.459

Discretisation 211 924 384 384 12.443 405.979

LEV  derivative 1 034 841 1 294 057 4.418 42.267

Discretisation 1 034 591 1 295 137 4.409 42.076

LEV  derivative 1 486 589 2 028 142 2.422 9.755

Discretisation 1 498 916 2 069 401 2.449 9.819

LEV  derivative 3 585 582 2 656 221 4.443 23.870

Discretisation 3 583 591 2 655 215 4.456 23.940

A

B

C

D

E
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From these, survival functions are evaluated at each discretised severity point, and the 

moments (summarised in this table) are calculated accordingly. 

To illustrate these calculations (to one decimal, in $000s), for example, the first three limits 

(with increments equal to a span of $23.5k) are 0, 23.5, and 47.0 respectively; 

corresponding LEVs (underlying Model 4.2, 4.78) for class A are calculated as: 0, 23.5, and 

46.6, respectively.  Divided differences (4.13) approximate first-order LEV derivatives (i.e. 

survival functions) at limits $0 and $23.5 as 1 ~ 23.5
23.5

 and 0.98 ~ 46.6 23.5
47.0 23.5

−
−

 respectively.  The 

probability at the nearest point that is greater than or equal to $20m will be set equal to one 

less the sum of probabilities up to this point; probabilities greater than this point are set to 

zero.  Moments are then calculated using the probabilities calculated in this fashion at each 

of the 4095 points (i.e. using 4096 limits). 

The correspondence between the moments of the discretised and ILF-implied severity cdfs 

in Table 5.7 not only confirms commonality of spliced-severity cdfs in different models, 

but also serves as a check for Model 4.2 in terms of basic underlying ILF theory (§4.2.1,  

4.8).   

5.3.4.2  Mean LAS comparisons 

Table 5.8 includes the following entries, which are used to compare mean LASs for Model 

4.2, by class, to those based on Model 4.3 (Figure 5.5 and Figure 5.6) and various other 

approximate methods: 

(1) Small Mean LEV for empirical severities that fall below the threshold  

(Table 5.2), multiplied by the expected number of small losses for a 

given total loss count of 10 (i.e. 10 times the threshold percentile, also 

given in Table 5.2), calculated empirically 

(2) Large  Mean LEV implied by the large-loss cdf, multiplied by the expected 

number of large losses for a given total loss count of 10 (i.e. 10 less 

the number of expected small losses), based on analytical solutions 

(3) Combined Model 4.2 (spliced cdfs): regarded as ‘correct’ values 

(4) Model 4.3 Model 4.3 (CR models, FFT ): Figure 5.5 (1, A–D), Figure 5.6 (1, E)  
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 (5) Vose software Vose (2019) built-in FFT aggregate function 

 (6) Empirical  Model 4.2 (empirical cdfs): entry (1) plus observed (large-loss) mean 

The same severity limits (i.e. A–D: $20; E: $80m) and mean loss count (i.e. 10), used for 

Model 4.3, are also used for Model 4.2 in Table 5.8.  Key points and observations relating 

to this table include the following:  

• Model 4.2 (entries 3, 6) reconciled with previous discount factors (Table 5.4, Table 5.5) 

– for instance, B (entry 3): $169.9m
800

$2.12m ~ (1 )0.2% 10−    (i.e. spliced discount factor 

at $20m, Table 5.5: 0.9981%; applicable mean LAS, Table 5.5: $169.6m; loss count, 

observed and assumed mean: 800 and 10 respectively)  

• Model 4.3 (entry 4): corresponds to within 1% for D, and 0.2% for other classes  

• Model 4.3, Vose (2019), and empirical (entries 4–6): in this case, the built-in FFT 

function is less accurate than Model 4.3 for A–D (and less accurate than the empirical 

estimates for B–D, entry 6), but the most accurate approximation for E 

It may be possible to improve the accuracy of Model 4.3 even further by discretising 

severity cdfs for each class separately (although this will make it much more difficult to 

combine ALDs using Models 4.4–4.6).   

Table 5.8 Accuracy of Model 4.3 and other approximations 1), 6) based on data; 2) 

reflects large-loss cdf; 4) FFT (truncation, span) - A–D: ($96.2m, $23.5k), E: ($287.1m, 

$70.1k); 5) mean, aggregate FFT Vose (2019) functions.  Loss count: Poisson, mean 10.  

Limits: $20m (A–D), $80m (E).  Cost data: Ponemon Institute (2012a–i, 2013a–j, 2014a–

k, 2015g), inflated to 2016.  

Mean LAS _ A _ B _ C _ D _ E

(1) Small (Model 4.2) 4 048 433 615 060 4 558 041 9 217 511 19 497 087

(2) Large (Model 4.2) 3 009 651 1 505 338 5 790 314 5 648 380 16 358 737

(3) Combined (1+2) 7 058 084 2 120 398 10 348 355 14 865 891 35 855 824

(4) Model 4.3 7 049 848 2 119 242 10 345 908 14 989 156 35 835 908

% diff = [ (3) - (4) ] / (3) 0.12% 0.05% 0.02% -0.83% 0.06%

(5) Vose Software 7 076 448 2 111 060 10 287 907 15 015 410 35 861 806

% diff = [ (3) - (5) ] / (3) -0.26% 0.44% 0.58% -1.01% -0.02%

(6) Empirical data 6 942 036 2 122 505 10 294 099 14 909 599 35 884 272

% diff = [ (3) - (6) ] / (3) 1.64% -0.10% 0.52% -0.29% -0.08%A
p

p
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im
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Whilst not as simple as the rounding-method (used here), the ‘mean-preserving’ method of 

discretisation should also achieve greater accuracy in this regard (Klugman, Panjer & 

Willmot, 2004: 168).  

5.3.4.3  Higher order moments (Algorithm 4.5)  

MC simulation (Algorithm 4.5) is used to determine ALDs for A–E (Figure 5.11, left), 

which are compared with those based on FFT (right) using Model 4.3 (CR).   

 

 

 

 

 

Figure 5.11 ALDs: Monte Carlo versus FFT (Model 4.3, CR) - (1) Left: MC simulation with 

500k iterations; (2) Right: Model 4.3 (CR) with FFT (truncation, span) - A–D: ($96.2m, $23.5k), 

E: ($287.1, $70.1k).  Limits: A–D ($20m), E ($80m); Poisson loss count with mean 10.  Vertical 

axes - left (A–D); right (E).  Underlying data: Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 

2015g), costs inflated to year 2016. 
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ALDs for A–E, based on FFT (Figure 5.11: 2), are copies of previous ALDs (Figure 5.5–

Figure 5.6), rotated by 90 degrees (for visual convenience, aggregate loss for E is placed 

on a second vertical axis, shown in green on the right).   

Severity cdfs for A–D are discretised separately to E, as before (the same limits and Poisson 

loss count assumption are also used, §5.3.2, §5.3.4.2).  ALDs for A–E, based on the MC 

algorithm (Figure 5.11: 1) appear as reflections of Model 4.3 (2) due to their close 

alignment.   

Simulation error associated with the MC algorithms is somewhat apparent (1); however, 

this does not seem to detract from the correspondence that can be seen between means and 

(standardised) moments (Table 5.9). 

 

This is confirmed by the means and moments reported in Table 5.9; it is also reassuring to 

see similar CR features for both approaches (e.g. minimum of 0, as observed previously 

§5.3.2).   

Table 5.9 Moments: Monte Carlo versus FFT  MC simulation with 500k iterations; 

Model 4.3 (CR) with FFT (truncation, span) - A–D: ($96.2m, $23.5k), E: ($287.1, $70.1k).  

Means: $m.  Limits: A–D ($20m), E ($80m); Poisson loss count with mean 10.     

Underlying data based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), with 

costs inflated to end of 2016 year. 

 

Class Method Mean Min Std dev Kurt Skew

Monte Carlo 7.080 0 3.485 4.683 0.998

Model 4.3 7.050 0 3.478 4.666 0.996

Monte Carlo 2.137 0 1.397 27.695 2.985

Model 4.3 2.119 0 1.388 28.599 3.029

Monte Carlo 10.362 0 5.238 5.204 1.095

Model 4.3 10.346 0 5.242 5.250 1.103

Monte Carlo 14.895 0 7.961 3.852 0.831

Model 4.3 14.989 0 8.080 3.875 0.840

Monte Carlo 35.806 0 15.710 3.521 0.643

Model 4.3 35.836 0 15.834 3.556 0.657

A

B

C

D

E
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5.3.4.4  Detecting potential aliasing errors 

In terms of FFT used for Models 4.3–4.6, should there be any (non-zero) compound mass 

at (or beyond) the truncation point (in this case, Figure 5.5–Figure 5.6, $96.2m for A–D 

and $287.1m for E, §5.3.2) it will simply wrap around and reappear (erroneously) at zero, 

giving rise to what is known as an aliasing error.   

This has been likened to a year 2000 problem and the ‘wagon-wheel’ effect and is an issue 

that can lead to an uplift in the left tail of the ALD (more so for heavy-tailed cdfs).  

Techniques to address this include:  

• Increasing the truncation point (although this must be balanced against associated 

discretisation error) 

• Applying a tilting operator that commutes with convolutions and increases the tail 

decay  (Shevchenko, 2010, sec. 6.2)   

The latter can lead to ‘overflow’ or ‘underflow’ – results too large or too small to be 

represented in computer memory – (Grübel & Hermesmeier, 1999).  To detect potential 

wrap around in the present case, Figure 5.11 is converted to a log-log scale (Mildenhall, 

2005: 175) in Figure 5.12 (1–4), and left tails are inspected.   

If wrap-around errors were an issue for Model 4.3 (CR), Figure 5.12 (2, 4), then positive 

deviations, relative to MC simulations (i.e. 1, 3), could be expected in the left tail of these 

ALDs.  In this case, only C exhibits such a positive deviation in Figure 5.12 (2), however, 

this only occurs at the (left-most) single point, corresponding to the span.   

Thus, wrap around does not appear to be an issue for any of A–E in this case, where limits 

are suitably low in relation to the truncation point used for discretisation.  If this were not 

the case, then C would be especially prone to wrap around, followed by B, A, then E (due 

to relative tail weight, §4.2.3.3, associated with selected cdfs, Table 5.2).  

Whilst subtle in effect (due to the log-scale), the application of this limit results in a small 

‘spike’ in the right tail of the ALD for B (Figure 5.12: 1, 2). 



Chapter 5   Results and Discussions 

James Bardopoulos  5.32 

 

5.3.5 Reasonability of limit factors  

To assess reasonableness, ILFs in respect of relevant models and classes are compared with 

insurer ILFs (allowing for the effect of inflation and deductibles as required).  Examples 

are provided according to the type of limit that applies. 

Figure 5.12 ALDs: MC versus FFT (log-log scale) - (1,3) MC simulation with 500k 

iterations; (2,4) Model 4.3 (CR) based on FFT.  Limits: A–D ($20m), E ($80m); Poisson loss 

count with mean 10.  Costs: Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated 

to year 2016.  

1) A-D (MC simulation) 2) A-D (Model 4.3)

3) E (MC simulation) 4) E (Model 4.3)
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Per-occurrence limit comparison 

The Hanover (2015) filing includes premiums (that vary by size of limit) for Data 

Breach (hereafter, DB) and Additional Expense (AE) coverage for ‘services and expenses’ 

which appear to overlap with A–D (Chapter 3) as follows: 

• A – forensics, consultations (e.g. audit and assessment) 

• B – notification, breach restoration, consultations 

• C – help line, legal, investigations, public relations, identity restoration 

• D – business interruption (i.e. lost business) 

As such, Table 5.10 compares ILFs for Models 4.2–4.3 (CR, class E), with low–high 

(variance principle) risk adjustments, to ILFs based on the Hanover (2015) filing. 

 

Hanover (2015) ILFs in Table 5.10 are summarised as a matrix of values: different rows 

and columns represent limits and bands of annual company turnover (in $m, 2015) 

respectively, and adjacent to this are ILFs based on Models 4.2–4.3.  The smallest absolute 

difference between insurer ILFs and the ILF for each model, by limit, is indicated with 

common font colour (e.g. 377 at $5m limit, Hanover (2015), is the insurer ILF closest to 

Table 5.10 Insurer ILF comparison (per-occurrence limits) Hanover (2015) ILFs based 

on premiums filed under Data Breach coverage (and 40% marginal loading for Additional 

Expense).  Underlying costs for modelled ILFs: Ponemon Institute (2012a–i, 2013a–j, 

2014a–k, 2015g), inflated to year 2016.  Font colour indicates Hanover (2015) ILF, at a 

given limit, with closest match to ILFs based on Models 4.2 - 4.3. 

Model 4.2

Limit ($) (0,1] (1 , 2] (2 , 5] (5 , 10] (10 , 20] 20+ No risk adj. Low risk Medium High

10 000 1 1 1 1 1 1 1 1 1 1

25 000 2.03 2.05 2.07 2.23 2.48 2.64 2.27 2.50 2.50 2.50

50 000 2.95 3.34 3.75 4.26 4.84 5.36 4.55 5.00 5.01 5.02

100 000 4.91 5.98 7.04 8.15 9.24 10.30 9.09 10.01 10.04 10.08

250 000 9.78 12.58 15.37 18.17 20.96 23.76 22.58 24.89 25.09 25.35

500 000 17.22 22.98 28.73 34.48 40.22 45.99 44.03 48.66 49.47 50.48

750 000 23.48 32.29 41.10 49.90 58.73 67.54 64.19 71.13 72.89 75.08

1 000 000 29.90 41.86 53.80 65.78 77.76 89.70 82.79 91.81 94.79 98.51

1 500 000 37.38 56.04 74.76 93.44 112.13 130.82 116.02 129.15 135.26 142.88

2 000 000 45.14 70.93 96.72 122.54 148.30 174.10 144.28 161.27 171.12 183.42

2 500 000 49.91 83.14 116.39 149.64 182.90 216.15 168.71 189.09 203.08 220.56

5 000 000 75.40 150.80 226.20 301.60 377.00 452.40 246.20 279.61 314.74 358.62

Hannover ILF s (by band of annual Turnover, $m) Model 4.3
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358.62, Model 4.3 high-risk at that limit; likewise 174.10 is closest to 171.12 at the $2m 

limit; as is 89.70 to 91.81 at the $1m limit, etc.).  It can be noted that model ILFs are 

different to those previously compiled in Table 5.6 (due to a different base limit). 

In accordance with this filing, ILFs for DB coverage are multiplied by a variable factor 

(that increases with the limit) to incorporate AE coverage.  This coverage overlaps with 

several covers listed previously (i.e. alongside C), and certain others that fall outside the 

scope of E (i.e. A–D).  Key assumptions underlying the present comparison can now be 

stated as follows:  

• ‘Out of scope’ covers comprise 40% of the AE loading which otherwise relates to a 

number of covers listed previously alongside C; thus, instead of multiplying by a given 

AE factor of 1y  , at some limit, 0.6( 1) 1 0.6 0.4y y− + = +  is used  

• Filed rates came into effect during the 2016 year; under the premise that insurer and 

model ILFs relate to the same period, no (further) inflation adjustment is made 

• ILFs relate to ground-up coverage (i.e. $0 excess); expense, profit, and other ‘non-risk’ 

adjustments and loadings are ignored 

Contrary to the concept of reducing marginal increases, associated with consistent limit 

factors, Hanover (2015) DB (implied) ILFs (i.e. based on filed ‘base premiums’), for 

example, with or without AE adjustment, do not produce consistent ILFs across all limits.  

Other observations include the following: 

• Turnover bands appear low in relation to the size of underlying costs (the reason for 

this is explained shortly) 

• In terms of the variance principle (as it relates to Model 4.3), the equivalent risk-

adjustment parameter, in relation to Hanover (2015) ILFs, for a given turnover band, is 

one that generally increases with the size of the limit 

• Model 4.3 appears to produce reasonable ILFs, in relation to Hanover (2015) ILFs,  for 

the $20m+ turnover band at lower limits (i.e. 250k–$1m) with no or low-risk 

adjustment, and at higher limits ($1.5m–$2.5m) with medium–high risk adjustment (the 

equivalent risk margin at limit $5m is over 100%, double that assumed for high risk) 
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One of the (potentially material) flaws associated with this comparison pertains to the type 

of risks to which (DB, AE) premiums are related.  In particular, this program (according to 

its name) relates to religious institutions which are likely to have a different risk profile to 

many of the organisations associated with underlying data (Chapter 3).   This would explain 

why the turnover bands appear to be low in relation to the costs in class E.  For instance, 

the mean LEV (Table D.4, Model 4.3, $5m limit, divided by mean loss count 10) would 

imply, for institutions with $20m turnover-year, a ‘pure-risk’ rate of $0.16 3.2
20

(~ )  per $1 

turnover-year.  In comparison, premium rates in the order of $0.01–$10 per mille turnover-

year might be expected for such coverage (indeed, the actual rate filed by Hanover (2015) 

for the $20m turnover band was $0.07 turnover-year).  The following comparison is 

somewhat more consistent in this regard. 

Per-loss limit comparison 

Table 5.11 compares ILFs for several major league insurers to those based on Models 4.5–

4.6 (low–high risk).  The portion relating to insurers formed part of a ‘competitor 

comparison’ (in relation to 2015-year ILFs) filed by Cresenzi & Alibrio (2016) on behalf 

of ACE (Chubb, 2017); ILFs at the $100m limit are extrapolated, as is described shortly. 

According to Fitch Ratings (2016), AIG and Chubb, whose cyber-insurance products are 

included in this comparison, are the two largest writers of cyber-insurance with a market 

share, based on direct written premium for the year 2016, of 34% (22% and 12% 

respectively).  As for the previous comparison, costs covered by the insurance products 

underlying this table correspond with A–D categories (Chapter 3).  Since insurer ILFs 

incorporate a base retention and base limit of $10k and $1m respectively, model ILFs are 

derived using 4.28 with 1.025v =  (based on inflation used for E, year 2015, Chapter 3), 

$10k,d =  and $1m.a =   It can be noted that with the same risk-adjustment parameter a 

different risk margin will be generated. 

As mentioned, insurer ILFs at the $100m limit, in this table, have been estimated separately 

(the competitor comparison only goes as far as the $10m limit).  For this, Riebesell (i.e. 

‘power’) curves, giving a third (and final) representation of risk-adjusted ILFs in the present 

research, are determined for each insurer.  In particular, from 4.21, with 

$1m, $100m,a b= = and , : ( ; , ) :b a b a w =  ,ln (ln ln )c aw c a= −  where $10mc =  (i.e. 

,c a  is given) and w  is the insurer specific Riebesell parameter.  
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The self-same parameters, which range (0.34, 0.56), are then reapplied at the $100m limit 

to determine insurer ILFs at that limit (Table 5.11).  It is worth noting that estimated ILFs 

at $100m limits are likely to be overstated, given that there is evidence that implied w s 

decrease (slightly) as the limit increases (e.g., with 1 $5mb = , implied w s range 0.35–

0.57).  A power curve with 0.14w   would be required to achieve low-risk modelled ILFs 

at the $100m limit, in comparison to 0.17w   (medium risk) and 0.19w  (high risk).  

Indicated with green shading are model ILFs that fall (entirely) within the range of insurer 

ILFs at a given limit.  All models can be seen to achieve this – the high risk does this across 

every (given) limit (i.e. $1m–$10m).  Given the data limitations associated with underlying 

(publicly available) data, manipulations, adjustments, simplifying assumptions, and what 

appears to be somewhat narrow insurer ranges, it is reassuring with regard to any such 

alignment between model ranges and insurer ranges. 

Table 5.11 Insurer ILF comparison (per-loss limits) Insurer comparison: 2016 ACE 

SERFF filing - Chubb Enterprise Risk Management Cyber and Digitech products (Cresenzi 

& Alibrio, 2016), with reference to (2015 year) SERFF filings by: AIG (Speciality Risk 

Protector) [AGNY-130104025], Travelers (Cyber-Essentials) [TRVD-130748646], 

Philadelphia (Cyber-Security Liability) [PHLX -G128091742], and ACE (MPL Advantage) 

[ACEH-125807939]. *$100m: ILFs estimated with Riebesell curve (implied at $10m limit).  

Base limit: $1m; retention: $10k.  Shading: model range within insurer range (A:B):=(min, 

max); partial if ranges overlap.  ‘Median’: model ILF range.  Ponemon Institute (2012a–i, 

2013a–j, 2014a–k), inflated to year 2016 (ILFs: adjusted to 2015). 

Insurer $1m $2m $3m $4m $5m $10m $100m*

Chubb 1 1.29 - 1.50 1.49 - 1.89 1.65 - 2.21 1.77 - 2.50 2.20 - 3.60 4.84 - 12.96

AIG National 1 1.50 1.88 2.14 2.35 3.04 9.24

Travelers 1 1.42 1.62 1.83 1.99 2.73 7.44

Philadelphia 1 1.58 1.98 2.27 2.47 3.15 9.92 - 9.92

ACE 1 1.30 - 1.50 1.50 - 1.89 1.65 - 2.22 1.78 - 2.51 2.21 - 3.62 4.88 - 13.10

Overall range ( A , B ) 1 1.29 - 1.58 1.49 - 1.98 1.65 - 2.27 1.77 - 2.51 2.20 - 3.62 4.84 - 13.10

Models 4.5 - 4.6

Low risk 1 1.37 1.56 - 1.57 1.66 - 1.68 1.72 - 1.75 1.84 - 1.89 3.39 - 3.57

__(Median - A ) / ( B - A ) - 27% 15% 3% -5% -24% -16%

Medium risk 1 1.43 - 1.45 1.67 - 1.73 1.81 - 1.90 1.90 - 2.02 2.09 - 2.31 4.37 - 5.32

__(Median - A ) / ( B - A ) - 52% 43% 33% 26% 0% 0%

High risk 1 1.49 - 1.54 1.78 - 1.90 1.96 - 2.13 2.07 - 2.30 2.33 - 2.73 5.44 - 7.48

__(Median - A ) / ( B - A ) - 77% 71% 64% 57% 23% 20%

Limit
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Chapter 6    

6Conclusions, Recommendations 

“That is the way to learn the most, that when you are doing something with such enjoyment that 

you don’t notice the time passes.”   

    Einstein (1879–1955), cited by Lawson (2004: 12) 

 

This research has explored key issues associated with cyber-risk and related pricing models 

through empirical analyses and applications of spliced-severity and aggregate loss models 

– the main aim was to investigate different types and levels of risk adjustment and 

correlation in terms of (pure-risk, cyber-insurance) Increased Limit Factors, ILFs.  This 

chapter evaluates the primary objectives (§1.2), highlights key contributions, limitations, 

and conclusions, and, in finality, makes recommendations in regard to future research.  

6.1 Evaluation of objectives 

For reference, each objective is restated, followed by a summary of what has been 

considered. 

Objective 1 (a-c) “To [a] review relevant sources of information and data, and, based on 

this, identify sources most suitable for [b] deriving severity and [c] aggregate loss 

distributions and determining implied ILFs” 
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1a) Data sources: review, identify 

➢ Twenty sources were compared in terms of practical factors associated with data 

quality (refer to Table A.2 for quick reference); primary (Ponemon Institute, 2019) 

and associated secondary (e.g. SERFF (NAIC, 2019), OECD (2018)) sources were 

identified and data was extracted 

➢ Validity (e.g. consistency, completeness, accuracy) of data (i.e. data breach costs, 

primary) was considered to a practicable degree; the effect of basic inflation 

adjustments was assessed; key limitations were disclosed; and applicability in terms 

of analogous cyber-coverage was considered 

1b) Severity cdfs: derive 

➢ Large (severity) cdfs, selected using the corrected Akaike, AICc, in terms of the 

Kullback-Leibler distance estimate (candidate models: Appendix D.1) were subject 

to a Kolmogorov-Smirnov, KS, test (5% critical) to determine splicing points on the 

basis of goodness of tail fit 

➢ Model (90%) confidence sets were estimated for cdfs identified in this way (Burr: 

B, C; Weibull: other classes), left-truncated at selected percentiles (75th–92nd), and 

based on 10k bootstrap samples – these considered ILF consistency 

➢ This reinforced light-tail selections in respect of certain classes (i.e. D, E: Weibull) 

– subject to the degree of uncertainty associated with model selection (greatest for 

D, due to its truncation); indicated alternative models (e.g. log-gamma, fatigue, 

GEV, log Laplace, and Pearson); and assessed KS-test performance in relation to 

an equivalent (i.e. 5% critical) Anderson Darling, AD, test 

1c) ALDs and ILFs: derive, determine 

➢ Various aggregate loss models were considered: Collective Risk , CR, models for 

determining ALDs based on Fast Fourier Transform, FFT, included: compound 

Poisson (Model 4.3 with primary Poisson loss count, secondary spliced cdfs); 

correlated aggregate loss and count models (Models 4.5–4.6, based on 

characteristic functions, cfs, and related transforms); and deterministic analogues 

(i.e. Models 4.2–4.4, crudely dubbed ‘Individual Risk’, IR) 
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➢ These incorporated different types of limits (defined in terms of ‘per-loss’: A–D; 

and ‘per-occurrence’: E), and, in respect of Models 4.4–4.5, different ‘correlation 

scenarios’ 

➢ ILFs were determined in respect of both severity cdfs and ALDs; as mentioned, 

these incorporated different types (i.e. variance principle, Proportional Hazard – 

PH – transforms, and, for comparisons with insurer ILFs, Riebesell or power 

curves) and levels of risk adjustments (based on implied risk margins at given 

limits) 

Objective 2 (a-b) “To model and explore [a] key attributes associated with underlying 

loss distributions and [b] the effect of correlation on these and associated risk adjustments” 

2a) Distributions: key attributes 

Severity cdfs and ALDs were considered in terms of the nature of underlying costs:  

➢ A, C: similar underlying cost types (and, therefore, distributions); although larger 

moments and a heavier tail for the latter were associated with distinguishing cost 

types (e.g. legal fees) 

➢ B: costs associated with regulatory requirements were speculated to lead to a highly 

skewed distribution 

➢ D: low skewness, kurtosis (relative to mean) and large values were associated with 

the nature of its underlying extrapolated cost estimates 

2b) Correlation and risk adjustments – effects 

➢ Bimodal distortions (Model 4.4) in the right tail of the ALD were attributed to 

aggregate correlation associated with class D (diversification analogous to 

retrocession, in the context of insurance, was considered in this regard); permissible 

ranges for covariance coefficients, required to ensure valid (i.e. non-negative) ALDs 

in respect of Models 4.4–4.5 were derived;  aliasing issues (associated with FFT 

methodology) were investigated in the left tail of ALDs 

➢ Variance-adjusted ILFs (Models 4.3, 4.5–4.6) were considered in terms of 

consistency properties, using the Proportional Hazard transform as a benchmark; 
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the variance principle was found to produce consistent ILFs provided the risk 

margin (as a function of risk-adjustment and correlation parameter) was acceptably 

low (e.g. 50% at $2.5m limit, Model 4.5); stress testing (e.g. 500% margin) revealed 

issues associated with covariance and variance terms at lower limits 

➢ In addition to model comparisons and ALD investigations (e.g. FFT wrap around); 

as part of validation, insight into coverage and pricing issues was gained through 

insurer ILF comparisons and Riebesell curves 

6.2 Contributions, limitations 

The model review (§2.2) found cyber-pricing models to be in want of further development 

and empirical support – particularly derelict aspects included severity and aggregate loss; 

there was no evidence of ILF related models.  Empirical support, based on statistically 

viable severity data, featured only once (Biener, Eling & Wirfs (2015), almost 1 000 cases).  

Key contributions made by the present research include: 

1. Model confidence sets for various severity cdfs, derived in relation to key forms of first-

party data-breach coverage 

2. New insight into aspects associated with correlated ALDs and risk-adjusted ILFs  

This was done in terms of nonparametric models based on empirical data, extracted from 

data breach survey reports ( 4 800 : A–D; 1 150: E).  There was no evidence of such 

applications or findings in the model review (or, to the best knowledge of the author, 

elsewhere in cyber related academia).   

Further, several algorithms were developed as a means of demonstrating practical data 

screening and model selection approaches.  However, these contributions are not without 

limitations: 

• Data: non-transparent, non-statistical, survey methodology; consequential (left, right) 

incidentally truncated data breach costs; in combination with graphical extraction 

methods (2015 year) are associated with uncertainty and inaccuracy; there is also the 

issue of the internalised nature of analysis, which only considered the external 

economic environment when setting inflation assumptions (and technological 
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environment in a general context) 

• Assumptions: homogeneity (by year, country – as explored in Figure 3.6, Figure B.2) 

and constant underlying exposure, unchanging technological, regulatory, and legal 

environment are, admittedly, unrealistic (however, provided necessary simplicity for 

analysis); pure-risk ILFs ignored expenses and other ‘non-risk’ components (although 

total implied margins, including the risk element, were considered in relation to insurer 

ILFs) 

• Results:  uncertain – as previously described (although, to some extent, this was 

communicated through a range of results based on different models, correlation, and 

risk parameter assumptions, and model confidence sets; and assessed by way of 

sensitivity analyses, Monte Carlo and other comparisons) 

6.3 Conclusions 

Conclusions, some of which are data or model dependent (i.e. not necessarily applicable in 

every situation) include: 

• Severity distributions, based on data breach costs, were heavy tailed in the main, 

although D, representing business interruption, often affiliated with issues such as 

interdependence in the realm of insurance, was found to be light tailed 

• Correlation between D and other classes (i.e. A–C) was found to have the greatest 

impact on the ALD in its tail (in the case where the aggregate loss model was used, the 

peak of the second mode of a bimodal distribution was intensified). The Value at Risk, 

however, was less affected by this compared to other risk measures (e.g. standard 

deviation)  

• Empirical evidence suggests insurers are indeed avoiding volatile severity risk 

associated with increased cover limits, not only through low upper limits, but through 

increasing implied risk margins.  Reducing Riebesell parameters support this view; in 

some (isolated) cases, this led to ILF consistency not being observed 

Enriched empirical data, as a basis for actuarial experience rating, may represent a source 

of value, despite the notion that it ‘quickly goes stale’ due to the dynamic nature of the 

technological environment.  This is demonstrated by reconciling modelled (i.e. 
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‘experience-based’) and insurer (exposure-based) ILFs, and introduces the following 

recommendations. 

6.4 Recommendations 

As mentioned, onus should be placed upon all stakeholders concerned to establish a unified 

approach to deal with common cyber-risk management issues – whilst industry groups and 

international initiatives are reportedly underway; actions to ‘better’ address basic data 

issues are still highly anticipated.   

Developing an anonymised ‘community-wide’ data base (with key elements for 

quantifying cyber-risk) may be fraught with wider issues concerning cooperation, funding, 

administration, and governance.  However, there would appear to be some incentive to 

collaborate more effectively, given the $600bn (and growing) cyber-cost estimate 

previously mentioned (§1.1).  

This would align with academic interests in support of such an initiative – although a 

unified approach may also be required here – possibly through a multidisciplinary academic 

interest group.  Such cross-pollination would accelerate the development of cyber-risk and 

associated pricing models.   

There were only two ‘actuarial’ contributions (according to title) that featured in the model 

review (§2.2), neither of which appeared to have emerged from that domain.  Given this, it 

is worth emphasising that further actuarial contribution to this specialised field of academia 

is essential.  Specific recommendations, in this regard, are provided in the following 

section. 

6.5 Future directions 

There are several areas that require attention and much greater input – those specific to the 

present research are followed by comprehensive recommendations (summarised by 

possible approach). 
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Specific areas 

• Correlation and interdependence: risks within a class were assumed to be independent 

– simulation (e.g. common shock model) would be useful for understanding 

interdependence with respect to business interruption 

• Information asymmetry: anti-selection (e.g. different limits attracting  different types, 

levels of risk) could be explored using ILFs by turnover band (as in Table 5.10, Hanover 

(2015), possibly based on D divided by customer churn); empirical insight into the 

notion of secondary loss (Bandyopadhyay, Mookerjee & Rao, 2010) and associated 

asymmetries (e.g. insureds’ claiming strategy, §2.2) could be investigated in terms of 

‘retention factors’ (for pricing different deductibles) possibly in combination with ILFs 

(4.28) 

Regarding cyber-loss distributions, parameter uncertainty was not considered in terms of 

intraclass severity cdfs (only for loss count, through a Negative Binomial).  For this, 

gamma-mixed Exponential (Reshetar, 2008) or other relevant mixture could be considered.  

There was also the case of thresholds for composite severity distributions, which were ‘fine-

tuned’ to the degree possible under an approach such as Maximum Likelihood, ML, 

(Ralucavernic, 2009; Scollnik & Sun, 2012).  

Additional insight into Value at Risk, VaR, can also be gained.  Chapter 5 demonstrated 

VaR appeared to be most resilient to the bimodal distortion accompanying correlated loss 

(Figure 5.6: 1–2, Scenarios 1–3).  Further, several data sources remain ‘untapped’ (§2.4.1) 

– further research in regard to available data sources would be an invaluable catalyst for 

subsequent research and cyber-risk model development.  

Approach 1: building upon extant (cyber) models 

In terms of the model review (§2.2), areas, by type of model, include the following:  

• Economic: mainly considered, thus far, from the perspective of an organisation; further 

contribution from an insurer’s perspective is needed  

• Correlation based (e.g. Bayesian networks; latent factor, beta-binomial models): 

models reviewed require reformulation to incorporate realistic severity distributions 

(i.e. non-uniform); this represents an opportunity to leverage ‘embedded value’ within 

existing cyber-risk models 
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• Operational Risk (e.g. GPD, EVT): greater insight into aggregate loss models is still 

required, only a few methods for dealing with correlation in this regard were considered 

in the present research; recursive methods (Panjer, 1981; Panjer & Willmot, 1992), for 

instance, are still to be explored  

In terms of epidemiological (e.g. SIR) models, few contributions have been made in cyber-

specific academia, although developments can be found elsewhere (Feng & Garrido, 2011); 

a point at issue which is discussed in the following (and final) set of recommendations 

appertaining specifically to the Actuarial community.  

Approach 2: reframing existing (non-cyber) methods  

In the spirit of contributing towards a genuine multidisciplinary approach, the following 

may motivate applications that are relevant to various Actuarial disciplines: 

• Reserving: stochastic reserving techniques could be deployed to study the effect of 

correlation relating to cyber-risk; development in the number of records breached 

(Chapter 3) could be based on ITRC (2018); LMA (2008) is a potential empirical source 

for consideration (although access permission would be required)  

• Capital Modelling the highly topical systemic cyber-risk could be modelled in terms of 

aggregate risk, cyber-disaster (UK Government and Industry, 2015) and accumulation 

scenarios (Risk Management Solutions, 2016)  

• Pricing: Generalised Linear Models – the model review (§2.2) identified two related 

contributions (Liu, Tanaka & Matsuura, 2007; Wang & Kim, 2009), both of which were 

based on empirical findings, none of which represented Actuarial contributions. 

Mapping relativities from sources such as Verizon (2019), referred to as VER (2019) 

in §2.4, and various online ‘risk assessment’ tools may be of value; machine-learning 

techniques could also be of use  

 

 

~ The End ~ 
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 Literature and data sources 

This appendix is relevant for Chapter 2 – in particular, A.1 describes the search strategy for 

identifying literary sources considered in the model review (§2.2); A.2 summarises 

underlying components used to calculate PSSs for ranking sources in §2.4.2; and A.3 

provides a reference guide pertaining to various data sources considered in Chapter 3. 

A.1 Literary search strategy 

The search strategy used to identify studies in the model review (Figure 2.1) is illustrated 

in Figure A.1.  This incorporates various filters (e.g. language, content, etc.) and utilises 

the University of Cape Town [UCT] (2019) online search engine. 

Titles and keywords are searched using strings that are made up of one word from each of 

the following groups: 

• Group 1: ‘cyber’, ‘information’, and ‘interdependent’ 

• Group 2: ‘risk management’, ‘insurance’ (and derivatives, such as insurability), and 

‘security’ 

The UCT (2019) online search, used to generate these results, accesses databases such as 

WorldCat (2019), which is self-proclaimed as ‘world’s largest network of libraries’.   

Incorporated in Figure A.1 are supplementary sources to compliment this search, such as 

Workshop on the Economics of Information Security [WEIS] (2019) – (archives of papers 

on information security and privacy), and Association for Computing Machinery [ACM] 

(2019) – (an international society for learned computing).  The library catalogue of Institute 

and Faculty of Actuaries (2019) was also considered.   

The 22 studies that are identified  in this figure constitute studies in the model review 

(Figure 2.1) – this excludes the study Edwards, Hofmeyr & Forrest (2016), which fell 

outside the review period (2000–mid-2006). 
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A.2 Data-source ranking 

A summary of backing calculations for PSSs in Figure 2.5 are summarised in Table A.1 – 

the top portion of this table represents ‘previously modelled’ data sources; and the bottom 

portion includes ‘untapped’ sources that did not feature in the model review §2.2 (in 

particular, Figure 2.1).  Green (highest), yellow, and grey (lowest) colour coding represents 

scores associated with factors 1–3 in Figure 2.4 (a red cross indicates where minimum 

requirements are not met in this regard).   

Comparable sources in Figure 2.5 (i.e. with common icon and text colour) are indicated by 

A–C in the data source column of this table.  Sources that fail prespecified minimum criteria 

are indicated with a red cross mark.

Introduced Results Excluded Note

Search string ~ 34 000 (1)

Language 1 15 352 ~ 18 000 (2)

Content 2 1 960 13 393 (3)

Period 1 432 530 (4)

Full text review 11 52 1 380 (5)

Model-review 22 41 (6)

F
il

te
rs

Figure A.1 Identification of studies Notes: (1) Search string: "ti:((cyber | information | 

interdependent ) + (risk management | insur* | security )) kw: (model | empirical)" - which 

applies to titles (i.e. ‘ti’) and keywords (i.e. ‘kw’), through the UCT (2019) search engine. (2) 

English-only; identified Barracchini & Addessi (2014) from a similar (but excluded) Italian 

manuscript. (3) Full-text, peer-reviewed (re-included Soo Hoo (2000), Liu, Tanaka & 

Matsuura (2007) - not peer-reviewed).  (4) Period: 2000–mid 2016.  (5) 52 studies identified 

for full-text review by scanning titles, then abstracts, and introduced 11 new studies from on-

line searches, references, and archived libraries such as WEIS (2019).  (6) Eliminated 41 

studies based on full-text review, leaving 22 for the model review.  Motivated by Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses, PRISMA, (Moher et al., 2009) 

and Biener, Eling & Wirfs (2015) search strategy for cyber-related losses. 



James Bardopoulos  Appendices  |  Page A.4  Literature and data sources 

James Bardopoulos   A.4 

 

Table A.1 Potential Suitability Score calculations Sources with comparable attributes or elements: A – records breached.  B – OR and related loss data.  C – 

online security attacks (e.g. DDoS).  D – economic sources with exposure information (e.g. GDPR, ICT sector).  Badges: green – individual level of detail; 

orange – aggregate; grey – no such data.  Source fails minimum criteria (i.e. ) if credibility less than 3 years; over 2 years out of date, or both.  PSS range: 1–

5.  Notes: (1) (Pouget, Dacier & Pham, 2005).  (2) WDID of the World Bank (2019).  (3) ICSA reported by Bridwell (2004).  (4) (NAIC, 2019).  (5) (FBI, 2006). 

2) Credibility Potential Suitability

_ Modelled (author, year) Count  (N ) Severity (X 1,..., X N ) Exposure Years spanned Age (most recent yr) Score = 1) + 2) + 3)

Bohme (2006) C Honeypot 
(1) Individual None None   [0,3)   (2,∞) 1.0

Rachev, Chernobai & 

Menn (2006)
B BIS (2003) Aggregate Aggregate Aggregate   [0,3)   (2,∞) 1.5

Liu, Tanaka & Matsuura 

(2007)
METI (2004) Aggregate None None   [0,3)   (2,∞) 0.5

Cope & Antonini (2008) B ORX (2017) None Individual Aggregate  [5,∞)   (2,∞) 2.5

C SANS (2019) Individual None None  [5,∞)  (0,1] 3.0

D WDID 
(2) None None Aggregate  [5,∞)  (0,1] 2.5

H. Herath & T. Herath 

(2011)
ICSA 

(3) None Aggregate Aggregate   [0,3)   (2,∞) 1.0

Biener, Eling & Wirfs 

(2015)
B SAS (2015) Individual Individual Individual  [5,∞)   (2,∞) 4.0

Edwards, Hofmeyr & 

Forrest (2016)
A PVC (2016) Individual None None  [5,∞)  (0,1] 3.0

A PON (2019) Individual Individual Aggregate  [5,∞)  (0,1] 4.5

A ITRC (2018) Individual None None  [5,∞)  (0,1] 3.0

SERFF 
(4) Aggregate Aggregate Aggregate  [5,∞)  (0,1] 3.5

E NetD (2016) Aggregate Aggregate Aggregate  [5,∞)  (0,1] 3.5

IC3 
(5) Aggregate Aggregate Aggregate  [5,∞)  (0,1] 3.5

C DIG (2013) Individual None None   [0,3)  (0,1] 2.0

D BEA (2019) None None Aggregate  [5,∞)  (0,1] 2.5

VER (2019) Aggregate None None  [5,∞)  (0,1] 2.5

E LMA (2008) None Aggregate Aggregate  [3,5)  (0,1] 2.5

D OECD (2018) None None Aggregate  [5,∞)  (0,1] 2.5

ICPSR (2012) Aggregate Aggregate Aggregate  [3,5)   (2,∞) 2.0

1) Content & level of detail 3) Relevance

Data source

Wang & Kim (2009)

'Untapped'

(not featured in 

model review )
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A.3 Data sources  

Table A.2 provides a summary of the abbreviated data sources considered in Chapter 3 and 

corresponding references (R.1).   

 

 

 

 Selected data 

Permission, from the copy-right holder, to quote Ponemon Institute (2012a–i, 2013a–j, 

2014a–k, 2015g), is evidenced in Figure B.1.   

 

 

 Source (1) Reference (2) 

1 BEA US Department of Commerce (2019) 

2 BIS Bank for International Settlements (2003) 

3 DIG Digital Attack Map (2013) 

4 Honeypot Pouget, Dacier & Pham (2005) (3) 

5 IC3 Federal Bureau of Investigation (2006) 

6 ICPSR Inter-university Consortium for Political and Social Research (2012) 

7 ICSA Bridwell (2004) (4) 

8 ITRC Identity Theft Resource Center (2018) 

9 LMA Lloyd’s Market Association (2008) 

10 METI Ministry of Economy Trade Industry (2004) 

11 NetD NetDiligence (2016) 

12 OECD Organisation for Economic Co-operation and Development (2018) 

13 ORX Operational Riskdata eXchange Association (2017) 

14 PON Ponemon Institute (2019) 

15 PVC Privacy Rights Clearinghouse (2016) 

16 SANS SysAdmin, Audit, Admin and Security (2019) 

17 SAS SAS (2015) 

18 SERFF National Association of Insurance Commissioners (2019) 

19 VER Verizon Data Breach Incident Response (2019) 

20 WDID World Bank (2019) 

Table A.2 Reference guide for data sources Ordering: alphabetical (according to source, 1st 

column). Notes: (1) In-line, figure, and table citations or references; any of these that did not form 

part of the initial citation can be found in  Abbreviations (p. x).  (2) Reference used in R.1 list.  (3) 

Courtesy Leurre.com, Eurecom, cited by Böhme & Kataria (2006).  (4) Author of survey report.   
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B.1 Permission and fair usage 

 

It can be noted that the accompanying request to “reuse/analyse” this data source was 

neither declined nor approved (Figure B.1) – as such, a four-factor checklist is considered 

to assess the extent of fair usage (Columbia university, 2015): 

• Purpose: non-commercial research; largely ‘transformative’ – through a variety of 

statistical models and algorithms, new material has been produced and insight gained 

Figure B.1 Rights to quote Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g). 
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(e.g. risk-adjusted ILFs; bimodal distortions due to correlated class effects); with the 

exception of the first 10 rows (which were rounded to the nearest thousand) – data from 

this source has not been reproduced in its original form 

• Nature: factual, published, and legally accessible information 

• Amount: extent of data utilised is appropriate for the intended educational purpose set 

out in §1.2 and does not represent a significant portion of the overall data and 

information embodied within this source  

• Effect: considered to be low (or negligible) in terms of the copyright market, given the 

general limitations associated with the availability of (regarding restricted historical 

time periods over which such detail is available), and ability to assimilate, this data 

B.2 Currency adjustments 

Table B.1 compares $US (independent, online) rates online applied to Ponemon Institute 

(2012a–i, 2013a–j, 2014a–k, 2015g) with rates implied by country-level and global reports 

(which report the same values but in different currencies). 

 

B.3 Key data fields 

Table B.2 summarises relevant fields from the primary source (Chapter 3) in terms of their 

type (i.e. measure, factor), level of detail (aggregate, individual), and proposed definitions 

(interpreted from the descriptions and examples provided in the 2012–2015 reports). 

Currency Implied rate Online rate

Australian Dollar 0.847 0.798

Brazilian Real 0.446 0.328

Canadian dollar 0.828 0.767

Euro 1.388 1.137

Indian Rupee 0.016 0.016

Japanese Yen 0.010 0.008

Saudi Riyal 0.356 0.267

British Pound 1.404 1.526

Table B.1 US exchange rates Implied - according to Ponemon Institute (2015a–l), 

average cost per record data; online - as at 6 May 2015 (Currency.me.uk, 2008). 
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B.4 Inflation 

Inflation periods (Table B.3) and methodology pertaining to the inflation rates by which 

costs are adjusted (Chapter 3) are included in this appendix. 

Inflation Periods 

As mentioned previously, inflation periods are determined by the average ‘interview’ date 

(by year, Table B.3) to 31st December 16.   

Table B.2 Definitions for data fields (primary source) Individual detail (organisation level) 

tabulated for A–D (by year, 2012–2014) in Ponemon Institute (2012a–i, 2013a–j, 2014a–k) and 

graphed for E (note 1: total cost) in Ponemon Institute (2015g, fig. 20). 

Field Definition Level of detail

.Company identifier .Surrogate key created and ascribed to each survey participant .Individual

 Estimated financial loss in respect of (publicly disclosed) data breaches 

_.that occurred up to 12 months prior to surveys
.Individual

 Split by classes A–D  (stages of a "data breach process")

 A–C  comprise elements of direct (related to defined activities) and 

_.indirect costs (C  also includes costs associated with non-compliance)

 D  represents lost business costs: reduced sales due to diminished 

_.customer base due to reputational damage (over average customer 

_.lifetime) and business disruption (e.g. due to system outage)

.Records
.Number of lost or stolen items of personally identifiable information

.(typically ranges 1k–100k per organisation-year)
.Individual

.Churn
.Percentage of customers that terminate their relationship due to breaches

.over the prior 12 months
.Aggregate

.Breach probability .Two-year probability of an organisation suffering at least one breach .Aggregate

.Country

.Country of establishment (up to 11 levels): Australia, Brazil, Canada, 

.France, Germany, India, Italy, Japan, Middle East (Saudi Arabia and

.United Arab Emirates), UK, and US

.Aggregate

.Sector

.Industry of operation (up to 16 levels, varies by country and year): 

.communications, consumer, education, energy, financial, healthcare, 

.hospitality, industrial, media, pharmaceutical, public, research, retail, 

.services, technology, and transportation

.Aggregate

.Costs:

.classes A–D (1)
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Average interview dates (Table B.3) are determined as the midpoint of respective 

‘interview periods’ (given by survey-year; typically 10 months), based on the assumption 

that interviews are conducted uniformly.   

Methodology 

There are too few data points (i.e. years) to model inflation rates using conventional 

regression techniques (e.g. exponential, linear).  Alternative methods such as constructing 

indices that reflect underlying cost drivers (e.g. class C – product discounts: CPI; credit 

monitoring and other fees; regulatory penalty adjustments; etc.) lie beyond the scope of the 

present research.  Instead, annual inflation is determined using a simple and practical 

approach, based on the movement in the mean cost, by class, between mean interview dates 

for the 2012 and 2014 survey-years (i.e. for which A–D costs are available).  In other words, 

compound inflation rates are assumed.   

This implies an inflation rate for class E (i.e. average inflation weighted by uninflated A–

D costs) which is applied to class E costs associated with the 2015 survey-year (i.e. to 

inflate from 14-Oct-16 to 31-Dec-16).   More formerly, inflation, tr , over 0t   time units 

is derived as 
1
t

0
( ) 1tX

t X
r = − , where 0X  and tX  are mean costs at time 0 and t  respectively.   

As mentioned, ,t  in this case, is taken as the number of years between average breach (or 

equivalently, ‘interview’) dates for survey years 2012 and 2014 (~ 2 years), with respective 

mean costs (for a given class) 0X  and .tX   Inflation rates derived this way were 

summarised, by class, in Table 3.3. 

 

Table B.3 Inflation periods Years between average interview date and 31st December 

2016, over which costs Ponemon Institute (2012a–i, 2013a–j, 2014a–k, 2015g) are inflated.  

Survey-year Interview date Inflation period

2012 30-Jul-11 5.4

2013 16-Jul-12 4.5

2014 14-Oct-13 3.2

2015 14-Oct-14 2.2
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B.5 Homogeneity 

Figure B.2 supports the notion that survey years are homoscedastic with respect to variance 

(noting the restricted range of the x and y axes), whilst Table B.4 compares the mix of 

countries (in terms of count, total cost) for 2012–2014 survey-years. 

Table B.4 shows broad similarity in the mix of countries by year (in support of §3.3),  

noting, however, the decline in (e.g. USA and UK) due to Brazil and ME joining. 

Table B.4 Country mix by year Count % (number of participating organisations).  Total 

cost % (based on class E, Ponemon Institute (2012a–i, 2013a–j, 2014a–k), inflated to year 

2016).   

Country 2011 2013 2014 2011 2013 2014

US 42% 36% 35% 23% 19% 19%

UK 15% 15% 13% 17% 14% 13%

Germany 16% 16% 12% 12% 11% 10%

France 11% 10% 9% 11% 9% 9%

Australia 6% 6% 5% 11% 8% 7%

Italy 4% 5% 5% 9% 8% 7%

Japan 4% 6% 5% 7% 9% 8%

India 3% 3% 4% 10% 10% 9%

ME 0% 0% 7% 0% 0% 8%

Brazil 0% 3% 4% 0% 11% 10%

Total 100% 100% 100% 100% 100% 100%

Year

C
o

u
n

t

T
o

ta
l 

c
o

st

Figure B.2 Mean cost by standard deviation Based on class E costs from Ponemon 

Institute (2012a–i, 2013a–j, 2014a–k, 2015g), inflated to year 2016.   
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 Supplementary theory  

C.1 Rounding method (mass-dispersal) 

 

The following method of piecewise-linear discretisation (for FFT, Chapter 5) is adapted 

from (Klugman, Panjer & Willmot, 2004: 182–183) and Wang (1998: 47) to allow for 

without limits and limited severities: 

• Select 2r
, 0r   the number of points for FFT computation, and a suitable (constant) 

span, 0h  ( 2rh should cover the maximum likely aggregate loss) 

• Discretise severity X  with  pdf, ,f  and cdf, ,F  to calculate a vector of  probabilities 

with 2r
 elements ( ) ( )Pr , 0,1,..., 2 1rf hk X hk k= = = − as follows:  

 ( )

( )

2

2 1 2 1
2 2

2 2

1

( ) 0

( ) ( ) 1,2,..., 2 2

1 2 1
r

h

rk k

r

i

F k

f hk F h F h k

f hi k

+ −

−

=

 =



= − = −

 − = −




 C.1 

Refer to Klugman, Panjer & Willmot (2004, sec. 6.6.5) for a description of an alternative 

method that preserves the mean of a continuous severity cdf. 

 Results 

D.1 Mean excess plots (supporting figures) 

 

The ME plot for class E (Figure D.1) follow on from §5.2.1.  As can be seen, there is an 

alternating positive and negative gradient, up to a threshold of ~93%.   

This supports the light- and heavy- tailed Weibull cdfs in Table 5.1.
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Figure D.2 Shifted mean excess (classes A–E) Follows considerations in §5.2.2; MEs 

are shifted to align with A at the 40% threshold.  Costs based on Ponemon Institute 

(2012a–i, 2013a–j, 2014a–k), inflated to 2016.  Dotted lines: above maximum percentiles 

identified (visually, using MEs) for large-loss cdfs.  
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Figure D.1 Mean excess plot (class E) Separate investigation in support of a light-

tailed cdf for large losses (for spliced cdf in respect of class E, §5.2.2).  Costs based on 

Ponemon Institute (2012a–i, 2013a–j, 2014a–k), inflated to 2016. 
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Figure D.2 compares MEs in respect of all classes (A–E).  For graphical convenience, these 

are vertically aligned by adding (or subtracting) a constant (across all percentiles for a given 

class) s.t. they intersect with class A’s ME at 40% threshold.   

D.2 Candidate large-loss distributions  

Distributions available in Vose (2019) software are used for running Algorithm 4.3 – these 

cdfs are fitted to large-loss severities for making selections for classes A–E.   

 

 

 

 

 

 

 

 

D.3 Large-loss model selection 

Table D.2 follows from §5.2.2 and summarises the results of both runs of Algorithm 4.3 

for the highest four combined scores.  As can be seen, percentiles (i.e. splicing points) 

correspond to within 1%, and cdfs (for the top three) belong to the same family (e.g. 

Weibull light- or heavy- tailed, Burr).   

Bradford GEV Log-Uniform 

Burr Inverse Gaussian Maxwell 

Chi Johnson Pareto 

Chi-Squared Kumaraswamy4 Pareto2 

Dagum Levy Pearson5 

Erlang Lifetime2 Pearson6 

Exponential Lifetime3 Rayleigh 

F distribution Log-Laplace Reciprocal 

Fatigue Lognormal Weibull 

Gamma Log-Triangle Weibull3 

Table D.1 Candidate large-loss cdfs Number of parameters specified after cdf title (e.g. 

Weibull3 is the three parameter form of this model); number of parameters; based on 

available distributions in Vose (2019).  
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D.4 Densities, limited moments  

For beta and gamma families (Table D.3) gamma,  , and beta,   functions, and respective 

lower incomplete variations are defined as follows: 

  

1 1

0 0

1

1 1 1 1

0 0

( ) exp( ) , ( ; ) exp( )

( ) ( )
( , ) (1 ) , ( , ; ) ( , ) (1 )

( )

b

a a

c

a b a b

a u u du a b u u du f

a b
a b u u du a b c a b u u du

a b



− −

− − − −

 = −  = −

 
 = − =  =  −

 +

 

 

  D.1 

where , , 0;  1a b c c   (Klugman, Panjer & Willmot, 2004: 102, 627–629), noting that in 

this case, the incomplete gamma, ( , )a b ,  is not ‘standardised’ with divisor ( ).a     In this 

table, limited moments for continuous distributions do not incorporate a shift (i.e. location 

parameter).  For this, an adjustment can be applied as described in the following.  Suppose 

random variable Y X = +  has a shifted cdf, based on (non-negative) random variable X  

with location (i.e. ‘shift’) parameter 0   (i.e. ).Y    Then limited moments for ,Y  

when limit l   applies, can be determined analytically using ( ) ( )Ε E( ) ,k kY X  −= +l l  

assuming respective limited moments for X  exist.  This follows from the fact that 

min( , ) min( , ) .X X  + = − +l l  For 0,  l  
( )E k kY =l l  by definition.  

Table D.2 Top ranking percentiles and cdfs Rank refers to overall score (based on KS-

ratio).  Black font: both 1st and 2nd run (Algorithm 4.3); Red: only 2nd run.  Asterisked 

are light-tailed Weibull cdfs.  Underlying data: Ponemon Institute (2012a–i, 2013a–j, 

2014a–k, 2015g), inflated to 2016. 

Rank A B C D E

1 87.2% 77.5% 81.0% 92.1% 83.9%

2 87.5% 78.4% 80.7% 92.0% 83.8%

3 87.4% 78.0% 80.9% 91.9% 83.7%

4 87.6% 78.1% 80.6% 92.4% 83.5%

1 Weibull Burr Burr Weibull* Weibull*

2 Weibull Burr Burr Weibull* Weibull*

3 Weibull Burr Burr Weibull* Weibull*

4 Weibull Burr Burr Pearson Weibull*
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Model or family Notation, parameters Density, distribution, support 

Discrete: pgf, P[t]; mean, ; variance, 2  

Continuous: limited moments (EX (l)k; l > 0, )k +    

D
is

cr
et

e
 

 

Binomial 

 

  

D.2 

Poisson 
 

  

D.3 

Negative binomial 
 

 

2

P[ ] (1 ( 1))

;  (1 )

at b t

ab ab b 

−= − −

= = +

 D.4 

C
o
n
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n
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o
u
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Lognormal 
 

 

 

D.5 

Transformed beta 

(four parameter 

excluding shift) 

 

• Dagum: a = 1, Burr(b,c,d)* 

• GPD (a,b,d): c = 1 

• Pareto (a,b): c = d = 1 

• Log-logistic (b,c): a = d = 1   
 

D.6 

Transformed 

gamma (three 

parameters, 

excluding shift) 

 

• Gamma: c = 1, G(a,b) 

• Weibull: a = 1, Weib(b,c) 

• Exponential: a = c = 1, 

Exp(b) 
 

  

D.7 

( , )

,  (0,1)

Bin n p

n p+ 

( , )( ) (1 ,

0,1,.
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..,

x n x
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x n
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=
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x
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 +
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, 0
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1
2
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exp( )
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(2 )

( ) 1 ( ) ( ),  0

s
f x s x

x

F x S x s x

 
 

−−
= = −

= − =  

( ) 2 21
2

E exp( ) ( ) ( ) k kX k k s k S  = +  − +l l l

, , , 0a b c d  1

1

1 1

( )
( )

( ) ( )(1 ( ) )

( ) 1 ( ) B( , ; ( )),
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c a d
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f x

a d xb

F x S x d a p x

p x x b x

− −
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c c
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E ( ) ,
( )

k c c
k kb a kc x b

X S
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
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l l l

Table D.3 Discrete and continuous distributions Limit l > 0 applies to random variable X for limited moments D.5–D.7 (Klugman, Panjer & Willmot, 2004, sec. A.2.1.1, 

A3.1.1) . *Dagum represented as Burr(b,c,d) – (i.e. a = 1) throughout present research to align with Vose (2019) parameterisation of Burr (ordinarily d = 1 for Burr).  

Location parameter, for a shifted cdf, is included after other applicable parameters a-d (limited moments, D.5–D.7, need to be adjusted accordingly).   
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D.5 LAS means and standard deviations 

The caption for Table D.4 provides relevant detail for this appendix. 

 LAS means (unadjusted) PH (5% margin at $10m) _LAS std dev, covariance (for variance principle) 

Limit 4.3: IR,CR 4.5–4.6 Poiss-Weib Poiss- LN 4.3: IR 4.3: CR 4.5: scen 1 CV ($109
 ) 4.6:  = 9% 

10k 100 000 391 096 101 353 101 301 0 31 623 62 428 115 134 815 

20k 200 000 767 166 202 705 202 603 0 63 246 123 309 4 411 264 815 

25k 250 000 950 712 253 382 253 253 0 79 057 153 274 6 772 328 373 

50k 500 000 1 828 808 506 764 506 497 0 158 114 298 874 25 011 633 433 

100k 999 849 3 455 199 1 013 205 1 012 759 1 624 316 184 576 617 88 934 1 202 169 

150k 1 497 524 4 943 660 1 515 254 1 518 084 10 186 473 668 839 109 181 387 1 726 626 

200k 1 991 735 6 319 490 2 011 484 2 021 526 24 836 630 331 1 088 711 295 388 2 214 825 

250k 2 483 846 7 594 237 2 501 808 2 522 120 42 323 786 600 1 326 032 425 292 2 670 205 

300k 2 969 411 8 778 382 2 986 200 3 018 988 63 126 941 130 1 552 086 566 760 3 096 124 

350k 3 445 954 9 883 448 3 464 662 3 511 371 89 220 1 093 353 1 768 258 716 805 3 496 471 

400k 3 916 577 10 917 867 3 937 212 3 998 638 119 951 1 244 325 1 975 338 872 945 3 873 692 

450k 4 382 500 11 880 318 4 403 878 4 480 272 154 035 1 394 402 2 172 439 1 031 729 4 227 003 

500k 4 845 960 12 777 132 4 864 695 4 955 858 190 499 1 544 222 2 360 276 1 191 277 4 558 446 

550k 5 305 883 13 607 428 5 319 702 5 425 074 228 587 1 693 367 2 538 140 1 348 884 4 867 437 

600k 5 758 374 14 387 882 5 768 944 5 887 670 268 165 1 840 598 2 709 120 1 505 579 5 159 941 

650k 6 203 687 15 126 000 6 212 467 6 343 463 309 516 1 986 045 2 874 295 1 661 329 5 438 488 

750k 7 069 185 16 468 129 7 082 558 7 234 163 397 613 2 270 558 3 183 983 1 963 085 5 701 637 

1.00m 9 106 431 19 267 936 9 161 348 9 337 440 649 988 2 952 151 3 874 314 2 668 129 5 950 197 

1.25m 11 010 615 21 487 091 11 107 928 11 268 239 933 036 3 604 708 4 470 077 3 297 982 7 042 990 

1.50m 12 762 291 23 256 801 12 929 380 13 037 680 1 231 614 4 219 535 4 983 342 3 843 812 7 937 816 

1.75m 14 377 486 24 710 450 14 632 744 14 659 607 1 541 969 4 800 925 5 435 711 4 319 415 8 674 609 

2.00m 15 880 430 25 940 542 16 224 885 16 148 106 1 860 371 5 355 351 5 843 966 4 740 677 9 299 010 

2.25m 17 265 710 26 992 096 17 712 428 17 516 472 2 180 008 5 879 023 6 214 045 5 113 983 9 843 583 

2.50m 18 558 647 27 882 298 19 101 718 18 776 829 2 501 595 6 379 680 6 544 992 5 439 162 10 322 796 

2.75m 19 748 586 28 643 135 20 398 806 19 940 052 2 818 224 6 851 500 6 842 939 5 723 232 10 740 102 

3.00m 20 847 092 29 295 547 21 609 439 21 015 811 3 129 766 7 297 641 7 111 430 5 970 998 11 106 826 

3.25m 21 852 656 29 856 910 22 739 064 22 012 675 3 432 619 7 716 005 7 353 760 6 187 037 11 430 041 

3.50m 22 772 730 30 331 965 23 792 829 22 938 223 3 726 128 8 108 252 7 568 466 6 371 963 11 715 819 

3.75m 23 606 518 30 744 337 24 775 593 23 799 165 4 007 312 8 472 622 7 763 281 6 533 794 11 964 225 

4.00m 24 378 561 31 097 080 25 691 935 24 601 447 4 281 987 8 818 551 7 937 228 6 673 260 12 185 639 

4.25m 25 115 791 31 406 205 26 546 167 25 350 346 4 557 117 9 156 834 8 096 207 6 796 104 12 380 057 

4.50m 25 819 744 31 678 392 27 342 342 26 050 558 4 831 050 9 487 095 8 241 903 6 904 712 12 554 949 

4.75m 26 472 873 31 930 136 28 084 267 26 706 268 5 095 380 9 800 214 8 381 937 7 005 268 12 712 906 

5m 27 081 894 32 164 446 28 775 518 27 321 216 5 351 405 10 098 536 8 517 081 7 098 914 12 862 691 

6m 29 105 552 32 936 856 31 097 772 29 435 522 6 280 459 11 142 598 8 999 704 7 408 120 13 005 491 

7m 30 719 249 33 475 468 32 842 468 31 112 939 7 121 211 12 044 869 9 378 779 7 624 503 13 502 695 

8m 32 003 872 33 829 258 34 150 576 32 466 577 7 865 742 12 817 748 9 656 186 7 767 400 13 880 024 



Appendices     Results 

 

James Bardopoulos   D.7 

 LAS means (unadjusted) PH (5% margin at $10m) _LAS std dev, covariance (for variance principle) 

Limit 4.3: IR,CR 4.5–4.6 Poiss-Weib Poiss- LN 4.3: IR 4.3: CR 4.5: scen 1 CV ($109
 ) 4.6:  = 9% 

9m 32 993 248 34 049 705 35 129 611 33 574 783 8 497 884 13 456 206 9 847 403 7 857 166 14 148 395 

10m 33 743 132 34 181 568 35 861 206 34 493 339 9 023 415 13 974 331 9 973 221 7 911 516 14 328 830 

11m 34 305 432 34 258 603 36 407 129 35 262 913 9 453 919 14 389 678 10 053 653 7 943 833 14 444 933 

12m 34 723 629 34 303 628 36 813 983 35 913 761 9 802 422 14 719 392 10 104 830 7 963 185 14 517 675 

13m 35 032 581 34 330 770 37 116 838 36 468 801 10 081 687 14 978 938 10 138 243 7 975 206 14 563 128 

14m 35 259 537 34 348 172 37 342 037 36 945 664 10 303 453 15 181 721 10 161 331 7 983 164 14 592 326 

15m 35 425 439 34 360 268 37 509 322 37 358 102 10 478 116 15 339 071 10 178 545 7 988 854 14 612 212 

16m 35 546 182 34 369 377 37 633 472 37 716 976 10 614 641 15 460 392 10 192 389 7 993 227 14 626 850 

17m 35 633 715 34 376 688 37 725 528 38 030 959 10 720 607 15 553 378 10 204 206 7 996 779 14 638 489 

18m 35 696 944 34 382 818 37 793 730 38 307 043 10 802 314 15 624 249 10 214 705 7 999 777 14 648 326 

19m 35 742 469 34 388 100 37 844 221 38 550 922 10 864 929 15 677 981 10 224 261 8 002 367 14 656 989 

20m 35 775 147 34 392 729 37 881 571 38 767 266 10 912 635 15 718 515 10 233 082 8 004 640 14 664 810 

21m 35 798 537 34 396 833 37 909 182 38 959 935 10 948 784 15 748 949 10 241 296 8 006 656 14 671 978 

22m 35 815 235 34 400 500 37 929 579 39 132 145 10 976 035 15 771 698 10 248 989 8 008 458 14 678 610 

23m 35 827 125 34 403 799 37 944 637 39 286 590 10 996 480 15 788 631 10 256 226 8 010 080 14 684 785 

24m 35 835 573 34 406 782 37 955 747 39 425 540 11 011 747 15 801 184 10 263 057 8 011 546 14 690 562 

25m 35 841 561 34 409 493 37 963 940 39 550 920 11 023 100 15 810 455 10 269 523 8 012 878 14 695 987 

26m 35 845 797 34 411 966 37 969 977 39 664 368 11 031 507 15 817 277 10 275 661 8 014 094 14 701 100 

27m 35 848 787 34 414 232 37 974 424 39 767 288 11 037 709 15 822 281 10 281 500 8 015 208 14 705 932 

28m 35 850 894 34 416 314 37 977 698 39 860 886 11 042 267 15 825 938 10 287 067 8 016 232 14 710 511 

29m 35 852 375 34 418 234 37 980 107 39 946 205 11 045 606 15 828 604 10 292 385 8 017 176 14 714 860 

30m 35 853 416 34 420 011 37 981 879 40 024 148 11 048 043 15 830 540 10 297 473 8 018 050 14 719 001 

31m 35 854 145 34 421 658 37 983 181 40 095 499 11 049 817 15 831 943 10 302 350 8 018 860 14 722 951 

32m 35 854 655 34 423 190 37 984 138 40 160 947 11 051 104 15 832 957 10 307 032 8 019 613 14 726 725 

33m 35 855 011 34 424 618 37 984 841 40 221 091 11 052 036 15 833 688 10 311 533 8 020 316 14 730 338 

34m 35 855 260 34 425 952 37 985 357 40 276 461 11 052 708 15 834 213 10 315 866 8 020 972 14 733 802 

35m 35 855 433 34 427 201 37 985 735 40 327 522 11 053 192 15 834 590 10 320 041 8 021 586 14 737 128 

36m 35 855 553 34 428 372 37 986 013 40 374 685 11 053 539 15 834 860 10 324 069 8 022 163 14 740 327 

37m 35 855 637 34 429 473 37 986 216 40 418 317 11 053 788 15 835 053 10 327 960 8 022 704 14 743 405 

38m 35 855 695 34 430 510 37 986 366 40 458 742 11 053 966 15 835 190 10 331 722 8 023 214 14 746 373 

39m 35 855 735 34 431 487 37 986 475 40 496 248 11 054 092 15 835 288 10 335 363 8 023 695 14 749 237 

40m 35 855 763 34 432 410 37 986 555 40 531 094 11 054 183 15 835 357 10 338 890 8 024 150 14 752 003 

41m 35 855 782 34 433 283 37 986 614 40 563 511 11 054 247 15 835 406 10 342 310 8 024 579 14 754 678 

42m 35 855 795 34 434 111 37 986 657 40 593 706 11 054 292 15 835 441 10 345 628 8 024 986 14 757 267 

43m 35 855 804 34 434 895 37 986 688 40 621 865 11 054 324 15 835 465 10 348 850 8 025 373 14 759 775 

44m 35 855 811 34 435 640 37 986 711 40 648 157 11 054 347 15 835 482 10 351 980 8 025 739 14 762 207 

45m 35 855 815 34 436 348 37 986 728 40 672 732 11 054 363 15 835 495 10 355 025 8 026 088 14 764 566 

46m 35 855 818 34 437 023 37 986 740 40 695 727 11 054 374 15 835 503 10 357 987 8 026 420 14 766 858 

47m 35 855 820 34 437 665 37 986 749 40 717 267 11 054 382 15 835 509 10 360 872 8 026 736 14 769 084 

48m 35 855 821 34 438 279 37 986 756 40 737 464 11 054 388 15 835 513 10 363 682 8 027 038 14 771 250 

49m 35 855 822 34 438 864 37 986 760 40 756 420 11 054 392 15 835 516 10 366 422 8 027 326 14 773 357 

50m 35 855 823 34 439 424 37 986 764 40 774 228 11 054 394 15 835 518 10 369 094 8 027 602 14 775 408 

51m 35 855 823 34 439 960 37 986 766 40 790 973 11 054 396 15 835 520 10 371 702 8 027 866 14 777 407 
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 LAS means (unadjusted) PH (5% margin at $10m) _LAS std dev, covariance (for variance principle) 

Limit 4.3: IR,CR 4.5–4.6 Poiss-Weib Poiss- LN 4.3: IR 4.3: CR 4.5: scen 1 CV ($109
 ) 4.6:  = 9% 

52m 35 855 824 34 440 472 37 986 768 40 806 731 11 054 398 15 835 521 10 374 248 8 028 118 14 779 356 

53m 35 855 824 34 440 964 37 986 770 40 821 574 11 054 399 15 835 521 10 376 736 8 028 360 14 781 256 

54m 35 855 824 34 441 436 37 986 771 40 835 567 11 054 399 15 835 522 10 379 167 8 028 592 14 783 111 

55m 35 855 824 34 441 888 37 986 771 40 848 768 11 054 400 15 835 522 10 381 544 8 028 815 14 784 922 

56m 35 855 824 34 442 323 37 986 772 40 861 232 11 054 400 15 835 522 10 383 869 8 029 029 14 786 691 

57m 35 855 824 34 442 742 37 986 772 40 873 010 11 054 400 15 835 523 10 386 144 8 029 235 14 788 420 

58m 35 855 824 34 443 144 37 986 773 40 884 146 11 054 400 15 835 523 10 388 372 8 029 434 14 790 111 

59m 35 855 824 34 443 531 37 986 773 40 894 684 11 054 400 15 835 523 10 390 553 8 029 624 14 791 764 

60m 35 855 824 34 443 905 37 986 773 40 904 663 11 054 400 15 835 523 10 392 690 8 029 808 14 793 382 

61m 35 855 824 34 444 265 37 986 773 40 914 118 11 054 401 15 835 523 10 394 785 8 029 985 14 794 966 

62m 35 855 824 34 444 612 37 986 773 40 923 083 11 054 401 15 835 523 10 396 839 8 030 156 14 796 518 

63m 35 855 824 34 444 947 37 986 773 40 931 588 11 054 401 15 835 523 10 398 853 8 030 321 14 798 038 

64m 35 855 824 34 445 270 37 986 773 40 939 663 11 054 401 15 835 523 10 400 829 8 030 481 14 799 527 

65m 35 855 824 34 445 583 37 986 773 40 947 334 11 054 401 15 835 523 10 402 768 8 030 635 14 800 988 

66m 35 855 824 34 445 886 37 986 773 40 954 624 11 054 401 15 835 523 10 404 671 8 030 784 14 802 420 

67m 35 855 824 34 446 178 37 986 773 40 961 558 11 054 401 15 835 523 10 406 541 8 030 928 14 803 825 

68m 35 855 824 34 446 461 37 986 773 40 968 155 11 054 401 15 835 523 10 408 377 8 031 067 14 805 204 

69m 35 855 824 34 446 735 37 986 773 40 974 437 11 054 401 15 835 523 10 410 180 8 031 202 14 806 558 

70m 35 855 824 34 447 001 37 986 773 40 980 420 11 054 401 15 835 523 10 411 953 8 031 333 14 807 887 

71m 35 855 824 34 447 258 37 986 773 40 986 123 11 054 401 15 835 523 10 413 696 8 031 460 14 809 192 

72m 35 855 824 34 447 508 37 986 773 40 991 561 11 054 401 15 835 523 10 415 409 8 031 583 14 810 475 

73m 35 855 824 34 447 750 37 986 773 40 996 748 11 054 401 15 835 523 10 417 095 8 031 702 14 811 735 

74m 35 855 824 34 447 985 37 986 773 41 001 700 11 054 401 15 835 523 10 418 753 8 031 818 14 812 975 

75m 35 855 824 34 448 213 37 986 773 41 006 429 11 054 401 15 835 523 10 420 384 8 031 930 14 814 193 

76m 35 855 824 34 448 435 37 986 773 41 010 946 11 054 401 15 835 523 10 421 989 8 032 039 14 815 391 

77m 35 855 824 34 448 650 37 986 773 41 015 264 11 054 401 15 835 523 10 423 570 8 032 145 14 816 570 

78m 35 855 824 34 448 859 37 986 773 41 019 393 11 054 401 15 835 523 10 425 126 8 032 249 14 817 730 

79m 35 855 824 34 449 063 37 986 773 41 023 343 11 054 401 15 835 523 10 426 658 8 032 349 14 818 871 

80m 35 855 824 34 449 261 37 986 773 41 027 124 11 054 401 15 835 523 10 428 168 8 032 446 14 819 995 

81m 35 855 824 34 449 454 37 986 773 41 030 743 11 054 401 15 835 523 10 429 655 8 032 541 14 821 101 

82m 35 855 824 34 449 641 37 986 773 41 034 210 11 054 401 15 835 523 10 431 121 8 032 634 14 822 191 

83m 35 855 824 34 449 824 37 986 773 41 037 532 11 054 401 15 835 523 10 432 565 8 032 724 14 823 264 

84m 35 855 824 34 450 002 37 986 773 41 040 716 11 054 401 15 835 523 10 433 989 8 032 811 14 824 321 

85m 35 855 824 34 450 175 37 986 773 41 043 770 11 054 401 15 835 523 10 435 393 8 032 897 14 825 363 

86m 35 855 824 34 450 344 37 986 773 41 046 700 11 054 401 15 835 523 10 436 777 8 032 980 14 826 390 

87m 35 855 824 34 450 509 37 986 773 41 049 511 11 054 401 15 835 523 10 438 142 8 033 061 14 827 402 

88m 35 855 824 34 450 669 37 986 773 41 052 210 11 054 401 15 835 523 10 439 489 8 033 140 14 828 400 

89m 35 855 824 34 450 826 37 986 773 41 054 802 11 054 401 15 835 523 10 440 818 8 033 218 14 829 384 

90m 35 855 824 34 450 979 37 986 773 41 057 292 11 054 401 15 835 523 10 442 129 8 033 293 14 830 355 

91m 35 855 824 34 451 128 37 986 773 41 059 684 11 054 401 15 835 523 10 443 422 8 033 366 14 831 312 

92m 35 855 824 34 451 274 37 986 773 41 061 985 11 054 401 15 835 523 10 444 700 8 033 438 14 832 256 

93m 35 855 824 34 451 417 37 986 773 41 064 197 11 054 401 15 835 523 10 445 960 8 033 508 14 833 188 

94m 35 855 824 34 451 556 37 986 773 41 066 325 11 054 401 15 835 523 10 447 205 8 033 577 14 834 108 
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 LAS means (unadjusted) PH (5% margin at $10m) _LAS std dev, covariance (for variance principle) 

Limit 4.3: IR,CR 4.5–4.6 Poiss-Weib Poiss- LN 4.3: IR 4.3: CR 4.5: scen 1 CV ($109
 ) 4.6:  = 9% 

95m 35 855 824 34 451 692 37 986 773 41 068 372 11 054 401 15 835 523 10 448 434 8 033 644 14 835 016 

96m 35 855 824 34 451 824 37 986 773 41 070 343 11 054 401 15 835 523 10 449 648 8 033 709 14 835 912 

97m 35 855 824 34 451 954 37 986 773 41 072 241 11 054 401 15 835 523 10 450 847 8 033 773 14 836 797 

98m 35 855 824 34 452 081 37 986 773 41 074 068 11 054 401 15 835 523 10 452 032 8 033 836 14 837 671 

99m 35 855 824 34 452 205 37 986 773 41 075 829 11 054 401 15 835 523 10 453 202 8 033 897 14 838 534 

100m 35 855 824 34 452 327 37 986 773 41 077 526 11 054 401 15 835 523 10 454 358 8 033 957 14 839 386 

 

 

D.6 Risk-adjustment parameters 

Table D.5 provides risk-adjustment parameters for variance principle and PH-transform 

methods, by class and risk environment, underlying risk-adjusted LASs (§5.3.3). 

 

 

Table D.4 Mean and standard deviation of LASs Supporting means, standard deviations for Models 4.3 - 4.6 

(variance principle) and compound-Poisson PH-transform LASs (§5.3.3: Table 5.6, Figure 5.4; §5.3.5: Table 

5.10, Table 5.11).   

 

Table D.5 Risk-adjustment parameters low–high risk margins (i.e. risk-adjusted LAS, 

relative to mean) at limits: $2.5m (Models 4.5–4.6) and $10m (Model 4.3 and PH 

transforms); PH parameters applied to (Weibull, lognormal ) severity cdfs (based on MLE 

fit to class E) and loss count cdf (Poisson mean 10, for all models and methods).   

Model Low Medium High

4.3 (IR) 2.1E-08 1.0E-07 2.1E-07

4.3 (CR) 8.6E-09 4.3E-08 8.6E-08

4.5 (1) 3.3E-08 1.6E-07 3.3E-07

4.5 (2) 2.0E-08 1.0E-07 2.0E-07

4.5 (3) 1.4E-08 7.2E-08 1.4E-07

4.6 1.2E-08 6.1E-08 1.2E-07

Weibull 1.05 1.24 1.49

Lognormal 1.04 1.23 1.47
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D.7 Lognormal vs. spliced-severity cdfs (class E) 

Figure D.3 Lognormal and spliced cdfs Based on class E; underlying discussions 

pertaining to observation 1 (§5.3.3, p. 5.22): top: above 90% (spliced: light-tail Weibull); 

bottom: below 90%. 

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

8 28 48 68 88 108

F
 (

x)

Severity x ($m)

Lognormal

Spliced

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 2 4 6 8

F
 (

x)

Severity x ($m)

Lognormal

Spliced



Appendices     Results 

 

James Bardopoulos   D.11 

D.8 Covariance and standard deviation (Model 4.5) 

 

 

Figure D.4 Model 4.5 Covariance, variance, and gradients Top: covariance and variance 

associated with Model 4.5 Scenario 3; bottom: associated gradients for these terms.  Related 

discussion: §5.3.3.  Costs based on Ponemon Institute (2012a–i, 2013a–j, 2014a–k), inflated to 

end of 2016 year. 
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 Cyber-risk and Insurance 

E.1 Cyber-risk evolution 

This section provides additional information pertaining to the historic evolution of cyber-

crime (Figure E.1) in parallel with some of the following:   

• The role played by cyber-criminals and the media with regard to data breaches and 

consequent legal actions 

• Developments in insurance policy-wordings brought about by court appeals regarding 

legal liability as a result of ‘hidden cyber-exposures’ (Appendix E.3) 

• The effect of the internet on cyber-risk, and data available for modelling it statistically 

Refer to (Meyers, Powers & Faissol, 2009) for a more detailed historic background of the 

development of cyber-risk and the internet. 

Digital Age 

The Whatsapp (2019) precursor of the 19th-20th centuries was Morse code – known as the 

first digital code – which could relay digital data using a discrete representation of 

information.  Since then, IT has undergone a Digital Revolution, known as The Third 

Industrial Revolution, which follows the Second Industrial Revolution that brought with it 

petroleum, automobiles, airplanes, steel and electricity.  A timeline of the Digital Age, 

before the internet, is depicted in Figure E.1. 

Figure E.1 Cyber-evolution during digital age Colour font indicates cyber-crime (Haney, 

1972; Marks, 2011), technological developments (Defense Communications Agency, 

1985), and regulation (Meyers, Powers & Faissol, 2009). 
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Figure E.1 highlights the following historical events in the evolution of cyber-crime: 

• 1900s: The first report of a data breach was in 1903, when magician and scientist 

Maskelyne sent insulting Morse code out to an auditorium, in an attempt to disprove 

the concept of private and secure communication (Marks, 2011)  

• 1960s: The US Department of Defense starts funding research into a technological 

precursor to the internet, known as the ARPANET (Defense Communications Agency, 

1985) 

• 1970s: the Pentagon breach is leaked to New York Times and widely distributed 

(Haney, 1972) 

• 1980s: Meyers, Powers & Faissol (2009) regards the first legal attempt to address cyber-

crime as the Comprehensive Crime Control Act (1984), followed by the Fraud and 

Abuse Act (1986) which formerly classifies breaking into a computer system as a crime 

in the USA 

Information Age 

It was only at the “beginning of last quarter of the 20th century” (Princeton university, 

2009) that the Information Age erupted, with the emergence of computer 

telecommunication networks that allow the exchange of data between computers which are 

not directly connected, on account of the internet. Figure E.2 shows a timeline of events 

after the internet entered the public domain. 

 

Figure E.2 Cyber-evolution during information age Colour font indicates cyber-

crime (Federal Bureau of Investigation, 2006), technological developments (Hilbert & 

López, 2011; Feenberg & Friesen, 2012); insurance and legal implications  (Baer & 

Parkinson, 2007; Anderson, 2013); cyber-risk model development (Böhme, 2005; 

Biener, Eling & Wirfs, 2015). 
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The following are key developments shown in Figure E.2:  

• 1990: ARPANET – originally conceived as an indestructible global computer network 

that could not be destroyed by any single point of attack – is decommissioned (Feenberg 

& Friesen, 2012)  

• 1991: The World Wide Web (WWW) goes public (Bryant, 2011), and policy wording 

exclusions for non-physical software damages start emerging to address hidden (i.e. 

unanticipated) cyber-exposures (e.g. due to gaps in specific cyber-related exclusions; 

implied coverage in ‘all-risks’ insurance policy) following legal disputes such as the 

court of Appeals of Minnesota in Retail Systems, Inc. v. CNA Insurance Co. (Anderson, 

2013) 

• 1990–2000: Specialised (standalone) cyber-insurance policies (evolving from 

Professional Liability covers) are developed with coverage against losses caused by 

computer viruses or other malicious code, destruction or theft of data, denial of service 

attacks, business interruption, and liability from e-commerce or other forms of network 

IT failure (Baer & Parkinson, 2007), although Moore (2012) describes cyber-security 

insurance as being commercially available from as early as the late 1970s 

• 2000: According to Hilbert & López (2011) of the American Association for the 

Advancement of Science (2019), self-proclaimed as the “world’s largest general 

Scientific society”, research by Lyman et al. (2005) suggests that 97% of all digital data 

is communicated through the internet (i.e. within 10 years of it having gone public); 

also, cyber-media liability policies develop to cover perils such as viruses, network 

security failure, and unauthorised access 

• 2003: Internet related crime costs an estimated $125m (not inflation adjusted) in the 

USA (Federal Bureau of Investigation, 2006) and the same year mandatory disclosure 

requirements for data breaches are introduced by California legislative information 

(2016) 

• 2005: One million internet crimes in the US are reported to IC3 (FBI, 2006), around the 

same time some of the first frequency models (based on empirical cyber-risk data) can 

be found (Böhme, 2005), followed by the examples of  empirical severity models 

(Biener, Eling & Wirfs, 2015) 

Half a century in the making, from the antics of a magician to the epidemic global fear that 

a make-believe Y2K bug could mean the end of technological time; cyber-risk has become 
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an actuality.  Society has encountered the classic catch-22 paradigm – one where the very 

defence mechanisms designed to protect against cyber-risk can also be a source of cyber-

risk (§2.2- correlated failures).  The world is utterly reliant upon what is believed to be the 

successor of an indestructible globally connected computer network: one that governs 

almost all telecommunication; one that breeds the indefatigable cyber-risk; one with 

interdependent security decisions (§2.2); one through which privacy of identity and 

economic livelihood are compromised on an everyday basis.  This thing is called the 

internet.  

E.2 Product features and coverage 

As one might expect of a diverse range of product offerings, there are several types of 

coverage available in cyber-insurance.  For instance, cyber-insurance policies often provide 

cover against first-party losses on losses-occurring or losses-discovered bases, and third-

party coverage on a claims-made basis, as the following defines: 

• Losses-occurring policies meet claims in respect of losses that occur during the policy 

period – this basis of cover is often used for cyber-extortion and network interruption 

insurance 

• Losses-discovered policies meet claims in respect of losses that are first discovered 

during the policy period – coverage for loss of assets (e.g. due to computer fraud) and 

remediation costs (e.g. due to data breaches) can often be found on this basis 

• Claims-made policies meet claims that are first made and reported during the policy 

period, irrespective of when the underlying incident occurred (Marker & Mohl, 1980), 

subject to other conditions such as the discovery period (specified within the sunset 

clause) within which the insured must notify the insurer of a claim, retroactive date 

(before which time, claim incidents are excluded) and ERP to cover claims reported 

after (in respect of incidents that occurred during) the original policy term 

For specific considerations pertaining to cyber-liability (claims-made) policies, refer to US 

Department of Homeland Security (2012) on the topic of retroactive dates, and LaCroix 

(2016), who describes a possible coverage gap that can arise when this does not predate the 

point of ‘failure to maintain IT security’ (e.g. last computer configuration; software 

updates; etc.).  For ERP (particularly relevant for claims-made cyber-liability), Betterley 
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Risk Consultants (2017) recommend, for insured parties, ‘bilateral’ provisions which are 

more flexible than ‘one-way’ provisions as insured can exercise the option to purchase (e.g. 

by cancelling the policy).   

Product variations (Appendix E.3); perils (Appendix E.4); risk and rating factors (Appendix 

E.5); exclusions (Appendix  E.6); and exposure measures (Appendix  E.7).   

E.3 Product variations 

As mentioned there are numerous forms and types of products (§3.1) – according to Baer 

& Parkinson (2007), however, businesses generally purchase standalone coverage.  

Notwithstanding, a review by Risk Management Solutions [RMS] (2016), of 26 products, 

found virtually no commonality in terms of coverage (i.e. number, types) – indeed, 19 

distinct (‘primary’) categories of coverage were identified in respect of these.   

Some insurers provide first-party coverage to customers of the insured, whilst others offer 

‘services only’.  Further, some products (e.g. ‘cyber-security’, ‘privacy notification’, or 

‘crisis management expense’) only cover first-party losses; whilst others (e.g. technology 

Errors and Omissions, E&O) protect against third-party liability (e.g. clients’ negligence 

claims; civil damages); others still (e.g. ‘network security’; ‘privacy liability’) cover 

elements of both of these (Floresca, 2014; Sharp, 2016).  For firms, the suitability of such 

products depends on numerous factors, key examples of which pertain to data (e.g. 

sensitivity, storage); IT infrastructure; nature of business, and regulatory environment.  

Indeed, increased uptake has been noted for businesses that hold confidential data; rely 

heavily on IT (e.g. systems, website) to transact; and that deal with electronic payments 

(Lloyd’s, 2015).  These and other factors, which have a bearing on the level of risk and thus 

insurance premium, are considered further in Appendix E.5. 

Cyber-exposures 

As for risk and coverage, (cyber-) exposure (i.e. exposure to cyber-risk) can be classified 

as first-party or third-party, both of which may represent what is referred to as ‘hidden’ or 

‘silent’ exposure.  To begin with, the concept of first-party and third-party exposure is 

described in the context of an example that considers various parties associated with a data 

breach.  The following example introduced several terms (records, data subject, data 
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owner, data custodian) – precise definitions can be found in data breach legislation 

(California Office of Privacy Protection, 2012):  

• A bank customer (data subject) entrusts its residential address (record) to a financial 

bank (data owner, in this case, also the insured)  

• The bank stores this information on an information system comprising IT assets owned 

by the bank, but maintained by an outsourced third-party IT provider (data custodian)  

In this case, the potential for the IT provider to suffer a cyber-attack can represent a third-

party exposure for the bank, which can result in both first-party losses (due to damaged 

bank IT assets), as well as third-party liability (due to customer information being 

breached).  Similarly, the potential for a breach of IT security within the data owner 

(representing a first-party exposure) can lead to both first-party losses and third-party 

liability insurance claims (under a cyber-insurance policy).   

An alternative definition for cyber-exposures, provided by RMS (2016), are policies that 

could potentially trigger claims in the event of a cyber-incident. RMS (2016) then goes on 

to classify cyber-exposures in the market under headings such as standalone cyber-covers, 

endorsements (i.e. coverage extensions to traditional insurance products), and silent (or 

hidden) cyber-exposures (also known as silent cyber).   

Silent cyber refers to potential cyber-related losses from policies not specifically designed 

to cover such losses, and can arise from gaps in specific cyber-exclusions and policies 

without cyber-exclusions (e.g. an all-risks insurance policy may not exclude specific cyber-

perils).  One might regard this as a type of latent claim exposure in that it can give rise to 

claims that “[result] from perils or causes of which the insurer is unaware of at the time of 

writing a policy” (Michaelides et al., 1997).  Latent claims, however, are typically 

associated with much longer reporting and settlement delays (Forfar & Raymont, 2002).   

E.4 Cyber-perils 

This section describes cyber-perils (i.e. probable causes of cyber-loss) in the context of a 

taxonomy of operational cyber-security risks proposed by (Cebula & Young, 2010) and 

contemplated by Biener, Eling & Wirfs (2015) in related material.  For this purpose, cyber-
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perils are classified according to the human (malicious or otherwise) and technological 

interventions (e.g. system failure), processes and exogenous events. 

Alternatively, cyber-perils could be classified according to first-party and third-party risks, 

for instance, cyber-perils that give rise to first-party claims may include: malicious or 

accidental destruction of data, denial of service attacks, cyber-extortion threats, and system 

failures; third-party claims may be caused by privacy or security breaches, misuse of 

personal data, defamation or slander, and transmission of malicious content.  Other 

coverage triggers (i.e. cyber-perils) in respect of data privacy insurance (refer to party 

coverage examples, Appendix E.2), according to (Betterley Risk Consultants, 2017), 

include failure to secure data, loss attributable to an employee, and third-party acts. 

Ponemon Institute (2012d: 6) reports, for many countries, malicious attacks and negligent 

employees as being the main causes of data breaches, and Ponemon Institute (2015g: 10) 

finds malicious attacks as being the most common (i.e. frequent) and costly.  However, 

negligent employees only represent a subset of inadvertent events, which, according to the 

UK Government and Industry (2015), are more frequent but less severe (in terms of their 

impact on businesses) than malicious events.  In terms of malicious events, cyber-attacks 

reportedly have a similar likelihood but a higher severity compared to identity-theft and 

cyber-fraud (World Economic Forum, 2015). 

E.5 Risk and rating factors 

Risk factors (factors that influence the level of risk) and rating factors (risk factors or 

proxies for risk factors that are practical, objective, measurable, and acceptable for market 

use) are used for reducing heterogeneity, and allow differential rates that are commensurate 

with the level of risk to be charged.  Ideally, such factors should not be correlated with one 

another.  An example of a risk factor could be ‘network security breach risk’.  However, as 

this would be difficult to objectively measure and verify proxies may be used instead, for 

instance:  

• Type of firewall protection and other measurable factors relating to the level of IT 

security such as existence of IT security certificate and issuing authority 

• Prior network security breaches 
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A number of rating factors are used in practice, some of which include security policy, 

third-party exposures (e.g. IT service provider, backup and archiving services), business 

continuity and incident response plans, intrusion testing, and the level of cover or optional 

coverages (e.g. defence costs, reward expenses, regulatory fines and penalties, etc.),  

(Selleck, 2015).  Refer to SERFF (NAIC, 2019), where (publicly accessible) insurer rate 

plans can be found, and Romanosky et al. (2017) who provide information pertaining to 

the rating of cyber-insurance policies including other good examples of rating factors used 

in practice.   

E.6 Common exclusions 

Typically, third-party liability for death or bodily injury (cyber-related or otherwise) can 

be covered under a relevant traditional commercial general liability policy (as opposed to 

a cyber-insurance policy).  A key misconception that may exist among many firms is that 

their traditional insurance arrangements provide suitable protection against cyber-losses; 

however, this is not necessarily the case due to common exclusions such as: 

• Electronic Data Exclusion (NMA2914) excludes non-physical damage (Marsh, 2014) 

• Network downtime caused by cyber-crime (i.e. resulting in lost business costs) is 

typically excluded in the business interruption coverage section of a traditional 

commercial fire policy (Anderson, 2013; UK Government and Industry, 2015) 

E.7 Exposure measures 

An exposure measure is a quantity that represents the basic unit of risk underlying an 

insurance premium (which, oftentimes, is expressed as a ‘premium rate’, per unit of 

exposure, per term of policy).  Examples for cyber-insurance (which can also be used as 

rating factors, Appendix E.5) include: 

• Internet revenue: as this relates to the potential for lost business costs and reputational 

damage (Great American Insurance, 2011; Wolfrom, Little & Rielley, 2015) 

• Size of the workforce: this relates to handling customer complaints and notifications;  

however, the level of risk can vary for firms with the same workforce size, and so 

additional rating factors would be needed to explain this risk, for instance, manual 
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workers would not typically be involved in handling customer notifications 

(Philadelphia Indemnity, 2015) 

• The number of records of confidential customer information: (Sedano & Rodriguez, 

2015); the number of records should be verifiable, especially if stipulated in specific 

audit requirements (Treasury, 2011) 
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